Biofilm Engineering Approaches for Improving the Perf and Bioelectrochemical Systems

Frontiers in Energy Research

6,

DOI: 10.3389/fenrg.2018.00063

Citation Report

#	Article	IF	CITATIONS
1	Promoting Beneficial and Inhibiting Undesirable Biofilm Formation with Mangrove Extracts. International Journal of Molecular Sciences, 2019, 20, 3549.	1.8	7
3	Effect of different irradiance levels on bioelectricity generation from algal biophotovoltaic (BPV) devices. Energy Science and Engineering, 2019, 7, 2086-2097.	1.9	23
6	Microbial Electroactive Biofilms. ACS Symposium Series, 2019, , 159-186.	0.5	23
7	1,4â€Dioxane ontaminated groundwater remediation in the anode chamber of a microbial fuel cell. Water Environment Research, 2019, 91, 1537-1545.	1.3	7
8	Integration of submersible microbial fuel cell in anaerobic digestion for enhanced production of methane and current at varying glucose levels. International Journal of Hydrogen Energy, 2019, 44, 7574-7582.	3.8	31
9	Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies. Biotechnology Advances, 2020, 39, 107468.	6.0	84
10	Enhancing biohydrogen production from sugar industry wastewater using metal oxide/graphene nanocomposite catalysts in microbial electrolysis cell. International Journal of Hydrogen Energy, 2020, 45, 7647-7655.	3.8	74
11	Effect of Electroactive Biofilm Formation on Acetic Acid Production in Anaerobic Sludge Driven Microbial Electrosynthesis. ACS Sustainable Chemistry and Engineering, 2020, 8, 311-318.	3.2	25
12	Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chemical Reviews, 2020, 120, 12903-12993.	23.0	227
13	Microalgae fuel cell for wastewater treatment: Recent advances and challenges. Journal of Water Process Engineering, 2020, 38, 101549.	2.6	43
14	Enhancement of the Start-Up Time for Microliter-Scale Microbial Fuel Cells (µMFCs) via the Surface Modification of Gold Electrodes. Micromachines, 2020, 11, 703.	1.4	3
15	Using multiple carbon brush cathode in a novel tubular photosynthetic microbial fuel cell for enhancing bioenergy generation and advanced wastewater treatment. Bioresource Technology, 2020, 316, 123928.	4.8	19
16	Bioelectricity generation and analysis of anode biofilm metabolites from septic tank wastewater in microbial fuel cells. International Journal of Energy Research, 2021, 45, 17244-17258.	2.2	10
17	Biomimetic Functional Surfaces towards Bactericidal Soft Contact Lenses. Micromachines, 2020, 11, 835.	1.4	8
18	Direct electron transport as a possible mechanism of electrogenic activity across a range of benthic cyanobacteria in a photosynthetic microbial fuel cell. New Zealand Journal of Botany, 2020, 58, 378-388.	0.8	2
19	Bioelectricity generation using iron(II) molybdate nanocatalyst coated anode during treatment of sugar wastewater in microbial fuel cell. Fuel, 2020, 277, 118119.	3.4	33
20	Repetitive Detection of Aromatic Hydrocarbon Contaminants with Bioluminescent Bioreporters Attached on Tapered Optical Fiber Elements. Sensors, 2020, 20, 3237.	2.1	6
21	Potential of Zymomonas mobilis as an electricity producer in ethanol production. Biotechnology for Biofuels, 2020, 13, 36.	6.2	16

#	Article	IF	CITATIONS
22	Modification of bacterial cell membrane to accelerate decolorization of textile wastewater effluent using microbial fuel cells: role of gamma radiation. Journal of Radiation Research and Applied Sciences, 2020, 13, 373-382.	0.7	3
23	Scratching and transplanting of electro-active biofilm in fruit peeling leachate by ultrasound: re-inoculation in new microbial fuel cell for enhancement of bio-energy production and organic matter detection. Biotechnology Letters, 2020, 42, 965-978.	1.1	8
24	Phenazine oxidation by a distal electrode modulates biofilm morphogenesis. Biofilm, 2020, 2, 100025.	1.5	11
25	Bioelectrochemical systems (BESs) towards conversion of carbon monoxide/syngas: A mini-review. Renewable and Sustainable Energy Reviews, 2021, 135, 110358.	8.2	20
26	Study of electrochemical activity zone of Pseudomonas aeruginosa in microbial fuel cell. Process Biochemistry, 2021, 101, 213-217.	1.8	17
27	Towards upscaling microbial desalination cell technology: A comprehensive review on current challenges and future prospects. Journal of Cleaner Production, 2021, 288, 125597.	4.6	36
28	Low carbon fuels and electro-biocommodities. , 2021, , 143-164.		0
29	The Use of Electroactive Halophilic Bacteria for Improvements and Advancements in Environmental High Saline Biosensing. Biosensors, 2021, 11, 48.	2.3	10
30	From Microorganism-Based Amperometric Biosensors towards Microbial Fuel Cells. Sensors, 2021, 21, 2442.	2.1	36
31	Photoelectric Current Enhancement via Millimeter‣cale Bioelectrochemical Cell Using Iron Oxide Nanoparticlesâ€Modified Screenâ€Printed Electrodes. Energy Technology, 2021, 9, 2100173.	1.8	5
32	Microbial fuel cells: a comprehensive review for beginners. 3 Biotech, 2021, 11, 248.	1.1	22
33	Characterization of a biosurfactant producing electroactive Bacillus sp. for enhanced Microbial Fuel Cell dye decolourisation. Enzyme and Microbial Technology, 2021, 147, 109767.	1.6	14
34	Bioaugmentation using Pseudomonas aeruginosa with an approach of intermittent aeration for enhanced power generation in ceramic MFC. Sustainable Energy Technologies and Assessments, 2021, 45, 101138.	1.7	6
35	Electrochemical Sensing and Characterization of Aerobic Marine Bacterial Biofilms on Gold Electrode Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 31393-31405.	4.0	4
36	Investigation of Polymer Biofilm Formation on Titanium-Based Anode Surface in Microbial Fuel Cells with Poplar Substrate. Polymers, 2021, 13, 1833.	2.0	11
37	New fragmented electro-active biofilm (FAB) reactor to increase anode surface area and performance of microbial fuel cell. Environmental Systems Research, 2021, 10, .	1.5	4
38	Electricity-producing Staphylococcus epidermidis counteracts Cutibacterium acnes. Scientific Reports, 2021, 11, 12001.	1.6	13
39	Tuning of Electrode Surface for Enhanced Bacterial Adhesion and Reactions: A Review on Recent Approaches. ACS Applied Bio Materials, 2021, 4, 5809-5838.	2.3	12

#	Article	IF	CITATIONS
40	Additive manufactured graphene-based electrodes exhibit beneficial performances in Pseudomonas aeruginosa microbial fuel cells. Journal of Power Sources, 2021, 499, 229938.	4.0	15
41	Polypropylene biofilm carrier and fabricated stainless steel mesh supporting activated carbon: Integrated configuration for performances enhancement of microbial fuel cell. Sustainable Energy Technologies and Assessments, 2021, 46, 101268.	1.7	5
42	Microbial activity enhancement in constructed wetlands operated as bioelectrochemical systems. Chemosphere, 2022, 287, 132383.	4.2	8
43	Complete genome sequence of Rhodoferax sp. PAMC 29310 from a marine sediment of the East Siberian Sea. Marine Genomics, 2021, 62, 100891.	0.4	1
44	Anodic and cathodic biofilms coupled with electricity generation in single-chamber microbial fuel cell using activated sludge. Bioprocess and Biosystems Engineering, 2021, 44, 2627-2643.	1.7	3
45	A state-of-the-art review on microbial desalination cells. Chemosphere, 2022, 288, 132386.	4.2	17
46	Optimization of microbial fuel cell process using a novel consortium for aromatic hydrocarbon bioremediation and bioelectricity generation. Journal of Environmental Management, 2021, 298, 113546.	3.8	14
47	Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere, 2022, 286, 131856.	4.2	80
48	Microbial Electrochemical Cells and Introduction to Electron Transport in Microbial Biofilm. Springer Protocols, 2021, , 117-127.	0.1	0
49	Application of 3D bioprinting in the study of bacterial biofilms. E3S Web of Conferences, 2021, 273, 13010.	0.2	2
50	Biofuels: Sources, Modern Technology Developments and Views on Bioenergy Management. , 2020, , 197-219.		2
51	Biofilm mediated strategies to mitigate heavy metal pollution: A critical review in metal bioremediation. Biocatalysis and Agricultural Biotechnology, 2021, 37, 102183.	1.5	14
52	Bacterial Materials: Applications of Natural and Modified Biofilms. Advanced Materials Interfaces, 2021, 8, .	1.9	21
53	Bacterial signalling mechanism: An innovative microbial intervention with multifaceted applications in microbial electrochemical technologies: A review. Bioresource Technology, 2022, 344, 126218.	4.8	26
54	Enzymatic and microbial biofuel cells: current developments and future directions. , 2022, , 551-576.		2
55	Nanocellulose as green material for remediation of hazardous heavy metal contaminants. Journal of Hazardous Materials, 2022, 424, 127516.	6.5	75
56	Biofilms: Engineering Approaches to Enhance Process Efficiency. , 2020, , 43-59.		0
57	Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. Fermentation, 2021, 7, 291.	1.4	35

CITATION REPORT

#	Article	IF	CITATIONS
58	A novel fragmented anode biofilm microbial fuel cell (FAB–MFC) integrated system for domestic wastewater treatment and bioelectricity generation. Bioresources and Bioprocessing, 2021, 8, .	2.0	3
59	Establishing Efficient Bisphenol A Degradation by Engineering <i>Shewanella oneidensis</i> . Industrial & Engineering Chemistry Research, 2021, 60, 16864-16873.	1.8	2
60	Microbial fuel cell performance for aromatic hydrocarbon bioremediation and common effluent treatment plant wastewater treatment with bioelectricity generation through series-parallel connection. Letters in Applied Microbiology, 2022, 75, 785-795.	1.0	4
61	Let's chat: Communication between electroactive microorganisms. Bioresource Technology, 2022, 347, 126705.	4.8	33
62	Electron transfer in Gram-positive bacteria: enhancement strategies for bioelectrochemical applications. World Journal of Microbiology and Biotechnology, 2022, 38, 83.	1.7	8
63	Microbial fuel cells: Insight into simultaneous wastewater treatment and bioelectricity generation. Chemical Engineering Research and Design, 2022, 161, 357-373.	2.7	59
64	Applying synthetic biology strategies to bioelectrochemical systems. Electrochemical Science Advances, 2022, 2, .	1.2	8
65	Advancements in Bioelectricity Generation Through Nanomaterial-Modified Anode Electrodes in Microbial Fuel Cells. Frontiers in Nanotechnology, 2022, 4, .	2.4	6
66	Electrochemical Control of Biofilm Formation and Approaches to Biofilm Removal. Applied Sciences (Switzerland), 2022, 12, 6320.	1.3	3
67	Enhanced Exoelectrogenic Activity of Cupriavidus metallidurans in Bioelectrochemical Systems through the Expression of a Constitutively Active Diguanylate Cyclase. Environments - MDPI, 2022, 9, 80.	1.5	1
68	Microbiomics for enhancing electron transfer in an electrochemical system. Frontiers in Microbiology, 0, 13, .	1.5	16
69	Application of Microbial Fuel Cells as Biosensors. , 2022, , 349-387.		1
71	Phycoremediation of Arsenic and biodiesel production using green microalgae Coelastrella sp. M60 – an integrated approach. Fuel, 2023, 333, 126427.	3.4	6
72	Electroactive biofilm development on carbon fiber anode by Pichia fermentans in a wheat straw hydrolysate based microbial fuel cell. Biomass and Bioenergy, 2023, 168, 106682.	2.9	6
73	Correlation between Perturbation of Redox Homeostasis and Antibiofilm Capacity of Phytochemicals at Non-Lethal Concentrations. Antioxidants, 2022, 11, 2451.	2.2	2
74	Application of Low-Cost Plant-Derived Carbon Dots as a Sustainable Anode Catalyst in Microbial Fuel Cells for Improved Wastewater Treatment and Power Output. Catalysts, 2022, 12, 1580.	1.6	3
75	Potential Use of Coriander Waste as Fuel for the Generation of Electric Power. Sustainability, 2023, 15, 896.	1.6	4
76	Recent Implementations of Hydrogel-Based Microbial Electrochemical Technologies (METs) in Sensing Applications. Sensors, 2023, 23, 641.	2.1	4

CITATION REPORT

	CITAI	ON REPORT	
#	Article	IF	CITATIONS
77	Use of biofilm bacteria to enhance overall microbial fuel cell performance. , 2023, , 699-712.		1
78	Recent advances in biological approaches towards anode biofilm engineering for improvement of extracellular electron transfer in microbial fuel cells. Environmental Engineering Research, 2023, 28, 220666-0.	1.5	23
79	Bacterial community structure of electrogenic biofilm developed on modified graphite anode in microbial fuel cell. Scientific Reports, 2023, 13, .	1.6	15
80	Photosynthetic microbial desalination cell (PhMDC) using Chlamydomonas sp. (UKM6) and Scenedesmus sp. (UKM9) as biocatalysts for electricity production and water treatment. International Journal of Hydrogen Energy, 2023, 48, 11860-11873.	3.8	7
81	Potential interactive effect on biomass and bio-polymeric substances of microalgal-bacterial aerobic granular sludge as a valuable resource for sustainable development. Bioresource Technology, 2023, 376, 128929.	4.8	4
82	The versatility of microbial fuel cells as tools for organic matter monitoring. Bioresource Technology, 2023, 377, 128949.	4.8	5
83	Isolation and Characterisation of Electrogenic Bacteria from Mud Samples. Microorganisms, 2023, 11, 781.	1.6	2
84	Moving towards the enhancement of extracellular electron transfer in electrogens. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	4
85	Future development, prospects, and challenges in application of nanomaterials and nanocomposites. , 2023, , 377-392.		0
86	Microbiological concepts of MFCs. , 2023, , 29-65.		1
89	Valorization of Animal Waste for the Production of Sustainable Bioenergy. , 2023, , 431-448.		0
90	Microbial Biofilms in Wastewater Remediation. , 2023, , 101-118.		0
91	Recent Trends in Microbial Fuel Cell. Energy, Environment, and Sustainability, 2023, , 273-292.	0.6	0
98	Microbial fuel cells as sustainable method of wastewater treatment. , 2024, , 107-124.		0
99	Environmental applications of bioelectrochemical fuel cells. , 2024, , 95-106.		0