Young leaf protection from cadmium accumulation and in tall fescue (Festuca arundinacea) and Kentucky blueg

Chemosphere 212, 124-132 DOI: 10.1016/j.chemosphere.2018.08.072

Citation Report

#	Article	IF	CITATIONS
1	Effects of PASP/NTA and TS on the phytoremediation of pyrene-nickel contaminated soil by Bidens pilosa L Chemosphere, 2019, 237, 124502.	8.2	20
2	Cadmium excretion via leaf hydathodes in tall fescue and its phytoremediation potential. Environmental Pollution, 2019, 252, 1406-1411.	7.5	24
3	A novel phytoextraction strategy based on harvesting the dead leaves: Cadmium distribution and chelator regulations among leaves of tall fescue. Science of the Total Environment, 2019, 650, 3041-3047.	8.0	28
4	Microstructural and physiological responses to cadmium stress under different nitrogen forms in two contrasting Populus clones. Environmental and Experimental Botany, 2020, 169, 103897.	4.2	13
5	A novel phytoremediation method assisted by magnetized water to decontaminate soil Cd based on harvesting senescent and dead leaves of Festuca arundinacea. Journal of Hazardous Materials, 2020, 383, 121115.	12.4	29
6	Phytohormones-induced senescence efficiently promotes the transport of cadmium from roots into shoots of plants: A novel strategy for strengthening of phytoremediation. Journal of Hazardous Materials, 2020, 388, 122080.	12.4	48
7	Lead-induced oxidative stress triggers root cell wall remodeling and increases lead absorption through esterification of cell wall polysaccharide. Journal of Hazardous Materials, 2020, 385, 121524.	12.4	20
8	Effect of enhancers on the phytoremediation of soils polluted by pyrene and Ni using Sudan grass (Sorghum sudanense (Piper) Stapf.). Environmental Science and Pollution Research, 2020, 27, 41639-41646.	5.3	8
9	Differential Growth and Metal Accumulation Response of <i>Brachiaria Mutica</i> and <i>Leptochloa Fusca</i> on Cadmium and Lead Contaminated Soil. Soil and Sediment Contamination, 2020, 29, 844-859.	1.9	14
10	Re-investigation of cadmium accumulation in Mirabilis jalapa L.: evidences from field and laboratory. Environmental Science and Pollution Research, 2020, 27, 12065-12079.	5.3	5
11	Microstructural and physiological responses to cadmium stress under different nitrogen levels in Populus cathayana females and males. Tree Physiology, 2020, 40, 30-45.	3.1	26
12	Metals in Calluna vulgaris, Empetrum nigrum, Festuca vivipara and Thymus praecox ssp. arcticus in the geothermal areas of Iceland. Environmental Science and Pollution Research, 2021, 28, 67224-67233.	5.3	1
13	Cadmium subcellular distribution and chemical form in Festuca arundinacea in different intercropping systems during phytoremediation. Chemosphere, 2021, 276, 130137.	8.2	10
14	Zinc promotes cadmium leaf excretion and translocation in tall fescue (Festuca arundinacea). Chemosphere, 2021, 276, 130186.	8.2	3
15	Effects of decapitated and root-pruned Sedum alfredii on the characterization of dissolved organic matter and enzymatic activity in rhizosphere soil during Cd phytoremediation. Journal of Hazardous Materials, 2021, 417, 125977.	12.4	14
16	Overexpression of FaHSP17.8-CII improves cadmium accumulation and tolerance in tall fescue shoots by promoting chloroplast stability and photosynthetic electron transfer of PSII. Journal of Hazardous Materials, 2021, 417, 125932.	12.4	13
17	Alteration in chemical form and subcellular distribution of cadmium in maize (Zea mays L.) after NTA-assisted remediation of a spiked calcareous soil. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	6
18	Cadmium binding during leaf senescence in Festuca arundinacea: Promotion phytoextraction efficiency by harvesting dead leaves. Chemosphere, 2022, 289, 133253.	8.2	4

CITATION REPORT

#	Article	IF	CITATIONS
19	Influences of elevated O3 and CO2 on Cd distribution in different Festuca arundinacea tissues. Chemosphere, 2022, 290, 133343.	8.2	0
20	Three-season rotation of chicory–tobacco–peanut with high biomass and bioconcentration factors effectively remediates cadmium-contaminated farmland. Environmental Science and Pollution Research, 2022, 29, 64822-64831.	5.3	4
21	Distribution of micro- (Fe, Zn, Cu, and Mn) and risk (Al, As, Cr, Ni, Pb, and Cd) elements in the organs of Rumex alpinus L. in the Alps and KrkonoÅje Mountains. Plant and Soil, 2022, 477, 553-575.	3.7	6
22	Time Course of Age-Linked Changes in Photosynthetic Efficiency of Spirodela polyrhiza Exposed to Cadmium. Frontiers in Plant Science, 2022, 13, .	3.6	1
23	Phytoextraction by harvesting dead leaves: cadmium accumulation associated with the leaf senescence in Festuca arundinacea Schreb. Environmental Science and Pollution Research, 2022, 29, 79214-79223.	5.3	2
24	Influence of magnetized water irrigation on characteristics of antioxidant enzyme, ferritin, and Cd excretion in Festuca arundinacea during phytoextraction. Journal of Hazardous Materials, 2022, 438, 129527.	12.4	1
25	In Situ Remediation Technology for Heavy Metal Contaminated Sediment: A Review. International Journal of Environmental Research and Public Health, 2022, 19, 16767.	2.6	17
26	The Mechanism of Nickel in Nickel-Pyrene-Contaminated Soil Remediated by Bidens pilosa L. with Applying Polyaspartic Acid, Aminotriacetic Acid, and Tea Saponin. Water, Air, and Soil Pollution, 2023, 234, .	2.4	0
27	Mutation of OsNRAMP5 reduces cadmium xylem and phloem transport in rice plants and its physiological mechanism. Environmental Pollution, 2024, 341, 122928.	7.5	0
28	Foliar application of plant growth regulators for enhancing heavy metal phytoextraction efficiency by Sedum alfredii Hance in contaminated soils: Lab to field experiments. Science of the Total Environment, 2024, 913, 169788.	8.0	1