Three novel methods to estimate abundance of unmark

Ecosphere 9, e02331 DOI: 10.1002/ecs2.2331

Citation Report

#	Article	IF	CITATIONS
1	Evaluating responses by pronghorn to fence modifications across the Northern Great Plains. Wildlife Society Bulletin, 2018, 42, 225-236.	1.6	24
2	Methods for assessing small-scale variation in the abundance of a generalist mesopredator. PLoS ONE, 2018, 13, e0207545.	2.5	7
3	The influence of movement on the occupancy–density relationship at small spatial scales. Ecosphere, 2019, 10, e02807.	2.2	30
4	Avoiding misleading messages: Population assessment using camera trapping is not a simple task. Journal of Animal Ecology, 2019, 88, 2011-2016.	2.8	12
5	Estimating prey abundance and distribution from camera trap data using binomial mixture models. European Journal of Wildlife Research, 2019, 65, 1.	1.4	5
6	Pangolins in global camera trap data: Implications for ecological monitoring. Global Ecology and Conservation, 2019, 20, e00769.	2.1	33
7	Densityâ€dependent space use affects interpretation of camera trap detection rates. Ecology and Evolution, 2019, 9, 14031-14041.	1.9	43
8	Using nest captures and video cameras to estimate survival and abundance of breeding Piping Plovers <i>Charadrius melodus</i> . Ibis, 2020, 162, 1-12.	1.9	1
9	REM: performance on a high-density fallow deer (Dama dama) population. Mammal Research, 2020, 65, 835-841.	1.3	3
10	Maximizing detection probability for effective largeâ€scale nocturnal bird monitoring. Diversity and Distributions, 2020, 26, 1034-1050.	4.1	15
11	Evaluating Responses by Sympatric Ungulates to Fence Modifications Across the Northern Great Plains. Wildlife Society Bulletin, 2020, 44, 130-141.	1.6	17
12	Landscape-scale estimation of forest ungulate density and biomass using camera traps: Applying the REST model. Biological Conservation, 2020, 241, 108381.	4.1	32
13	Drawn out of the shadows: Surveying secretive forest species with camera trap distance sampling. Journal of Applied Ecology, 2020, 57, 963-974.	4.0	41
14	Abundance estimation of unmarked animals based on cameraâ€ŧrap data. Conservation Biology, 2021, 35, 88-100.	4.7	119
15	Estimating animal density in three dimensions using captureâ€frequency data from remote detectors. Remote Sensing in Ecology and Conservation, 2021, 7, 36-49.	4.3	4
16	Estimating Abundance of an Unmarked, Lowâ€Đensity Species using Cameras. Journal of Wildlife Management, 2021, 85, 87-96.	1.8	27
17	Estimating animal abundance and effort–precision relationship with camera trap distance sampling. Ecosphere, 2021, 12, e03299.	2.2	22
18	Next-Generation Camera Trapping: Systematic Review of Historic Trends Suggests Keys to Expanded Research Applications in Ecology and Conservation. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	42

#	Article	IF	CITATIONS
19	Highâ€density camera trap grid reveals lack of consistency in detection and capture rates across space and time. Ecosphere, 2021, 12, e03350.	2.2	24
22	Can Video Traps Reliably Detect Animals? Implications for the Density Estimation of Animals without Individual Recognition. Mammal Study, 2021, 46, .	0.6	4
23	Assessing the camera trap methodologies used to estimate density of unmarked populations. Journal of Applied Ecology, 2021, 58, 1583-1592.	4.0	52
24	Estimating survival of unmarked neonates with camera traps. Ecosphere, 2021, 12, e03523.	2.2	0
25	The Rapid Rise of Next-Generation Natural History. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	28
26	Assessing the robustness of timeâ€ŧoâ€event models for estimating unmarked wildlife abundance using remote cameras. Ecological Applications, 2021, 31, e02388.	3.8	8
27	Movingâ€resting process with measurement error in animal movement modeling. Methods in Ecology and Evolution, 2021, 12, 2221-2233.	5.2	2
28	Evaluation of camera trapâ€based abundance estimators for unmarkedÂpopulations. Ecological Applications, 2021, 31, e02410.	3.8	17
29	Evaluating and integrating spatial capture–recapture models with data of variable individual identifiability. Ecological Applications, 2021, 31, e02405.	3.8	16
30	Estimating preharvest density, adult sex ratio, and fecundity of whiteâ€ŧailed deer using noninvasive sampling techniques. Ecology and Evolution, 2021, 11, 14312-14326.	1.9	2
31	Random encounter model to estimate density of mountain-dwelling ungulate. European Journal of Wildlife Research, 2021, 67, 1.	1.4	8
32	Broaden your horizon: The use of remotely sensed data for modeling populations of forest species at landscape scales. Forest Ecology and Management, 2021, 500, 119640.	3.2	2
34	A field test of unconventional camera trap distance sampling to estimate abundance of marmot populations. Wildlife Biology, 2020, 2020, 1-11.	1.4	15
35	Geospatial Data Management Research: Progress and Future Directions. ISPRS International Journal of Geo-Information, 2020, 9, 95.	2.9	65
36	spaceNtime: an R package for estimating abundance of unmarked animals using camera-trap photographs. Mammalian Biology, 2022, 102, 581-590.	1.5	8
37	Density estimates for Canada lynx vary among estimation methods. Ecosphere, 2021, 12, e03774.	2.2	13
39	A New Method for Calculating the Population Density of Terrestrial Animals Using Camera Traps with Assessment of Roe Deer (Capreolus pygargus Pallas, 1771) (Cervidae, Mammalia) Population Density in the Khingan Nature Reserve as an Example. Povolzhskii Ekologicheskii Zhurnal, 2020, , 307-317.	0.5	0
40	Cattle Grazing Effects on Vegetation and Wild Ungulates in the Forest Ecosystem of a National Park in Northeastern China. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	4

#	Article	IF	CITATIONS
41	Overcoming the distance estimation bottleneck in estimating animal abundance with camera traps. Ecological Informatics, 2022, 68, 101536.	5.2	11
42	Using camera traps to estimate density of snowshoe hare (<i>Lepus americanus</i>): a keystone boreal forest herbivore. Journal of Mammalogy, 2022, 103, 693-710.	1.3	2
43	Deriving observation distances for camera trap distance sampling. African Journal of Ecology, 2022, 60, 423-432.	0.9	5
44	Estimating wolf abundance from cameras. Ecosphere, 2022, 13, .	2.2	10
45	Double-observer approach with camera traps can correct imperfect detection and improve the accuracy of density estimation of unmarked animal populations. Scientific Reports, 2022, 12, 2011.	3.3	4
46	Methodological approaches for estimating populations of the endangered dhole <i>Cuon alpinus</i> . PeerJ, 2022, 10, e12905.	2.0	2
47	Comparison of methods for estimating density and population trends for low-density Asian bears. Global Ecology and Conservation, 2022, 35, e02058.	2.1	15
48	A New Method for Calculating the Population Density of Terrestrial Animals Using Camera Traps with an Assessment of the Roe Deer (Capreolus pygargus Pallas, 1771) (Cervidae, Mammalia) Population Density in Khingan Nature Reserve as an Example. Biology Bulletin, 2021, 48, 1857-1861.	0.5	0
50	Monitoring sitatunga (<i>Tragelaphus spekii</i>) populations using camera traps. African Journal of Ecology, 2022, 60, 377-385.	0.9	1
51	Applying and testing a novel method to estimate animal density from motionâ€ŧriggered cameras. Ecosphere, 2022, 13, .	2.2	9
52	AbundanceR: A Novel Method for Estimating Wildlife Abundance Based on Distance Sampling and Species Distribution Models. Land, 2022, 11, 660.	2.9	3
53	Estimating animal size or distance in camera trap images: Photogrammetry using the pinhole camera model. Methods in Ecology and Evolution, 2022, 13, 1707-1718.	5.2	3
54	Camera trap distance sampling for terrestrial mammal population monitoring: lessons learnt from a <scp>UK</scp> case study. Remote Sensing in Ecology and Conservation, 2022, 8, 717-730.	4.3	11
55	Animal reactivity to camera traps and its effects on abundance estimate using distance sampling in the TaÃ⁻ National Park, Côte d'lvoire. PeerJ, 0, 10, e13510.	2.0	6
56	Evaluating unmarked abundance estimators using remote cameras and aerial surveys. Wildlife Society Bulletin, 2022, 46, .	0.8	0
57	Estimating animal density for a community of species using information obtained only from cameraâ€traps. Methods in Ecology and Evolution, 2022, 13, 2248-2261.	5.2	10
58	Automated distance estimation for wildlife camera trapping. Ecological Informatics, 2022, 70, 101734.	5.2	9
59	Noninvasive genetic sampling with a spatial captureâ€recapture analysis to estimate abundance of Roosevelt elk. Journal of Wildlife Management, 0, , .	1.8	3

#	Article	IF	CITATIONS
60	Best practices to account for capture probability and viewable area in cameraâ€based abundance estimation. Remote Sensing in Ecology and Conservation, 2023, 9, 152-164.	4.3	4
61	Integrating basic and applied research to estimate carnivore abundance. Ecological Applications, 2022, 32, .	3.8	1
62	A cautionary tale comparing spatial count and partial identity models for estimating densities of threatened and unmarked populations. Global Ecology and Conservation, 2022, 38, e02268.	2.1	7
63	Density estimation of non-independent unmarked animals from camera traps. Ecological Modelling, 2022, 472, 110100.	2.5	4
64	Food availability alters community co-occurrence patterns at fine spatiotemporal scales in a tropical masting system. Oecologia, 2022, 200, 169-181.	2.0	1
65	Training and experience increase classification accuracy in white-tailed deer camera surveys. Wildlife Research, 2022, , .	1.4	0
66	It's time to manage mountain lions in Texas. Wildlife Society Bulletin, 2022, 46, .	0.8	2
67	Implementing practical methods to estimate population density of wild boar and other wild mammals: field trials and development of automatic identification. EFSA Supporting Publications, 2022, 19, .	0.7	0
68	Largeâ€scale mammal monitoring: The potential of a citizen science cameraâ€trapping project in the United Kingdom. Ecological Solutions and Evidence, 2022, 3, .	2.0	7
69	How did the deer cross the fence: An evaluation of wildlife-friendlier fence modifications to facilitate deer movement. Frontiers in Conservation Science, 0, 3, .	1.9	4
70	Making the best of a hard job: a response to Nakashima (2022). Basic and Applied Ecology, 2022, , .	2.7	0
71	Human vs. machine: Detecting wildlife in camera trap images. Ecological Informatics, 2022, 72, 101876.	5.2	6
72	The effect of scent lures on detection is not equitable among sympatric species. Wildlife Research, 2023, 50, 190-200.	1.4	3
73	Guidelines for evaluating density estimation models for unmarked populations - Santini et al. (2022). Basic and Applied Ecology, 2022, , .	2.7	1
74	Using space to event modeling to estimate density of multiple species in northeastern Washington. Wildlife Society Bulletin, 0, , .	0.8	1
75	SOCRATES: Introducing Depth in Visual Wildlife Monitoring Using Stereo Vision. Sensors, 2022, 22, 9082.	3.8	0
76	Camera trapping as a method for estimating abundance of Mexican wolves. Wildlife Society Bulletin, 2023, 47, .	0.8	1
77	Failure to account for behavioral variability significantly compromises accuracy in indirect population monitoring. Animal Conservation, 2023, 26, 558-572.	2.9	3

#	Article	IF	CITATIONS
78	The influence of fineâ€scale topography on detection of a mammal assemblage at camera traps in a mountainous landscape. Wildlife Biology, 2023, 2023, .	1.4	1
80	A test of motionâ€sensitive cameras to index ungulate densities: group size matters. Journal of Wildlife Management, 2023, 87, .	1.8	4
81	A Deep-Learning Based Pipeline for Estimating the Abundance and Size of Aquatic Organisms in an Unconstrained Underwater Environment from Continuously Captured Stereo Video. Sensors, 2023, 23, 3311.	3.8	2
82	Human impact on deer use is greater than predators and competitors in a multiuse recreation area. Animal Behaviour, 2023, 197, 61-69.	1.9	2
83	Ungulate occurrence in forest harvest blocks is influenced by forage availability, surrounding habitat and silviculture practices. Ecological Solutions and Evidence, 2023, 4, .	2.0	4
84	More than one way to count a cat: estimation of ocelot population density using frameworks for marked and unmarked species. Biodiversity and Conservation, 0, , .	2.6	0
85	Camera trapping expands the view into global biodiversity and its change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	10
86	Demystifying image-based machine learning: a practical guide to automated analysis of field imagery using modern machine learning tools. Frontiers in Marine Science, 0, 10, .	2.5	1
87	A camera trap method for estimating target densities of grey squirrels to inform wildlife management applications. Frontiers in Ecology and Evolution, 0, 11, .	2.2	0
88	Adapting cameraâ€trap placement based on animal behavior for rapid detection: A focus on the Endangered, whiteâ€bellied pangolin (<i>Phataginus tricuspis</i>). Ecology and Evolution, 2023, 13, .	1.9	2
89	Efficacy of machine learning image classification for automated occupancyâ€based monitoring. Remote Sensing in Ecology and Conservation, 2024, 10, 56-71.	4.3	0
90	Estimating animal density using the <scp>Spaceâ€toâ€Event</scp> model and bootstrap resampling with motionâ€triggered cameraâ€trap data. Remote Sensing in Ecology and Conservation, 0, , .	4.3	0
91	Automated wildlife image classification: An active learning tool for ecological applications. Ecological Informatics, 2023, 77, 102231.	5.2	2
92	Interâ€population variability in movement parameters: practical implications for population density estimation. Journal of Wildlife Management, 2023, 87, .	1.8	0
93	Using a crime prevention framework to evaluate tiger counter-poaching in a Southeast Asian rainforest. Frontiers in Conservation Science, 0, 4, .	1.9	0
94	Elk and Rangelands. , 2023, , 703-733.		0
95	Black-Tailed and Mule Deer. , 2023, , 591-634.		0
96	Simulation-based assessment of the performance of hierarchical abundance estimators for camera trap surveys of unmarked species. Scientific Reports, 2023, 13, .	3.3	0

		CITATION REF	PORT	
#	Article		IF	CITATIONS
97	Integrating Species Distribution Models to Estimate the Population Size of Forest Musk I (Moschus berezovskii) in the Central Qinling Mountains of Shaanxi. Diversity, 2023, 15, 2	Deer 1071.	1.7	0
98	Assessing efficacy of cellular transmission technology in camera trapping for wildlife rese Wildlife Society Bulletin, 2023, 47, .	arch.	0.8	0
99	Estimating effective survey duration in camera trap distance sampling surveys. Ecology a 2023, 13, .	nd Evolution,	1.9	0
100	Assessing trends in population size of three unmarked species: A comparison of a multiâ Nâ€mixture model and random encounter models. Ecology and Evolution, 2023, 13, .	€species	1.9	0
101	Camera trappingâ \in "Advancing the technology. , 2024, , 415-428.			0
102	Comparing abundance estimates of a cryptic carnivore in southern Patagonia using two methods. Animal Conservation, 0, , .	experimental	2.9	0
103	A simple framework for maximizing camera trap detections using experimental trials. Env Monitoring and Assessment, 2023, 195, .	vironmental	2.7	0
105	Effects of landcover on mesocarnivore density and detection rate along an urban to rural Global Ecology and Conservation, 2023, 48, e02716.	gradient.	2.1	0
106	Reducing bias in density estimates for unmarked populations that exhibit reactive behavi camera traps. Methods in Ecology and Evolution, 2023, 14, 3100-3111.	our towards	5.2	1
107	Utilizing the time-to-event framework to estimate elk abundance over a large spatial scal Klamath Mountains of California. California Fish and Wildlife Journal, 2023, 109, .	e in the	0.6	0
108	<i>Escherichia coli</i> efflux from rangeland ecosystems in the southcentral Great Plains United States. Journal of Environmental Quality, 2024, 53, 78-89.	of the	2.0	0
109	Efficient data collection for camera trapâ€based density estimation: A preliminary assess Ecological Solutions and Evidence, 2024, 5, .	ment.	2.0	0
110	Enhancing Animal Production through Smart Agriculture: Possibilities, Hurdles, Resolutio Advantages. Ruminants, 2024, 4, 22-46.	ns, and	1.1	0
111	Ãndice de abundancia relativa y tasa de encuentro con trampas cámara. Mammalogy No	otes, 2024, 10, 389.	0.1	0
112	Camera trap sampling protocols for open landscapes: The value of timeâ€lapse imagery. Science and Practice, 2024, 6, .	Conservation	2.0	0
113	What is known, unknown, and needed to be known about damage caused by wild pigs. E Invasions, 2024, 26, 1313-1325.	Biological	2.4	0
114	Matching decision support modeling frameworks to disease emergence stages and assoc management objectives. Conservation Science and Practice, 2024, 6, .	siated	2.0	0
115	The importance of independence in unmarked spatial capture–recapture analysis. Wild 2024, 2024, .	life Biology,	1.4	0