Leishmaniasis

Lancet, The 392, 951-970

DOI: 10.1016/s0140-6736(18)31204-2

Citation Report

#	Article	IF	Citations
1	Non-invasive visualisation and identification of fluorescent Leishmania tarentolae in infected sand flies. Wellcome Open Research, 2018, 3, 160.	1.8	5
2	Characterization and functionality of two members of the SPFH protein superfamily, prohibitin 1 and 2 in Leishmania major. Parasites and Vectors, $2018, 11, 622$.	2.5	10
3	The steroid derivative 6-aminocholestanol inhibits the DEAD-box helicase eIF4A (LieIF4A) from the Trypanosomatid parasite Leishmania by perturbing the RNA and ATP binding sites. Molecular and Biochemical Parasitology, 2018, 226, 9-19.	1,1	13
4	Antifungal compounds from Streptomyces associated with attine ants also inhibit Leishmania donovani. PLoS Neglected Tropical Diseases, 2019, 13, e0007643.	3.0	39
5	Electrospray mass-spectrometry guided target isolation of neolignans from Nectandra leucantha (Lauraceae) by high performance- and spiral-coil countercurrent chromatography. Journal of Chromatography A, 2019, 1608, 460422.	3.7	6
6	Single nucleotide polymorphisms of the genes IL-2, IL-2RB, and JAK3 in patients with cutaneous leishmaniasis caused by Leishmania (V.) guyanensis in Manaus, Amazonas, Brazil. PLoS ONE, 2019, 14, e0220572.	2.5	10
7	Systematic review on antigens for serodiagnosis of visceral leishmaniasis, with a focus on East Africa. PLoS Neglected Tropical Diseases, 2019, 13, e0007658.	3.0	20
8	A single amino acid substitution (H451Y) in Leishmania calcium-dependent kinase SCAMK confers high tolerance and resistance to antimony. Journal of Antimicrobial Chemotherapy, 2019, 74, 3231-3239.	3.0	7
9	Protozoan persister-like cells and drug treatment failure. Nature Reviews Microbiology, 2019, 17, 607-620.	28.6	97
10	"lt's just a fever― Gender based barriers to care-seeking for visceral leishmaniasis in highly endemic districts of India: A qualitative study. PLoS Neglected Tropical Diseases, 2019, 13, e0007457.	3.0	5
12	Miltefosine-Lopinavir Combination Therapy Against Leishmania infantum Infection: In vitro and in vivo Approaches. Frontiers in Cellular and Infection Microbiology, 2019, 9, 229.	3.9	19
13	Mining for natural product antileishmanials in a fungal extract library. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 118-128.	3.4	10
14	Atypical wounds. Best clinical practice and challenges. Journal of Wound Care, 2019, 28, S1-S92.	1.2	42
15	ISC1, a new Leishmania donovani population emerging in the Indian sub-continent: Vector competence of Phlebotomus argentipes. Infection, Genetics and Evolution, 2019, 76, 104073.	2.3	6
16	miR-21 Expression Determines the Early Vaccine Immunity Induced by LdCenâ^'/â^' Immunization. Frontiers in Immunology, 2019, 10, 2273.	4.8	20
17	Recombinant Leishmania eukaryotic elongation factor-1 beta protein: A potential diagnostic antigen to detect tegumentary and visceral leishmaniasis in dogs and humans. Microbial Pathogenesis, 2019, 137, 103783.	2.9	11
18	Anti-Leishmanial Vaccines: Assumptions, Approaches, and Annulments. Vaccines, 2019, 7, 156.	4.4	23
19	Antileishmanial activity of terpenylquinones on Leishmania infantum and their effects on Leishmania topoisomerase IB. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 70-79.	3.4	22

#	ARTICLE	IF	CITATIONS
20	Method for Direct Mass-Spectrometry-Based Identification of Monomethylated RNA Nucleoside Positional Isomers and Its Application to the Analysis of <i>Leishmania</i> rRNA. Analytical Chemistry, 2019, 91, 15634-15643.	6.5	21
21	Cutaneous Leishmaniosis caused by Leishmania martiniquensis in a Horse in Florida. Journal of Comparative Pathology, 2019, 173, 13-18.	0.4	5
22	"Cheaper and better†Societal cost savings and budget impact of changing from systemic to intralesional pentavalent antimonials as the first-line treatment for cutaneous leishmaniasis in Bolivia. PLoS Neglected Tropical Diseases, 2019, 13, e0007788.	3.0	10
23	Incorporation and influence of <i>Leishmania</i> histone H3 in chromatin. Nucleic Acids Research, 2019, 47, 11637-11648.	14.5	18
24	Resveratrol analogues present effective antileishmanial activity against promastigotes and amastigotes from distinct <i>Leishmania</i> species by multitarget action in the parasites. Journal of Pharmacy and Pharmacology, 2019, 71, 1854-1863.	2.4	14
25	Acute liver failure due to visceral leishmaniasis in Barcelona: a case report. BMC Infectious Diseases, 2019, 19, 874.	2.9	9
26	Pathogen Evasion of Chemokine Response Through Suppression of CXCL10. Frontiers in Cellular and Infection Microbiology, 2019, 9, 280.	3.9	33
27	Recombinant Cysteine Proteinase B from Leishmania braziliensis and Its Domains: Promising Antigens for Serodiagnosis of Cutaneous and Visceral Leishmaniasis in Dogs. Journal of Clinical Microbiology, 2019, 57, .	3.9	2
28	Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in <i>Leishmania</i> . MSphere, 2019, 4, .	2.9	34
29	In-situ immune profile of polymorphic vs. macular Indian Post Kala-azar dermal leishmaniasis. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 166-176.	3.4	9
30	Leishmania donovani Internalizes into Host Cells via Caveolin-mediated Endocytosis. Scientific Reports, 2019, 9, 12636.	3.3	21
31	Potential use of 13-mer peptides based on phospholipase and oligoarginine as leishmanicidal agents. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 226, 108612.	2.6	25
32	Need for sustainable approaches in antileishmanial drug discovery. Parasitology Research, 2019, 118, 2743-2752.	1.6	33
33	Leishmaniasis and tumor necrosis factor alpha antagonists in the Mediterranean basin. A switch in clinical expression. PLoS Neglected Tropical Diseases, 2019, 13, e0007708.	3.0	28
34	A Family of Dual-Activity Glycosyltransferase-Phosphorylases Mediates Mannogen Turnover and Virulence in Leishmania Parasites. Cell Host and Microbe, 2019, 26, 385-399.e9.	11.0	33
35	Heme synthesis through the life cycle of the heme auxotrophic parasite <i>Leishmania major</i> Journal, 2019, 33, 13367-13385.	0.5	15
36	Stereoselective biosynthesis of $3\hat{a}\in^2$ -azido- $3\hat{a}\in^2$ -deoxythymidine $5\hat{a}\in^2$ -O- \hat{l}^2 -D-ribopyranoside and in vitro evaluatio as potential antileishmanial with in silicoADME prediction. Process Biochemistry, 2019, 87, 232-237.	on 3.7	0
37	High-resolution melt curve analysis: A real-time based multipurpose approach for diagnosis and epidemiological investigations of parasitic infections. Comparative Immunology, Microbiology and Infectious Diseases, 2019, 67, 101364.	1.6	8

#	ARTICLE	IF	Citations
38	Leishmania amazonensis ferric iron reductase (LFR1) is a bifunctional enzyme: Unveiling a NADPH oxidase activity. Free Radical Biology and Medicine, 2019, 143, 341-353.	2.9	9
39	Leishmania Mitochondrial Genomes: Maxicircle Structure and Heterogeneity of Minicircles. Genes, 2019, 10, 758.	2.4	24
40	Epidemiological and molecular investigation of resurgent cutaneous leishmaniasis in Sudan. International Journal of Infectious Diseases, 2019, 88, 14-20.	3.3	8
41	Topoisomerase IB poisons induce histone H2A phosphorylation as a response to DNA damage in Leishmania infantum. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 39-48.	3.4	6
42	Glucose-6-phosphate dehydrogenase (G6PD) activity can modulate macrophage response to Leishmania major infection. International Immunopharmacology, 2019, 69, 178-183.	3.8	9
43	Arab world's growing contribution to global leishmaniasis research (1998–2017): a bibliometric study. BMC Public Health, 2019, 19, 625.	2.9	17
44	Identification of inhibitors of an unconventional Trypanosoma brucei kinetochore kinase. PLoS ONE, 2019, 14, e0217828.	2.5	6
45	Current and promising novel drug candidates against visceral leishmaniasis. Pure and Applied Chemistry, 2019, 91, 1385-1404.	1.9	29
46	Route map for the discovery and pre-clinical development of new drugs and treatments for cutaneous leishmaniasis. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 106-117.	3.4	58
47	Leishmania infantum induces expression of the negative regulatory checkpoint, CTLAâ€4, by human naìve CD8 + T cells. Parasite Immunology, 2019, 41, e12659.	1.5	5
49	Nanoencapsulated retinoic acid as a safe tolerogenic adjuvant for intranasal vaccination against cutaneous leishmaniasis. Vaccine, 2019, 37, 3660-3667.	3.8	20
50	Screening diagnostic candidates from <i>Leishmania infantum</i> proteins for human visceral leishmaniasis using an immunoproteomics approach. Parasitology, 2019, 146, 1467-1476.	1.5	17
51	Spatial epidemiology of cutaneous leishmaniasis in Colombia: socioeconomic and demographic factors associated with a growing epidemic. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2019, 113, 560-568.	1.8	15
52	Diagnostic evaluation of the amastin protein from Leishmania infantum in canine and human visceral leishmaniasis and immunogenicity in human cells derived from patients and healthy controls. Diagnostic Microbiology and Infectious Disease, 2019, 95, 134-143.	1.8	22
53	Topically Applied Chitosan-Coated Poly(isobutylcyanoacrylate) Nanoparticles Are Active Against Cutaneous Leishmaniasis by Accelerating Lesion Healing and Reducing the Parasitic Load. ACS Applied Bio Materials, 2019, 2, 2573-2586.	4.6	16
54	CD4+ T Cell-Mediated Immunity against the Phagosomal Pathogen Leishmania: Implications for Vaccination. Trends in Parasitology, 2019, 35, 423-435.	3.3	42
55	Therapeutic response and safety of the topical, sequential use of antiseptic, keratolytic, and pentamidine creams (3-PACK) on Leishmania (Viannia) braziliensis-infected mice. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e180535.	1.6	3
56	Dietary Vitamin D3 Deficiency Increases Resistance to Leishmania (Leishmania) amazonensis Infection in Mice. Frontiers in Cellular and Infection Microbiology, 2019, 9, 88.	3.9	9

#	Article	IF	CITATIONS
57	Evaluation of antileishmanial drugs activities in an ex vivo model of leishmaniasis. Parasitology International, 2019, 71, 163-166.	1.3	5
58	Antileishmanial activity of H1-antihistamine drugs and cellular alterations in Leishmania (L.) infantum. Acta Tropica, 2019, 195, 6-14.	2.0	11
59	Leishmaniasis. Lancet, The, 2019, 393, 871-872.	13.7	3
60	Leishmaniasis. Lancet, The, 2019, 393, 872.	13.7	7
61	Insecticide–impregnated dog collars reduce infantile clinical visceral leishmaniasis under operational conditions in NW Iran: A community–wide cluster randomised trial. PLoS Neglected Tropical Diseases, 2019, 13, e0007193.	3.0	20
62	Leishmaniasis – Authors' reply. Lancet, The, 2019, 393, 872-873.	13.7	16
63	Investigation of the pathways related to intrinsic miltefosine tolerance in Leishmania (Viannia) braziliensis clinical isolates reveals differences in drug uptake. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 139-147.	3.4	8
64	Synthesis of a novel brominated vinylic fatty acid with antileishmanial activity that effectively inhibits the <i>Leishmania</i> topoisomerase IB enzyme mediated by halogen bond formation. Pure and Applied Chemistry, 2019, 91, 1405-1416.	1.9	3
65	Anti-leishmanial activity of a topical miltefosine gel in experimental models of New World cutaneous leishmaniasis. Journal of Antimicrobial Chemotherapy, 2019, 74, 1634-1641.	3.0	17
66	Leishmaniasis. Lancet, The, 2019, 393, 871.	13.7	4
67	Evaluation of the NovaLisaâ,,¢ Leishmania Infantum IgG ELISA in A Reference Diagnostic Laboratory in A Non-Endemic Country. Antibodies, 2019, 8, 20.	2.5	5
68	Identification of Leishmania major UDP-Sugar Pyrophosphorylase Inhibitors Using Biosensor-Based Small Molecule Fragment Library Screening. Molecules, 2019, 24, 996.	3.8	8
69	Active surveillance identified a neglected burden of macular cases of Post Kala-azar Dermal Leishmaniasis in West Bengal. PLoS Neglected Tropical Diseases, 2019, 13, e0007249.	3.0	34
70	Structure-activity relationships and mechanistic studies of novel mitochondria-targeted, leishmanicidal derivatives of the 4-aminostyrylquinoline scaffold. European Journal of Medicinal Chemistry, 2019, 171, 38-53.	5.5	13
72	Leishmaniasis patients' pilgrimage to access health care in rural Bolivia: a qualitative study using human rights to health approach. BMC International Health and Human Rights, 2019, 19, 12.	2.5	9
73	Walking a tightrope: drug discovery in visceral leishmaniasis. Drug Discovery Today, 2019, 24, 1209-1216.	6.4	33
74	Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9318-9323.	7.1	119
75	Health Considerations for HIV-Infected International Travelers. Current Infectious Disease Reports, 2019, 21, 16.	3.0	4

#	ARTICLE	IF	Citations
76	Untargeted LC–MS metabolomic studies of Asteraceae species to discover inhibitors of Leishmania major dihydroorotate dehydrogenase. Metabolomics, 2019, 15, 59.	3.0	11
77	Disseminated leishmaniasis: clinical, pathogenic, and therapeutic aspects. Anais Brasileiros De Dermatologia, 2019, 94, 9-16.	1.1	38
78	Leishmania amazonensis hijacks host cell lysosomes involved in plasma membrane repair to induce invasion in fibroblasts. Journal of Cell Science, 2019, 132, .	2.0	22
79	Paenidigyamycin G: 1-Acetyl-2,4-dimethyl-3-phenethyl-1H-imidazol-3-ium. MolBank, 2019, 2019, M1094.	0.5	4
80	Cutaneous leishmaniasis in a globetrotting explorer. BMJ Case Reports, 2019, 12, e233056.	0.5	1
81	Canine Leishmaniasis Control in the Context of One Health. Emerging Infectious Diseases, 2019, 25, 1-4.	4.3	60
82	Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice. Vaccines, 2019, 7, 183.	4.4	13
83	An Overview of Drug Resistance in Protozoal Diseases. International Journal of Molecular Sciences, 2019, 20, 5748.	4.1	109
84	Differential immune response modulation in early Leishmania amazonensis infection of BALB/c and C57BL/6 macrophages based on transcriptome profiles. Scientific Reports, 2019, 9, 19841.	3.3	24
85	Transcriptome Analysis Identifies Immune Markers Related to Visceral Leishmaniasis Establishment in the Experimental Model of BALB/c Mice. Frontiers in Immunology, 2019, 10, 2749.	4.8	13
86	Protective or Detrimental? Understanding the Role of Host Immunity in Leishmaniasis. Microorganisms, 2019, 7, 695.	3.6	25
87	Evaluation of Skin Permeation and Retention of Topical Dapsone in Murine Cutaneous Leishmaniasis Lesions. Pharmaceutics, 2019, 11, 607.	4.5	12
88	Editorial: Biomarkers in Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 388.	3.9	9
89	First description of parasite load and clinicopathological and anatomopathological changes in a dog naturally coinfected with Dioctophyme renale and Leishmania infantum in Brazil. Veterinary Parasitology: Regional Studies and Reports, 2019, 18, 100351.	0.5	4
90	Cutaneous leishmaniasis in the 21st century: from the laboratory to the bedside. Current Opinion in Infectious Diseases, 2019, 32, 419-425.	3.1	15
91	Expression of a rK39 homologue from an Iranian Leishmania infantum isolate in Leishmania tarentolae for serodiagnosis of visceral leishmaniasis. Parasites and Vectors, 2019, 12, 593.	2.5	10
92	Production of a kinesin-related recombinant protein (Lbk39) from Leishmania braziliensis by Leishmania tarentolae promastigotes and its application in the serodiagnosis of leishmaniasis. One Health, 2019, 8, 100111.	3.4	7
93	Early antibody response and clinical outcome in experimental canine leishmaniasis. Scientific Reports, 2019, 9, 18606.	3.3	14

#	Article	lF	Citations
94	Metabolomic Profile of BALB/c Macrophages Infected with Leishmania amazonensis: Deciphering L-Arginine Metabolism. International Journal of Molecular Sciences, 2019, 20, 6248.	4.1	24
95	Cutaneous leishmaniasis in Syria: A review of available data during the war years: 2011–2018. PLoS Neglected Tropical Diseases, 2019, 13, e0007827.	3.0	31
96	Antileishmanial Compounds Isolated from Psidium Guajava L. Using a Metabolomic Approach. Molecules, 2019, 24, 4536.	3.8	11
97	Genomes of Leishmania parasites directly sequenced from patients with visceral leishmaniasis in the Indian subcontinent. PLoS Neglected Tropical Diseases, 2019, 13, e0007900.	3.0	48
98	Nongenotoxic 3-Nitroimidazo[1,2- <i>a</i>]pyridines Are NTR1 Substrates That Display Potent <i>in Vitro</i> Antileishmanial Activity. ACS Medicinal Chemistry Letters, 2019, 10, 34-39.	2.8	31
99	Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Delivery and Translational Research, 2019, 9, 76-84.	5.8	44
100	Leishmania infection: Misdiagnosis as cancer and tumor-promoting potential. Acta Tropica, 2019, 197, 104855.	2.0	21
101	Structure-guided approach to identify a novel class of anti-leishmaniasis diaryl sulfide compounds targeting the trypanothione metabolism. Amino Acids, 2020, 52, 247-259.	2.7	15
102	Cutaneous leishmaniasis: A great imitator. Clinics in Dermatology, 2020, 38, 140-151.	1.6	59
103	New Strategies and Biomarkers for the Control of Visceral Leishmaniasis. Trends in Parasitology, 2020, 36, 29-38.	3.3	21
104	Synthesis and characterization of quinoline-carbaldehyde derivatives as novel inhibitors for leishmanial methionine aminopeptidase 1. European Journal of Medicinal Chemistry, 2020, 186, 111860.	5 . 5	16
105	Novel functionalized 1,2,3-triazole derivatives exhibit antileishmanial activity, increase in total and mitochondrial-ROS and depolarization of mitochondrial membrane potential of Leishmania amazonensis. Chemico-Biological Interactions, 2020, 315, 108850.	4.0	22
106	MicroRNAs: Biological Regulators in Pathogen–Host Interactions. Cells, 2020, 9, 113.	4.1	61
107	Intensely clustered outbreak of visceral leishmaniasis (kala-azar) in a setting of seasonal migration in a village of Bihar, India. BMC Infectious Diseases, 2020, 20, 10.	2.9	23
108	Design, synthesis, and antiprotozoal evaluation of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives. Journal of Enzyme Inhibition and	5.2	14
109	Medicinal Chemistry, 2020, 35, 432-459. Fractionated illumination improves the treatment outcomes of photodynamic therapy for high grade cutaneous leishmaniasis. Photodiagnosis and Photodynamic Therapy, 2020, 29, 101622.	2.6	10
110	Spatial Epidemiologic Trends and Hotspots of Leishmaniasis, Sri Lanka, 2001–2018. Emerging Infectious Diseases, 2020, 26, 1-10.	4.3	31
111	In vitro Assessment of Camphor Hydrazone Derivatives as an Agent Against Leishmania amazonensis. Acta Parasitologica, 2020, 65, 203-207.	1.1	4

#	Article	IF	CITATIONS
112	Cutaneous leishmaniasis with secondary mucosal disease in a traveller due to Leishmania (Viannia) braziliensis. Journal of Travel Medicine, 2020, 27, .	3.0	3
113	Improving the sensitivity of an hsp20-based PCR for genus detection of Leishmania parasites in cutaneous clinical samples: a proof of concept. Parasitology Research, 2020, 119, 345-349.	1.6	3
114	Towards discovery of new leishmanicidal scaffolds able to inhibit <i>Leishmania</i> GSK-3. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 199-210.	5.2	12
115	One Health Approach to Leishmaniases: Understanding the Disease Dynamics through Diagnostic Tools. Pathogens, 2020, 9, 809.	2.8	41
116	Recent evolution on synthesis strategies and anti-leishmanial activity of β-carboline derivatives – An update. Heliyon, 2020, 6, e04916.	3.2	13
117	The Leishmania donovani species complex: A new insight into taxonomyâ~†. International Journal for Parasitology, 2020, 50, 1079-1088.	3.1	17
118	Sexual Transmission of Visceral Leishmaniasis: A Neglected Story. Trends in Parasitology, 2020, 36, 950-952.	3.3	5
119	Cutaneous leishmaniasis that hit a returning traveller twice. Journal of Travel Medicine, 2020, 27, .	3.0	0
120	P2Y2 Receptor Induces L. amazonensis Infection Control in a Mechanism Dependent on Caspase-1 Activation and IL- $1\hat{1}^2$ Secretion. Mediators of Inflammation, 2020, 2020, 1-11.	3.0	7
121	Antileishmanial activity of the essential oils of <i>Myrcia ovata</i> Cambess. and <i>Eremanthus erythropappus</i> (DC) McLeisch leads to parasite mitochondrial damage. Natural Product Research, 2021, 35, 6117-6121.	1.8	6
122	Mannose-Decorated Dendritic Polyglycerol Nanocarriers Drive Antiparasitic Drugs To Leishmania infantum-Infected Macrophages. Pharmaceutics, 2020, 12, 915.	4.5	8
123	Aqueous ozone therapy improves the standard treatment of leishmaniasis lesions in animals leading to local and systemic alterations. Parasitology Research, 2020, 119, 4243-4253.	1.6	4
124	Integrative genomic, proteomic and phenotypic studies of Leishmania donovani strains revealed genetic features associated with virulence and antimony-resistance. Parasites and Vectors, 2020, 13, 510.	2.5	10
125	Comparison and clinical validation of qPCR assays targeting Leishmania 18S rDNA and HSP70 genes in patients with American Tegumentary Leishmaniasis. PLoS Neglected Tropical Diseases, 2020, 14, e0008750.	3.0	16
126	IL-27 signalling regulates glycolysis in Th1 cells to limit immunopathology during infection. PLoS Pathogens, 2020, 16, e1008994.	4.7	15
127	Epidemiology, clinical pattern and impact of species-specific molecular diagnosis on management of leishmaniasis in Belgium, 2010–2018: A retrospective study. Travel Medicine and Infectious Disease, 2020, 38, 101885.	3.0	13
129	Leishmaniasis: A spectrum of diseases shaped by evolutionary pressures across diverse life cycle. Evolution, Medicine and Public Health, 2020, 2020, 139-140.	2.5	1
130	Antileishmanial assessment of isoxazole derivatives against <i>L. donovani</i> . RSC Medicinal Chemistry, 2020, 11, 1053-1062.	3.9	14

#	ARTICLE	IF	CITATIONS
131	Detection of Metalloproteases and Cysteine Proteases RNA Transcripts of Leishmania (Leishmania) infantum in Ear Edge Skin of Naturally Infected Dogs. BioMed Research International, 2020, 2020, 1-8.	1.9	2
132	(±)-trans-2-phenyl-2,3-dihydrobenzofurans as leishmanicidal agents: Synthesis, inÂvitro evaluation and SAR analysis. European Journal of Medicinal Chemistry, 2020, 205, 112493.	5.5	6
133	Ethanolic Extract of the Fungus Trichoderma asperelloides Induces Ultrastructural Effects and Death on Leishmania amazonensis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 306.	3.9	5
134	A Canine-Directed Chimeric Multi-Epitope Vaccine Induced Protective Immune Responses in BALB/c Mice Infected with Leishmania infantum. Vaccines, 2020, 8, 350.	4.4	21
135	Localized leishmaniasis treated with intralesional meglumine antimoniate. JDDG - Journal of the German Society of Dermatology, 2020, 18, 1025-1027.	0.8	0
136	A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nature Communications, 2020, 11, 3461.	12.8	72
137	Venom alkaloids against Chagas disease parasite: search for effective therapies. Scientific Reports, 2020, 10, 10642.	3.3	9
138	Semisynthesis of Functional Glycosylphosphatidylinositolâ€Anchored Proteins. Angewandte Chemie, 2020, 132, 12133-12138.	2.0	2
139	Unravelling the unsolved paradoxes of cytokine families in host resistance and susceptibility to Leishmania infection. Cytokine: X, 2020, 2, 100043.	1.4	12
140	Evaluation of Leishmanization Using Iranian Lizard Leishmania Mixed With CpG-ODN as a Candidate Vaccine Against Experimental Murine Leishmaniasis. Frontiers in Immunology, 2020, 11, 1725.	4.8	9
141	Engineering a vector-based pan-Leishmania vaccine for humans: proof of principle. Scientific Reports, 2020, 10, 18653.	3.3	11
142	Genomic and Transcriptomic Analysis for Identification of Genes and Interlinked Pathways Mediating Artemisinin Resistance in Leishmania donovani. Genes, 2020, 11, 1362.	2.4	6
143	Bioassay-based Corchorus capsularis L. leaf-derived \hat{l}^2 -sitosterol exerts antileishmanial effects against Leishmania donovani by targeting trypanothione reductase. Scientific Reports, 2020, 10, 20440.	3.3	20
144	Efficacy and Tolerability of Miltefosine in the Treatment of Cutaneous Leishmaniasis. Clinical Infectious Diseases, 2021, 73, e2457-e2562.	5.8	23
145	Evaluation of a New Topical Treatment for the Control of Cutaneous Leishmaniasis. Microorganisms, 2020, 8, 1803.	3.6	4
146	Synthesis of Polycyclic Ether-Benzopyrans and In Vitro Inhibitory Activity against Leishmania tarentolae. Molecules, 2020, 25, 5461.	3.8	1
147	Modulation of Inflammation and Immune Responses by Heme Oxygenase-1: Implications for Infection with Intracellular Pathogens. Antioxidants, 2020, 9, 1205.	5.1	18
148	Leishmania amazonensis Promastigotes or Extracellular Vesicles Modulate B-1 Cell Activation and Differentiation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 573813.	3.9	7

#	Article	IF	Citations
149	Traditional application and modern pharmacological research of Artemisia annua L, 2020, 216, 107650.		84
150	In vitro and in silico analysis of L. donovani enoyl acyl carrier protein reductase - A possible drug target. Journal of Biomolecular Structure and Dynamics, 2020, 39, 1-14.	3.5	2
151	Carbo-click in drug discovery and development: Opportunities and challenges. , 2020, , 403-450.		3
152	Histone deacetylases inhibitors as new potential drugs against Leishmania braziliensis, the main causative agent of new world tegumentary leishmaniasis. Biochemical Pharmacology, 2020, 180, 114191.	4.4	9
153	Mutational studies on Leishmania donovani dihydrolipoamide dehydrogenase (LdBPK291950.1) indicates that the enzyme may not be classical class-I pyridine nucleotide-disulfide oxidoreductase. International Journal of Biological Macromolecules, 2020, 164, 2141-2150.	7.5	1
154	Phylloseptin-1 is Leishmanicidal for Amastigotes of Leishmania amazonensis Inside Infected Macrophages. International Journal of Environmental Research and Public Health, 2020, 17, 4856.	2.6	8
155	Molecular modeling and simulation study of homoserine kinase as an effective leishmanial drug target. Journal of Molecular Modeling, 2020, 26, 218.	1.8	3
156	Frequent Recombination Events in Leishmania donovani: Mining Population Data. Pathogens, 2020, 9, 572.	2.8	4
157	Identification of a Protective <i>Leishmania</i> Antigen Dihydrolipoyl Dehydrogenase and Its Responding CD4+ T Cells at Clonal Level. Journal of Immunology, 2020, 205, 1355-1364.	0.8	4
158	Apoptotic blebs from Leishmania major-infected macrophages as a new approach for cutaneous leishmaniasis vaccination. Microbial Pathogenesis, 2020, 147, 104406.	2.9	2
159	Gene design, optimization of protein expression and preliminary evaluation of a new chimeric protein for the serological diagnosis of both human and canine visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2020, 14, e0008488.	3.0	11
160	Antikinetoplastid SAR study in 3-nitroimidazopyridine series: Identification of a novel non-genotoxic and potent anti-T.Âb. brucei hit-compound with improved pharmacokinetic properties. European Journal of Medicinal Chemistry, 2020, 206, 112668.	5 . 5	11
161	Effect of essential oils on <i>Leishmania amazonensis</i> : a systematic review. Parasitology, 2020, 147, 1392-1407.	1.5	15
162	Modeling and simulation study to identify threonine synthase as possible drug target in Leishmania major. Molecular Diversity, 2021, 25, 1679-1700.	3.9	5
163	Sand Fly Studies Predict Transmission Potential of Drug-resistant Leishmania. Trends in Parasitology, 2020, 36, 785-795.	3.3	13
164	Hyperkeratotic Plaque on the Thigh of an Immunosuppressed Patient: Answer. American Journal of Dermatopathology, 2020, 42, 618-619.	0.6	O
165	Identification of 6-amino-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidines with <i>in vivo</i> efficacy against visceral leishmaniasis. RSC Medicinal Chemistry, 2020, 11, 1168-1177.	3.9	2
166	Immunometabolism of <i>Leishmania</i> granulomas. Immunology and Cell Biology, 2020, 98, 832-844.	2.3	33

#	ARTICLE	IF	Citations
167	Case Report: Hyper IgM Syndrome Identified by Whole Genome Sequencing in a Young Syrian Man Presenting With Atypical, Severe and Recurrent Mucosal Leishmaniasis. Frontiers in Immunology, 2020, 11, 567856.	4.8	1
168	Contributions of the National Institute of Parasitic Diseases to the control of visceral leishmaniasis in China. Advances in Parasitology, 2020, 110, 185-216.	3.2	7
169	A candidate vaccine for human visceral leishmaniasis based on a specific T cell epitope-containing chimeric protein protects mice against Leishmania infantum infection. Npj Vaccines, 2020, 5, 75.	6.0	26
170	Application of Quantitative PCR in the Diagnosis and Evaluating Treatment Efficacy of Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 581639.	3.9	10
171	New phenalenone analogues with improved activity against Leishmania species. Biomedicine and Pharmacotherapy, 2020, 132, 110814.	5.6	7
172	Role of host genetics and cytokines in Leishmania infection. Cytokine, 2021, 147, 155244.	3.2	9
173	Isolation of intact Leishmania amazonensis large parasitophorous vacuoles from infected macrophages by density gradient fractionation. Experimental Parasitology, 2020, 218, 107989.	1.2	0
174	Cytokine saga in visceral leishmaniasis. Cytokine, 2021, 147, 155322.	3.2	10
175	Laboratory Diagnosis of Cutaneous and Visceral Leishmaniasis: Current and Future Methods. Microorganisms, 2020, 8, 1632.	3.6	36
176	RNA-sequencing of the Nyssomyia neivai sialome: a sand fly-vector from a Brazilian endemic area for tegumentary leishmaniasis and pemphigus foliaceus. Scientific Reports, 2020, 10, 17664.	3.3	2
177	DDX3 DEAD-box RNA helicase (Hel67) gene disruption impairs infectivity of Leishmania donovani and induces protective immunity against visceral leishmaniasis. Scientific Reports, 2020, 10, 18218.	3.3	19
178	Wnt5A Signaling Antagonizes Leishmania donovani Infection. , 2020, , .		0
179	Evaluation of Cysteine Protease C of Leishmania donovani in Comparison with Glycoprotein 63 and Elongation Factor 11° for Diagnosis of Human Visceral Leishmaniasis and for Posttreatment Follow-Up Response. Journal of Clinical Microbiology, 2020, 58, .	3.9	7
180	Recent advances and new strategies on leishmaniasis treatment. Applied Microbiology and Biotechnology, 2020, 104, 8965-8977.	3.6	107
181	Pseudoirreversible slowâ€binding inhibition of trypanothione reductase by a protein–protein interaction disruptor. British Journal of Pharmacology, 2020, 177, 5163-5176.	5.4	7
182	Heat Shock Proteins in Leishmania Parasites. Heat Shock Proteins, 2020, , 469.	0.2	2
183	Disseminated Cutaneous Leishmaniasis in a Pediatric Patient from Peru. Journal of Tropical Pediatrics, 2021, 67, .	1.5	3
184	<i>Leishmania</i> infection triggers hepcidinâ€mediated proteasomal degradation of Nramp1 to increase phagolysosomal iron availability. Cellular Microbiology, 2020, 22, e13253.	2.1	15

#	Article	IF	CITATIONS
185	Antileishmanial Activity and Influence on Mitochondria of the Essential Oil from Tagetes lucida Cav. and Its Main Component. Scientia Pharmaceutica, 2020, 88, 31.	2.0	3
186	Recent advances and new strategies in Leishmaniasis diagnosis. Applied Microbiology and Biotechnology, 2020, 104, 8105-8116.	3.6	22
187	A cytoskeletal protein complex is essential for division of intracellular amastigotes of Leishmania mexicana. Journal of Biological Chemistry, 2020, 295, 13106-13122.	3.4	9
188	Cruzioseptins, antibacterial peptides from <i>Cruziohyla calcarifer</i> skin, as promising leishmanicidal agents. Pathogens and Disease, 2020, 78, .	2.0	8
189	Chitosan Contribution to Therapeutic and Vaccinal Approaches for the Control of Leishmaniasis. Molecules, 2020, 25, 4123.	3.8	5
190	Berberine-Loaded Liposomes for the Treatment of Leishmania infantum-Infected BALB/c Mice. Pharmaceutics, 2020, 12, 858.	4.5	31
191	Activity of Amphotericin B-Loaded Chitosan Nanoparticles against Experimental Cutaneous Leishmaniasis. Molecules, 2020, 25, 4002.	3.8	35
192	Binding of Leishmania infantum Lipophosphoglycan to the Midgut Is Not Sufficient To Define Vector Competence in <i>Lutzomyia longipalpis</i> Sand Flies. MSphere, 2020, 5, .	2.9	4
193	Recent Advancement in the Search of Innovative Antiprotozoal Agents Targeting Trypanothione Metabolism. ChemMedChem, 2020, 15, 2420-2435.	3.2	17
194	Dual Host-Intracellular Parasite Transcriptome of Enucleated Cells Hosting <i>Leishmania amazonensis</i> : Control of Half-Life of Host Cell Transcripts by the Parasite. Infection and Immunity, 2020, 88, .	2.2	5
195	Death from an Adultâ€onset Still's disease triggered by visceral leishmaniasis. Parasite Immunology, 2020, 42, e12774.	1.5	1
196	Use of Natural Products in Leishmaniasis Chemotherapy: An Overview. Frontiers in Chemistry, 2020, 8, 579891.	3.6	52
197	Effect of DODAB Nano-Sized Cationic Bilayer Fragments against Leishmania amazonensis. Molecules, 2020, 25, 5741.	3.8	4
198	Leishmania infantum Seroprevalence in Cats From Touristic Areas of Italy and Greece. Frontiers in Veterinary Science, 2020, 7, 616566.	2.2	17
199	In Vitro, In Vivo and In Silico Effectiveness of LASSBio-1386, an N-Acyl Hydrazone Derivative Phosphodiesterase-4 Inhibitor, Against Leishmania amazonensis. Frontiers in Pharmacology, 2020, 11, 590544.	3.5	6
200	Leishmaniasis in Dhaka Medical College-experience of three years. Heliyon, 2020, 6, e05414.	3.2	0
202	Comparative transcriptomic analysis of antimony resistant and susceptible Leishmania infantum lines. Parasites and Vectors, 2020, 13, 600.	2.5	22
203	Infection of dogs by Leishmania infantum elicits a general response of IgG subclasses. Scientific Reports, 2020, 10, 18826.	3.3	4

#	Article	IF	CITATIONS
204	Boosting immunity to treat parasitic infections: Asaia bacteria expressing a protein from Wolbachia determine M1 macrophage activation and killing of Leishmania protozoans. Pharmacological Research, 2020, 161, 105288.	7.1	15
205	Clinical Manifestation of Cutaneous Leishmaniasis Following a Mechanical Trauma. International Journal of Lower Extremity Wounds, 2023, 22, 146-148.	1.1	1
207	Phenotype evaluation of human and canine isolates of Leishmania infantum. Comparative Immunology, Microbiology and Infectious Diseases, 2020, 73, 101551.	1.6	3
208	Activity of paromomycin against Leishmania amazonensis: Direct correlation between susceptibility in vitro and the treatment outcome in vivo. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 91-98.	3.4	10
209	In Vivo Imaging with Genetically Encoded Redox Biosensors. International Journal of Molecular Sciences, 2020, 21, 8164.	4.1	33
210	Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine: X, 2020, 2, 100041.	1.4	58
211	Humoral immunity in leishmaniasis – Prevention or promotion of parasite growth?. Cytokine: X, 2020, 2, 100046.	1.4	8
212	Multilocus sequence typing analysis of Leishmania clinical isolates from cutaneous leishmaniasis patients of Iran. Infection, Genetics and Evolution, 2020, 85, 104533.	2.3	5
213	<i>Leishmania infantum</i> Enhances Migration of Macrophages via a Phosphoinositide 3-Kinase Î ³ -Dependent Pathway. ACS Infectious Diseases, 2020, 6, 1643-1649.	3.8	6
214	Recent strategies for the development of oral medicines for the treatment of visceral leishmaniasis. Drug Development Research, 2020, 81, 803-814.	2.9	13
215	Identification of Leishmania species by high-resolution DNA dissociation in cases of American cutaneous leishmaniasis. Anais Brasileiros De Dermatologia, 2020, 95, 459-468.	1.1	10
216	Investigation of the antigenicity and protective efficacy of Leishmania promastigote membrane antigens in search of potential diagnostic and vaccine candidates against visceral leishmaniasis. Parasites and Vectors, 2020, 13, 272.	2.5	12
217	Host transcriptomic signature as alternative test-of-cure in visceral leishmaniasis patients co-infected with HIV. EBioMedicine, 2020, 55, 102748.	6.1	16
218	Chemical inhibition of \hat{l}^2 -glucocerebrosidase does not affect phagocytosis and early containment of Leishmania by murine macrophages. Experimental Parasitology, 2020, 216, 107939.	1.2	0
219	An 8-Year-Old Boy With Fever, Splenomegaly, and Pancytopenia. Pediatrics, 2020, 146, .	2.1	2
220	Biotechnological applications from a Leishmania amastigote-specific hypothetical protein in the canine and human visceral leishmaniasis. Microbial Pathogenesis, 2020, 147, 104283.	2.9	6
221	An investigation of the antileishmanial properties of semi-synthetic saponins. RSC Medicinal Chemistry, 2020, 11, 833-842.	3.9	13
222	<i>Leishmania</i> Encodes a Bacterium-like 2,4-Dienoyl-Coenzyme A Reductase That Is Required for Fatty Acid \hat{l}^2 -Oxidation and Intracellular Parasite Survival. MBio, 2020, 11, .	4.1	8

#	Article	IF	CITATIONS
223	CRISPR/Cas9 gene drive technology to control transmission of vectorâ€borne parasitic infections. Parasite Immunology, 2020, 42, e12762.	1.5	9
224	A Case–Control Study on the Association Between Intestinal Helminth Infections and Treatment Failure in Patients With Cutaneous Leishmaniasis. Open Forum Infectious Diseases, 2020, 7, ofaa155.	0.9	5
225	The Parasitic Intracellular Lifestyle of Trypanosomatids: Parasitophorous Vacuole Development and Survival. Frontiers in Cell and Developmental Biology, 2020, 8, 396.	3.7	27
226	Design of multi-epitope peptides containing HLA class-I and class-II-restricted epitopes derived from immunogenic LeishmaniaÂproteins, and evaluation of CD4+ and CD8+ T cell responses induced in cured cutaneous leishmaniasis subjects. PLoS Neglected Tropical Diseases, 2020, 14, e0008093.	3.0	14
227	In Vivo Infection with Leishmania amazonensis to Evaluate Parasite Virulence in Mice. Journal of Visualized Experiments, 2020, , .	0.3	3
228	Leishmaniasis immunopathology—impact on design and use of vaccines, diagnostics and drugs. Seminars in Immunopathology, 2020, 42, 247-264.	6.1	51
229	Intestinal leishmaniasis: a rare case of enteropathy. Endoscopy, 2020, 52, E335-E336.	1.8	3
230	Intravital imaging of hostâ€parasite interactions in organs of the thoracic and abdominopelvic cavities. Cellular Microbiology, 2020, 22, e13201.	2.1	7
231	Implications of asymptomatic infection for the natural history of selected parasitic tropical diseases. Seminars in Immunopathology, 2020, 42, 231-246.	6.1	34
232	Evaluation of NanoLuc, RedLuc and Luc2 as bioluminescent reporters in a cutaneous leishmaniasis model. Acta Tropica, 2020, 206, 105444.	2.0	6
233	The preclinical discovery and development of oral miltefosine for the treatment of visceral leishmaniasis: a case history. Expert Opinion on Drug Discovery, 2020, 15, 647-658.	5.0	5
234	CCR5 and CCR5î"32 in bacterial and parasitic infections: Thinking chemokine receptors outside the HIV box. International Journal of Immunogenetics, 2020, 47, 261-285.	1.8	20
235	The Delay in the Licensing of Protozoal Vaccines: A Comparative History. Frontiers in Immunology, 2020, 11, 204.	4.8	24
236	Evidence supporting the enhanced efficacy of pentavalent antimonials with adjuvant therapy for cutaneous leishmaniasis: a systematic review and metaâ€analysis. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 2216-2228.	2.4	14
237	Noninvasive Biological Samples to Detect and Diagnose Infections due to Trypanosomatidae Parasites: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2020, 21, 1684.	4.1	14
238	The Geographical Distribution of Cutaneous Leishmaniasis Causative Agents in Iran and Its Neighboring Countries, A Review. Frontiers in Public Health, 2020, 8, 11.	2.7	74
240	Leishmania infantum pyridoxal kinase evaluated in a recombinant protein and DNA vaccine to protects against visceral leishmaniasis. Molecular Immunology, 2020, 124, 161-171.	2.2	7
241	To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. Frontiers in Immunology, 2020, 11, 1250.	4.8	24

#	Article	IF	CITATIONS
242	Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery. Genes, 2020, 11, 722.	2.4	30
243	Lignans, Amides, and Saponins from Haplophyllum tuberculatum and Their Antiprotozoal Activity. Molecules, 2020, 25, 2825.	3.8	19
244	8-Alkynyl-3-nitroimidazopyridines display potent antitrypanosomal activity against both T.Âb. brucei and cruzi. European Journal of Medicinal Chemistry, 2020, 202, 112558.	5.5	15
245	Mechanistic and biological characterisation of novel <i>N</i> ⁵ -substituted paullones targeting the biosynthesis of trypanothione in <i>Leishmania</i> Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1345-1358.	5.2	14
246	Utilising a novel surveillance system to investigate species of Forcipomyia (Lasiohelea) (Diptera:) Tj ETQq0 0 0 rg Parasites and Wildlife, 2020, 12, 192-198.	BT /Overlo	ock 10 Tf 50 5 7
247	Bioactivity of Spongian Diterpenoid Scaffolds from the Antarctic Sponge Dendrilla antarctica. Marine Drugs, 2020, 18, 327.	4.6	15
248	Tolnaftate inhibits ergosterol production and impacts cell viability of Leishmania sp Bioorganic Chemistry, 2020, 102, 104056.	4.1	12
249	New 8-Nitroquinolinone Derivative Displaying Submicromolar <i>in Vitro</i> Activities against Both <i>Trypanosoma brucei</i> and <i>cruzi</i> ACS Medicinal Chemistry Letters, 2020, 11, 464-472.	2.8	8
250	Pulmonary involvement in human visceral leishmaniasis: Clinical and tomographic evaluation. PLoS ONE, 2020, 15, e0228176.	2.5	6
251	Generation and Characterization of a Dual-Reporter Transgenic Leishmania braziliensis Line Expressing eGFP and Luciferase. Frontiers in Cellular and Infection Microbiology, 2020, 9, 468.	3.9	4
252	Place of Serology in the Diagnosis of Zoonotic Leishmaniases With a Focus on Visceral Leishmaniasis Due to Leishmania infantum. Frontiers in Cellular and Infection Microbiology, 2020, 10, 67.	3.9	19
253	Methyl gallate: Selective antileishmanial activity correlates with host-cell directed effects. Chemico-Biological Interactions, 2020, 320, 109026.	4.0	13
254	Type I Interferons Suppress Anti-parasitic Immunity and Can Be Targeted to Improve Treatment of Visceral Leishmaniasis. Cell Reports, 2020, 30, 2512-2525.e9.	6.4	34
255	Prognostic factors associated with death from visceral leishmaniasis: a case-control study in Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2020, 114, 346-354.	1.8	4
256	Experimental and Theoretical Studies of Novel Azo Benzene Functionalized Conjugated Polymers: In-vitro Antileishmanial Activity and Bioimaging. Scientific Reports, 2020, 10, 57.	3.3	9
257	CpG ODN D35 improves the response to abbreviated low-dose pentavalent antimonial treatment in non-human primate model of cutaneous leishmaniasis. PLoS Neglected Tropical Diseases, 2020, 14, e0008050.	3.0	17
258	Predictors of relapse of visceral leishmaniasis in inner São Paulo State, Brazil. International Journal of Infectious Diseases, 2020, 95, 44-49.	3.3	8
259	Quality of life perceptions amongst patients co-infected with Visceral Leishmaniasis and HIV: AÂqualitative study from Bihar, India. PLoS ONE, 2020, 15, e0227911.	2.5	7

#	Article	IF	CITATIONS
260	Inflammatory Dendritic Cells, Regulated by IL-4 Receptor Alpha Signaling, Control Replication, and Dissemination of Leishmania major in Mice. Frontiers in Cellular and Infection Microbiology, 2019, 9, 479.	3.9	10
261	Commercially approved vaccines for canine leishmaniosis: a review of available data on their safety and efficacy. Tropical Medicine and International Health, 2020, 25, 540-557.	2.3	65
262	Computational approaches for drug discovery against trypanosomatid-caused diseases. Parasitology, 2020, 147, 611-633.	1.5	17
263	The effects of climate change on human health in Africa, a dermatologic perspective: a report from the International Society of Dermatology Climate Change Committee. International Journal of Dermatology, 2020, 59, 265-278.	1.0	26
264	Outcomes of visceral leishmaniasis in pregnancy: AÂretrospective cohort study from South Sudan. PLoS Neglected Tropical Diseases, 2020, 14, e0007992.	3.0	8
265	Evaluation of Leishmania infantum pyridoxal kinase protein for the diagnosis of human and canine visceral leishmaniasis. Immunology Letters, 2020, 220, 11-20.	2.5	8
266	N-acetyl-L-cysteine reduces Leishmania amazonensis-induced inflammation in BALB/c mice. BMC Veterinary Research, 2020, $16,13.$	1.9	6
267	Male predominance in reported Visceral Leishmaniasis cases: Nature or nurture? A comparison of population-based with health facility-reported data. PLoS Neglected Tropical Diseases, 2020, 14, e0007995.	3.0	31
268	Iron trafficking in patients with Indian Post kala-azar dermal leishmaniasis. PLoS Neglected Tropical Diseases, 2020, 14, e0007991.	3.0	11
269	Relapsing cutaneous leishmaniasis in a patient requiring TNF-α-inhibitor Infliximab for Takayasu-arteritis: Case report and review of the literature. Travel Medicine and Infectious Disease, 2020, 37, 101700.	3.0	2
270	Synthesis of symmetrical bis-Schiff base-disulfide hybrids as highly effective anti-leishmanial agents. Bioorganic Chemistry, 2020, 99, 103819.	4.1	6
271	The current drug discovery landscape for trypanosomiasis and leishmaniasis: Challenges and strategies to identify drug targets. Drug Development Research, 2022, 83, 225-252.	2.9	47
272	An interactive database of Leishmania species distribution in the Americas. Scientific Data, 2020, 7, 110.	5.3	37
273	Synthesis and Biological Activity of Novel Zinc-Itraconazole Complexes in Protozoan Parasites and <i>Sporothrix</i> spp. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	13
274	Efficacy of Topical Treatment with (â^')-Epigallocatechin Gallate, A Green Tea Catechin, in Mice with Cutaneous Leishmaniasis. Molecules, 2020, 25, 1741.	3.8	13
275	Leishmania infantum infection reduces the amyloid \hat{l}^2 42-stimulated NLRP3 inflammasome activation. Brain, Behavior, and Immunity, 2020, 88, 597-605.	4.1	12
276	Fatal progression of experimental visceral leishmaniasis is associated with intestinal parasitism and secondary infection by commensal bacteria, and is delayed by antibiotic prophylaxis. PLoS Pathogens, 2020, 16, e1008456.	4.7	17
277	Semisynthesis of Functional Glycosylphosphatidylinositolâ€Anchored Proteins. Angewandte Chemie - International Edition, 2020, 59, 12035-12040.	13.8	15

#	Article	IF	CITATIONS
278	In vitro evaluation of leishmanicidal properties of a new family of monodimensional coordination polymers based on diclofenac ligand. Polyhedron, 2020, 184, 114570.	2.2	7
279	Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria. Marine Drugs, 2020, 18, 187.	4.6	32
280	Heat Shock Proteins as the Druggable Targets in Leishmaniasis: Promises and Perils. Infection and Immunity, 2021, 89, .	2.2	9
281	The Effect of Naja naja oxiana Snake Venom Against Leishmania tropica Confirmed by Advanced Assays. Acta Parasitologica, 2021, 66, 475-486.	1.1	6
282	Lupeol and amphotericin B mediate synergistic anti-leishmanial immunomodulatory effects in Leishmania donovani-infected BALB/c mice. Cytokine, 2021, 137, 155319.	3.2	16
283	InÂvitro identification of imidazo[1,2-a]pyrazine-based antileishmanial agents and evaluation of L.Âmajor casein kinase 1 inhibition. European Journal of Medicinal Chemistry, 2021, 210, 112956.	5.5	14
284	Nano- and Microformulations to Advance Therapies for Visceral Leishmaniasis. ACS Biomaterials Science and Engineering, 2021, 7, 1725-1741.	5.2	14
285	Digitoxigenin presents an effective and selective antileishmanial action against Leishmania infantum and is a potential therapeutic agent for visceral leishmaniasis. Parasitology Research, 2021, 120, 321-335.	1.6	11
286	The advantages of nanomedicine in the treatment of visceral leishmaniasis: between sound arguments and wishful thinking. Expert Opinion on Drug Delivery, 2021, 18, 471-487.	5.0	2
287	Seropositivity of Visceral leishmaniasis on people of VL endemic three districts of Nepal. Parasitology International, 2021, 80, 102236.	1.3	2
288	Methods for detecting insecticide resistance in sand flies: A systematic review. Acta Tropica, 2021, 213, 105747.	2.0	12
289	Quantitative analysis of proteins secreted by Leishmania (Viannia) braziliensis strains associated to distinct clinical manifestations of American Tegumentary Leishmaniasis. Journal of Proteomics, 2021, 232, 104077.	2.4	10
290	The application of isatin-based multicomponent-reactions in the quest for new bioactive and druglike molecules. European Journal of Medicinal Chemistry, 2021, 211, 113102.	5.5	72
291	Type I Natural Killer T Cells as Key Regulators of the Immune Response to Infectious Diseases. Clinical Microbiology Reviews, 2021, 34, .	13.6	17
292	A scalable and reproducible manufacturing process for Phlebotomus papatasi salivary protein PpSP15, a vaccine candidate for leishmaniasis. Protein Expression and Purification, 2021, 177, 105750.	1.3	4
293	Nanodiagnostics in leishmaniasis: A new frontiers for early elimination. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1675.	6.1	12
294	CXCL10 immunomodulatory effect against infection caused by an antimony refractory isolate of <i>Leishmania braziliensis</i> in mice. Parasite Immunology, 2021, 43, e12805.	1.5	1
295	Development of quinolineâ€based hybrid as inhibitor of methionine aminopeptidase 1 from <i>Leishmania donovani</i> i>. Chemical Biology and Drug Design, 2021, 97, 315-324.	3.2	10

#	Article	IF	CITATIONS
296	A case report of cutaneous leishmaniasis: a misleading clinical presentation. Infection, 2021, 49, 177-180.	4.7	2
297	Estimating direct costs of the treatment for mucosal leishmaniasis in Brazil. Revista Da Sociedade Brasileira De Medicina Tropical, 2021, 54, e04542020.	0.9	8
298	Asymptomatic Leishmania infection in HIV-positive outpatients on antiretroviral therapy in Pernambuco, Brazil. PLoS Neglected Tropical Diseases, 2021, 15, e0009067.	3.0	10
299	Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise. Microorganisms, 2021, 9, 267.	3.6	29
300	Validation of ELISA with recombinant antigens in serological diagnosis of canine Leishmania infantum infection. Memorias Do Instituto Oswaldo Cruz, 2021, 116, e200428.	1.6	6
301	Novel ruthenium(<scp>iii</scp>) complexes with hydroxybenzophenones: experimental and theoretical characterization and <i>in vitro</i> leishmanicidal activity comparing complexes and ligands. New Journal of Chemistry, 2021, 45, 7501-7515.	2.8	2
302	PF-429242, a Subtilisin Inhibitor, Is Effective in vitro Against Leishmania infantum. Frontiers in Microbiology, 2021, 12, 583834.	3.5	11
303	Pharmacokinetics and pharmacodynamics in the treatment of cutaneous leishmaniasis – challenges and opportunities. RSC Medicinal Chemistry, 2021, 12, 472-482.	3.9	7
304	Antileishmanial Activity of Lignans, Neolignans, and Other Plant Phenols. Progress in the Chemistry of Organic Natural Products, 2021, 115, 115-176.	1.1	1
305	Parasites of the Gastrointestinal Tract., 2022, , 136-203.		2
306	Scientometric analysis of chemotherapy of canine leishmaniasis (2000–2020). Parasites and Vectors, 2021, 14, 36.	2.5	7
307	ldentification of potential inhibitors for Sterol C-24 reductase of Leishmania donovani through virtual screening of natural compounds. Biocell, 2021, 45, 1601-1610.	0.7	0
309	Changes in the nanoparticle uptake and distribution caused by an intramacrophagic parasitic infection. Nanoscale, 2021, 13, 17486-17503.	5.6	1
310	A Patient with Rheumatoid Arthritis under Methotrexate and Etanercept Treatment Presenting with Fever and Pancytopenia: An Unexpected Guest. Mediterranean Journal of Rheumatology, 2021, 32, 160.	0.8	1
311	Xenodiagnosis leads the way: elimination of visceral leishmaniasis from the Indian subcontinent is feasible and sustainable. Lancet Microbe, The, 2021, 2, e2-e3.	7.3	2
313	Xenodiagnosis to evaluate the infectiousness of humans to sandflies in an area endemic for visceral leishmaniasis in Bihar, India: a transmission-dynamics study. Lancet Microbe, The, 2021, 2, e23-e31.	7.3	54
314	Neurological toxicity due to antimonial treatment for refractory visceral leishmaniasis. Clinical Neurophysiology Practice, 2021, 6, 164-167.	1.4	2
315	<i>Leishmania</i> : manipulation of signaling pathways to inhibit host cell apoptosis. Therapeutic Advances in Infectious Disease, 2021, 8, 204993612110149.	1.8	7

#	Article	IF	CITATIONS
317	Novel Linker Variants of Antileishmanial/Antitubercular 7-Substituted 2-Nitroimidazooxazines Offer Enhanced Solubility. ACS Medicinal Chemistry Letters, 2021, 12, 275-281.	2.8	9
318	A 20-year-old girl with an unusual febrile illness. Internal and Emergency Medicine, 2021, , 1.	2.0	0
319	Modern Drug Discovery and Development in the Area of Leishmaniasis., 2021,, 123-158.		3
320	Leishmaniasis Beyond East Africa. Frontiers in Veterinary Science, 2021, 8, 618766.	2.2	23
321	Antimicrobial Activity of Chitosan Oligosaccharides with Special Attention to Antiparasitic Potential. Marine Drugs, 2021, 19, 110.	4.6	16
323	Combination of Subtherapeutic Doses of Tretazicar and Liposomal Amphotericin B Suppresses and Cures Leishmania major-Induced Cutaneous Lesions in Murine Models. ACS Infectious Diseases, 2021, 7, 506-517.	3.8	5
324	Functional partnership between carbonic anhydrase and malic enzyme in promoting gluconeogenesis in <i>Leishmania major</i> . FEBS Journal, 2021, 288, 4129-4152.	4.7	3
325	Molecular Tracking of the Leishmania Parasite. Frontiers in Cellular and Infection Microbiology, 2021, 11, 623437.	3.9	8
326	Linoleic Acidâ€"A Feasible Preventive Approach for Visceral Leishmaniasis. Frontiers in Nutrition, 2021, 8, 649025.	3.7	3
327	Topical Bambusa vulgaris Extract Enhances Wound Healing in Cutaneous Leishmaniasis. Journal of Pathogens, 2021, 2021, 1-4.	1.4	1
328	Urine-Based Molecular Diagnostic Tests for Leishmaniasis Infection in Human and Canine Populations: A Meta-Analysis. Pathogens, 2021, 10, 269.	2.8	3
329	Deletion of Glutamine Synthetase Gene Disrupts the Survivability and Infectivity of Leishmania donovani. Frontiers in Cellular and Infection Microbiology, 2021, 11, 622266.	3.9	12
330	2-aminobenzimidazoles for leishmaniasis: From initial hit discovery to in vivo profiling. PLoS Neglected Tropical Diseases, 2021, 15, e0009196.	3.0	8
331	Synthesis and evaluation of a collection of purine-like C-nucleosides as antikinetoplastid agents. European Journal of Medicinal Chemistry, 2021, 212, 113101.	5.5	14
332	Nonâ€Toxic Glycosylated Gold Nanoparticleâ€Amphotericin B Conjugates Reduce Biofilms and Intracellular Burden of Fungi and Parasites. Advanced Therapeutics, 2021, 4, 2000293.	3.2	7
333	Odour of domestic dogs infected with Leishmania infantum is attractive to female but not male sand flies: Evidence for parasite manipulation. PLoS Pathogens, 2021, 17, e1009354.	4.7	10
334	Antiparasitic effect of essential oils obtained from two species of Piper L. native to the Atlantic forest. Biocatalysis and Agricultural Biotechnology, 2021, 32, 101958.	3.1	4
335	A Review of Leishmaniasis: Current Knowledge and Future Directions. Current Tropical Medicine Reports, 2021, 8, 121-132.	3.7	157

#	Article	IF	CITATIONS
336	New Epidemiological Aspects of Animal Leishmaniosis in Europe: The Role of Vertebrate Hosts Other Than Dogs. Pathogens, 2021, 10, 307.	2.8	35
337	Hesperidin Targets <i>Leishmania donovani</i> Sterol C-24 Reductase to Fight against Leishmaniasis. ACS Omega, 2021, 6, 8112-8118.	3.5	8
338	Can the iron content of culture media impact on the leishmanicidal effect of artemisinin?. Free Radical Research, 2021, 55, 282-295.	3.3	1
339	Molecular characteristic of treatment failure clinical isolates of Leishmania major. PeerJ, 2021, 9, e10969.	2.0	4
340	The Leishmania donovani LDBPK_220120.1 Gene Encodes for an Atypical Dual Specificity Lipid-Like Phosphatase Expressed in Promastigotes and Amastigotes; Substrate Specificity, Intracellular Localizations, and Putative Role(s). Frontiers in Cellular and Infection Microbiology, 2021, 11, 591868.	3.9	0
341	3,5-Dimethyl-4-isoxazoyl selenocyanate as promising agent for the treatment of Leishmania infantum-infected mice. Acta Tropica, 2021, 215, 105801.	2.0	12
342	Revival of Leishmanization and Leishmanin. Frontiers in Cellular and Infection Microbiology, 2021, 11, 639801.	3.9	22
343	The Impact of Neutrophil Recruitment to the Skin on the Pathology Induced by Leishmania Infection. Frontiers in Immunology, 2021, 12, 649348.	4.8	25
344	Serious adverse events following treatment of visceral leishmaniasis: A systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 2021, 15, e0009302.	3.0	12
345	Leishmania donovani hybridisation and introgression in nature: a comparative genomic investigation. Lancet Microbe, The, 2021, 2, e250-e258.	7.3	26
346	Diffuse cutaneous leishmaniasis and <scp>HIV</scp> coâ€infection: A case report and review of the literature. Journal of Cutaneous Pathology, 2021, 48, 802-806.	1.3	2
347	Unraveling the Role of Immune Checkpoints in Leishmaniasis. Frontiers in Immunology, 2021, 12, 620144.	4.8	18
348	Ros3 (Lem3p/CDC50) Gene Dosage Is Implicated in Miltefosine Susceptibility in <i>Leishmania (Viannia) braziliensis</i> Clinical Isolates and in <i>Leishmania (Leishmania) major</i> ACS Infectious Diseases, 2021, 7, 849-858.	3.8	6
349	Towards a Sustainable Vector-Control Strategy in the Post Kala-Azar Elimination Era. Frontiers in Cellular and Infection Microbiology, 2021, 11, 641632.	3.9	8
350	Complicated cutaneous leishmaniasis caused by an imported case of Leishmania tropica in Japan: a case report. Tropical Medicine and Health, 2021, 49, 20.	2.8	4
351	VLP-Based Vaccines as a Suitable Technology to Target Trypanosomatid Diseases. Vaccines, 2021, 9, 220.	4.4	6
352	Chitosan-Based Nanomaterials as Valuable Sources of Anti-Leishmanial Agents: A Systematic Review. Nanomaterials, 2021, 11, 689.	4.1	16
353	Anti-Leishmania activity of extracts from Piper cabralanum C.DC. (Piperaceae). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2021, 76, 229-241.	1.4	0

#	Article	IF	CITATIONS
354	Susceptibility to paromomycin in clinical isolates and reference strains of Leishmania species responsible for tegumentary leishmaniasis in Brazil. Acta Tropica, 2021, 215, 105806.	2.0	7
355	Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis. Infection and Immunity, 2021, 89, .	2.2	9
356	Bioluminescent Imaging Identifies Thymus, As Overlooked Colonized Organ, in a Chronic Model of <i>Leishmania donovani</i> Mouse Visceral Leishmaniasis. ACS Infectious Diseases, 2021, 7, 871-883.	3.8	8
357	Leishmania Protein Kinases: Important Regulators of the Parasite Life Cycle and Molecular Targets for Treating Leishmaniasis. Microorganisms, 2021, 9, 691.	3.6	26
358	Efficacy and safety of single-dose liposomal amphotericin B in patients with visceral leishmaniasis in Bangladesh: a real-life experience. Journal of Parasitic Diseases, 2021, 45, 903-911.	1.0	6
359	Application of Dendrimers for Treating Parasitic Diseases. Pharmaceutics, 2021, 13, 343.	4.5	14
360	Revisiting Pyrazolo[3,4- <i>d</i>]pyrimidine Nucleosides as Anti- <i>Trypanosoma cruzi</i> and Antileishmanial Agents. Journal of Medicinal Chemistry, 2021, 64, 4206-4238.	6.4	19
361	Knowledge and attitude towards cutaneous leishmaniasis among rural endemic communities in Shara'b district, Taiz, southwestern Yemen. BMC Infectious Diseases, 2021, 21, 269.	2.9	17
362	Influence of Obesity on Clinical Manifestations and Response to Therapy in Cutaneous Leishmaniasis Caused by Leishmania braziliensis. Clinical Infectious Diseases, 2021, 73, 1020-1026.	5.8	3
363	Expression analysis of centrin gene in promastigote and amastigote forms of leishmania infantum iranian isolates: a promising target for live attenuated vaccine development against canine leishmaniasis. BMC Veterinary Research, 2021, 17, 162.	1.9	1
364	Spatiotemporal distribution of cutaneous leishmaniasis in Sri Lanka and future case burden estimates. PLoS Neglected Tropical Diseases, 2021, 15, e0009346.	3.0	11
365	Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. Journal of Nanobiotechnology, 2021, 19, 106.	9.1	32
366	Targeting sterol alphaâ€14 demethylase of <i>Leishmania donovani</i> to fight against leishmaniasis. Journal of Cellular Biochemistry, 2021, 122, 1037-1047.	2.6	8
367	Comparison between cutaneous leishmaniasis patients with facial and nonâ€facial lesions. International Journal of Dermatology, 2021, 60, 1109-1113.	1.0	1
369	Evaluation of qPCR on blood and skin microbiopsies, peripheral blood buffy coat smear, and urine antigen ELISA for diagnosis and test of cure for visceral leishmaniasis in HIV-coinfected patients in India: a prospective cohort study. BMJ Open, 2021, 11, e042519.	1.9	2
370	Repurposing of <scp>FDA</scp> â€approved drugs as inhibitors of sterol Câ€24 methyltransferase of <i>Leishmania donovani</i> to fight against leishmaniasis. Drug Development Research, 2021, 82, 1154-1161.	2.9	13
371	Are Nanobiosensors an Improved Solution for Diagnosis of Leishmania?. Pharmaceutics, 2021, 13, 491.	4.5	13
372	Identification of differential protein expression and putative drug target in metacyclic stage of Leishmania major and Leishmania tropica: A quantitative proteomics and computational view. Comparative Immunology, Microbiology and Infectious Diseases, 2021, 75, 101617.	1.6	4

#	Article	IF	Citations
373	TREM1 rs2234237 (Thr25Ser) Polymorphism in Patients with Cutaneous Leishmaniasis Caused by Leishmania guyanensis: A Case-Control Study in the State of Amazonas, Brazil. Pathogens, 2021, 10, 498.	2.8	5
374	Hemophagocytic lymphohistiocytosis associated with Leishmania: A hidden passenger in endemic areas. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2021, 39, 188-191.	0.5	3
375	The balance between IL-12/IL4 in renal tissue switches the inflammatory response arm and shows relationship with the clinical signs in Leishmania-infected dogs. Veterinary Immunology and Immunopathology, 2021, 234, 110196.	1.2	5
376	Acarbose presents in vitro and in vivo antileishmanial activity against Leishmania infantum and is a promising therapeutic candidate against visceral leishmaniasis. Medical Microbiology and Immunology, 2021, 210, 133-147.	4.8	9
377	Development and Validation of a Sensitive, Specific and Reproducible UPLC-MS/MS Method for the Quantification of OJT007, A Novel Anti-Leishmanial Agent: Application to a Pharmacokinetic Study. International Journal of Environmental Research and Public Health, 2021, 18, 4624.	2.6	2
378	Liposomal amphotericin B is more effective in polymorphic lesions of post kala-azar dermal leishmaniasis. Indian Journal of Dermatology, Venereology and Leprology, 2021, 88, 201-206.	0.6	4
379	Trends in the Epidemiology of Leishmaniasis in the City of Barcelona (1996–2019). Frontiers in Veterinary Science, 2021, 8, 653999.	2.2	11
380	Identification of Metabolically Quiescent <i>Leishmania mexicana</i> Parasites in Peripheral and Cured Dermal Granulomas Using Stable Isotope Tracing Imaging Mass Spectrometry. MBio, 2021, 12, .	4.1	19
381	Effect of Itraconazole-Ezetimibe-Miltefosine Ternary Therapy in Murine Visceral Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	10
382	Film-Forming Systems for the Delivery of DNDI-0690 to Treat Cutaneous Leishmaniasis. Pharmaceutics, 2021, 13, 516.	4.5	11
383	Hemophagocytic lymphohistiocytosis associated with Leishmania: A hidden passenger in endemic areas. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed), 2021, 39, 188-191.	0.3	1
384	Inductively coupled plasma mass spectrometry method for plasma and intracellular antimony quantification applied to pharmacokinetics of meglumine antimoniate. Bioanalysis, 2021, 13, 655-667.	1.5	2
385	DNA Double-Strand Breaks: A Double-Edged Sword for Trypanosomatids. Frontiers in Cell and Developmental Biology, 2021, 9, 669041.	3.7	14
386	Eugenia piauhiensis Vellaff. essential oil and \hat{l}^3 -elemene its major constituent exhibit antileishmanial activity, promoting cell membrane damage and in vitro immunomodulation. Chemico-Biological Interactions, 2021, 339, 109429.	4.0	11
387	Anti-Leishmania Effects of Volatile Oils and Their Isolates. Revista Brasileira De Farmacognosia, 0, , 1.	1.4	11
388	Synthesis and evaluation of $3\hat{a}\in^2$ -fluorinated 7-deazapurine nucleosides as antikinetoplastid agents. European Journal of Medicinal Chemistry, 2021, 216, 113290.	5.5	14
389	Peptides to Tackle Leishmaniasis: Current Status and Future Directions. International Journal of Molecular Sciences, 2021, 22, 4400.	4.1	18
390	1H NMR profiling and chemometric analysis as an approach to predict the leishmanicidal activity of dichloromethane extracts from Lantana camara (L.). Journal of Pharmaceutical and Biomedical Analysis, 2021, 199, 114060.	2.8	2

#	Article	IF	CITATIONS
391	Chalcones in Dermatology. , 0, , .		0
392	Development and Characterization of PLGA Nanoparticles Containing 17-DMAG, an Hsp90 Inhibitor. Frontiers in Chemistry, 2021, 9, 644827.	3.6	12
394	Comparative phosphoproteomic analysis unravels MAPK1 regulated phosphoproteins in Leishmania donovani. Journal of Proteomics, 2021, 240, 104189.	2.4	12
395	New global targets for NTDs in the WHO roadmap 2021–2030. PLoS Neglected Tropical Diseases, 2021, 15, e0009373.	3.0	78
396	Canine leishmaniasis prevalence in the Slovenian dog population. Journal of Veterinary Research (Poland), 2021, 65, 161-167.	1.0	5
397	Case Report: Visceral Leishmaniasis and Hemophagocytic Lymphohistiocytosis: Three Clinical Cases, Three Different Pattern. American Journal of Tropical Medicine and Hygiene, 2021, , .	1.4	2
398	Cutaneous and Mucocutaneous Leishmaniasis. Actas Dermo-sifiliogr $\tilde{A}_{\hat{i}}$ ficas, 2021, , .	0.4	13
399	Autochthonous and imported tegumentary leishmaniasis in Catalonia (Spain): Aetiological evolution in the last four decades and usefulness of different typing approaches based on biochemical, molecular and proteomic markers. Transboundary and Emerging Diseases, 2022, 69, 1404-1418.	3.0	9
400	The effects of natural disasters on leishmaniases frequency: A global systematic review and meta-analysis. Acta Tropica, 2021, 217, 105855.	2.0	4
401	Surveillance data for human leishmaniasis indicate the need for a sustainable action plan for its management and control, Greece, 2004 to 2018. Eurosurveillance, 2021, 26, .	7.0	11
402	Potential biomarkers of immune protection in human leishmaniasis. Medical Microbiology and Immunology, 2021, 210, 81-100.	4.8	18
403	Effects of topical gel formulation of Ficus carica latex on cutaneous leishmaniasis induced by Leishmania major in BALB/c mice. BMC Research Notes, 2021, 14, 199.	1.4	3
404	Pleiotropic Effect of Hormone Insulin-Like Growth Factor-I in Immune Response and Pathogenesis in Leishmaniases. Journal of Immunology Research, 2021, 2021, 1-17.	2.2	2
405	Plant Expression of Hydrophobin Fused K39 Antigen for Visceral Leishmaniasis Immunodiagnosis. Frontiers in Plant Science, 2021, 12, 674015.	3.6	1
406	Trypanothione Metabolism as Drug Target for Trypanosomatids. Current Pharmaceutical Design, 2021, 27, 1834-1846.	1.9	13
407	Dysregulation of Glycerophosphocholines in the Cutaneous Lesion Caused by Leishmania major in Experimental Murine Models. Pathogens, 2021, 10, 593.	2.8	7
408	Innate immune response: ally or enemy in cutaneous leishmaniasis?. Pathogens and Disease, 2021, 79, .	2.0	4
409	Virtual screening of natural compounds for potential inhibitors of Sterol Câ€24 methyltransferase of ⟨i>Leishmania donovani⟨ i> to overcome leishmaniasis. Journal of Cellular Biochemistry, 2021, 122, 1216-1228.	2.6	9

#	Article	IF	CITATIONS
410	Novel coumarin-isatin hybrids as potent antileishmanial agents: Synthesis, in silico and in vitro evaluations. Bioorganic Chemistry, 2021, 110, 104816.	4.1	22
411	Domestic mammals as reservoirs for <i>Leishmania donovani</i> on the Indian subcontinent: Possibility and consequences on elimination. Transboundary and Emerging Diseases, 2022, 69, 268-277.	3.0	18
412	Case Report: An Atypical Erysipeloid Presentation of Cutaneous Leishmaniasis from the Hilly Region of Nepal. American Journal of Tropical Medicine and Hygiene, 2021, , .	1.4	1
413	A Novel Antigen, Otubain Cysteine Peptidase of Leishmania donovani, for the Serodiagnosis of Visceral Leishmaniasis and for Monitoring Treatment Response. Clinical Infectious Diseases, 2021, 73, 1281-1283.	5.8	2
414	Canine Visceral Leishmaniasis in an Area of Sporadic Transmission in Brazil. Vector-Borne and Zoonotic Diseases, 2021, 21, 539-545.	1.5	2
415	In Silico Insights into the Mechanism of Action of Epoxy-α-Lapachone and Epoxymethyl-Lawsone in Leishmania spp Molecules, 2021, 26, 3537.	3.8	3
416	Strike a Balance: Between Metals and Non-Metals, Metalloids as a Source of Anti-Infective Agents. Inorganics, 2021, 9, 46.	2.7	10
417	Design, Synthesis of Biaryl Piperidine Derivatives and Their Evaluation as Potential Antileishmanial Agents against <i>Leishmania donovani</i> Strain Ag83. Chemistry and Biodiversity, 2021, 18, e2100105.	2.1	3
418	Chromosome-Scale Assembly of the Complete Genome Sequence of <i>Leishmania</i> (<i>Mundinia</i>) Tj ETC e0005821.	Qq0 0 0 rg 0.6	BT /Overlock 5
419	Mechanisms of Immunopathogenesis in Cutaneous Leishmaniasis And Post Kala-azar Dermal Leishmaniasis (PKDL). Frontiers in Cellular and Infection Microbiology, 2021, 11, 685296.	3.9	40
420	The Potential of Traditional Knowledge to Develop Effective Medicines for the Treatment of Leishmaniasis. Frontiers in Pharmacology, 2021, 12, 690432.	3.5	15
421	MPLA and AddaVax® Adjuvants Fail to Promote Intramuscular LaAg Vaccine Protectiveness against Experimental Cutaneous Leishmaniasis. Microorganisms, 2021, 9, 1272.	3.6	0
422	Development and Clinical Evaluation of Serum and Urine-Based Lateral Flow Tests for Diagnosis of Human Visceral Leishmaniasis. Microorganisms, 2021, 9, 1369.	3.6	8
423	Antiplasmodial and antileishmanial inhibitory activity of triterpenes and steroidal alkaloid from the leaves of Funtumia elastica (Preuss) Stapf (Apocynaceae). F¬toterap¬¢, 2021, 151, 104869.	2.2	6
424	Purinergic signaling: A new front-line determinant of resistance and susceptibility in leishmaniasis. Biomedical Journal, 2021, , .	3.1	4
425	Influence of N-Methylation and Conformation on Almiramide Anti-Leishmanial Activity. Molecules, 2021, 26, 3606.	3.8	4
426	miR-548d-3p Alters Parasite Growth and Inflammation in Leishmania (Viannia) braziliensis Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 687647.	3.9	17
427	Ex Vivo Phenotypic Screening of Two Small Repurposing Drug Collections Identifies Nifuratel as a Potential New Treatment against Visceral and Cutaneous Leishmaniasis. ACS Infectious Diseases, 2021, 7, 2390-2401.	3.8	11

#	Article	IF	Citations
428	Metabolomic Reprogramming of C57BL/6-Macrophages during Early Infection with L. amazonensis. International Journal of Molecular Sciences, 2021, 22, 6883.	4.1	11
429	A review of the leishmanin skin test: A neglected test for a neglected disease. PLoS Neglected Tropical Diseases, 2021, 15, e0009531.	3.0	22
430	Small Molecule–Peptide Conjugates as Dimerization Inhibitors of Leishmania infantum Trypanothione Disulfide Reductase. Pharmaceuticals, 2021, 14, 689.	3.8	0
431	Emergent canine visceral leishmaniasis in Argentina: Comparative diagnostics and relevance to proliferation of human disease. PLoS Neglected Tropical Diseases, 2021, 15, e0009552.	3.0	4
432	Evolution, systematics and historical biogeography of sand flies of the subgenus Paraphlebotomus (Diptera, Psychodidae, Phlebotomus) inferred using restriction-site associated DNA markers. PLoS Neglected Tropical Diseases, 2021, 15, e0009479.	3.0	7
433	Repositioning of Tamoxifen in Surface-Modified Nanocapsules as a Promising Oral Treatment for Visceral Leishmaniasis. Pharmaceutics, 2021, 13, 1061.	4.5	3
434	Nano-Leish-IL: A novel iron oxide-based nanocomposite drug platform for effective treatment of cutaneous leishmaniasis. Journal of Controlled Release, 2021, 335, 203-215.	9.9	9
435	Preclinical validation of a live attenuated dermotropic Leishmania vaccine against vector transmitted fatal visceral leishmaniasis. Communications Biology, 2021, 4, 929.	4.4	30
436	Leishmaniasis cutánea y mucocutánea. Actas Dermo-sifiliográficas, 2021, 112, 601-618.	0.4	38
437	Fe3O4@piroctone olamine magnetic nanoparticles: Synthesize and therapeutic potential in cutaneous leishmaniasis. Biomedicine and Pharmacotherapy, 2021, 139, 111566.	5.6	42
438	<i>In vivo</i> efficacy of meglumine antimoniate-loaded nanoparticles for cutaneous leishmaniasis: a systematic review. Nanomedicine, 2021, 16, 1505-1518.	3.3	4
440	Leishmanicidal and cytotoxic activities and 4Dâ€QSAR of 2â€arylidene indanâ€1,3â€diones. Archiv Der Pharmazie, 2021, 354, e2100081.	4.1	4
441	Tissue/Biofluid Specific Molecular Cartography of Leishmania donovani Infected BALB/c Mice: Deciphering Systemic Reprogramming. Frontiers in Cellular and Infection Microbiology, 2021, 11, 694470.	3.9	4
442	Antiprotozoal and Anthelmintic Activity of Zinc Oxide Nanoparticles. Current Medicinal Chemistry, 2022, 29, 2127-2141.	2.4	4
443	A Pilot Randomized Clinical Trial: Oral Miltefosine and Pentavalent Antimonials Associated With Pentoxifylline for the Treatment of American Tegumentary Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 700323.	3.9	6
444	Leishmaniasis y coraz $ ilde{A}^3$ n. Archivos De Cardiologia De Mexico, 2021, 92, 85-93.	0.2	2
445	Tegumentary leishmaniasis by <i>Leishmania braziliensis</i> complex in Cochabamba, Bolivia including the presence of <i>L. braziliensis</i> outlier. Transboundary and Emerging Diseases, 2022, 69, 2242-2255.	3.0	4
446	Efficient photodynamic inactivation of Leishmania parasites mediated by lipophilic water-soluble Zn(II) porphyrin ZnTnHex-2-PyP4+. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129897.	2.4	10

#	Article	IF	CITATIONS
447	Design, Synthesis and Antiparasitic Evaluation of Click Phospholipids. Molecules, 2021, 26, 4204.	3.8	3
448	Antimony resistance associated with persistence of Leishmania (Leishmania) infantum infection in macrophages. Parasitology Research, 2021, 120, 2959-2964.	1.6	1
449	Towards effective cutaneous leishmaniasis treatment with light-based technologies. A systematic review and meta-analysis of preclinical studies. Journal of Photochemistry and Photobiology B: Biology, 2021, 221, 112236.	3.8	5
450	1,2,3-triazole derivative: Synthesis, characterization, DFT, molecular docking study and antibacterial-antileishmanial activities. Journal of the Indian Chemical Society, 2021, 98, 100105.	2.8	11
451	Peptide-mediated leishmaniasis management strategy: Tachyplesin emerges as an effective anti-leishmanial peptide against Leishmania donovani. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183629.	2.6	14
452	Hybrid Quinolinyl Phosphonates as Heterocyclic Carboxylate Isosteres: Synthesis and Biological Evaluation against Topoisomerase 1B (TOP1B). Pharmaceuticals, 2021, 14, 784.	3.8	7
453	Knowledge, attitude and practices towards visceral leishmaniasis among HIV patients: A cross-sectional study from Bihar, India. PLoS ONE, 2021, 16, e0256239.	2.5	9
454	Utility of Blood as the Clinical Specimen for the Molecular Diagnosis of Post-Kala-Azar Dermal Leishmaniasis. Journal of Clinical Microbiology, 2021, 59, e0013221.	3.9	5
455	Recent trends in the design of antimicrobial agents using Ugi-multicomponent reaction. Journal of the Indian Chemical Society, 2021, 98, 100106.	2.8	8
456	Antileishmanial potential of immunomodulator gallic acid against experimental murine visceral leishmaniasis. Parasite Immunology, 2021, 43, e12875.	1.5	7
457	Leishmanicidal effect of 1,3,4-thiadiazolium mesoionic salts on Leishmania amazonensis in vitro. Parasitology International, 2021, 83, 102342.	1.3	2
458	DFT Study and Antiparasitic Activity of Some Azo Dyes Containing Uracil. Journal of Chemistry, 2021, 2021, 1-11.	1.9	5
459	Unusual cause of acute liver failure. Journal of Paediatrics and Child Health, 2021, , .	0.8	0
460	Feline Leishmaniosis: An Emerging Public Health Problem. Veterinary Sciences, 2021, 8, 173.	1.7	12
461	Novel IL- $12R\hat{l}^21$ deficiency-mediates recurrent cutaneous leishmaniasis. International Journal of Infectious Diseases, 2021, 112, 338-345.	3.3	8
462	Gene Annotation and Transcriptome Delineation on a De Novo Genome Assembly for the Reference Leishmania major Friedlin Strain. Genes, 2021, 12, 1359.	2.4	7
463	Exploring the antileishmanial activity of <i>N</i> ^{,<i>N</i>^{,<i>N</i>¹,<ii>N¹,<ii>N¹,<ii>N</ii></ii></ii>},<ii>N</ii>} , <ii>N,<ii>N,<i>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,,<i>N,<i>N,<i>N,<i>N,<i>N,,<i>N,<i>N,<i>N,<i>N,<isup>,,<</isup></i></i></i></i></i></i></i></i></i></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></i></ii></ii>	3.5	4
464	A new strategy for canine visceral leishmaniasis diagnosis based on <scp>FTIR</scp> spectroscopy and machine learning. Journal of Biophotonics, 2021, 14, e202100141.	2.3	14

#	Article	IF	Citations
465	Intranasal vaccine from whole Leishmania donovani antigens provides protection and induces specific immune response against visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2021, 15, e0009627.	3.0	11
466	Comparative analysis of the transcriptional responses of five Leishmania species to trivalent antimony. Parasites and Vectors, 2021, 14, 419.	2.5	3
467	Larval excretion/secretion of dipters of Lucilia cuprina species induces death in promastigote and amastigote forms of Leishmania amazonensis. Pathogens and Disease, 2021, 79, .	2.0	1
468	Visceral Leishmaniasis in pregnancy and vertical transmission: A systematic literature review on the therapeutic orphans. PLoS Neglected Tropical Diseases, 2021, 15, e0009650.	3.0	8
469	Nitric-oxide releasing chitosan nanoparticles towards effective treatment of cutaneous leishmaniasis. Nitric Oxide - Biology and Chemistry, 2021, 113-114, 31-38.	2.7	13
470	A mini-review of Nanocarriers in drug delivery systems. British Journal of Pharmacy, 2022, 7, .	0.3	2
471	Development and validation of an HPLC-MS/MS method for the quantification of the anti-leishmanial drug miltefosine in human skin tissue. Journal of Pharmaceutical and Biomedical Analysis, 2022, 207, 114402.	2.8	9
472	Chromosome-scale genome sequencing, assembly and annotation of six genomes from subfamily Leishmaniinae. Scientific Data, 2021, 8, 234.	5.3	5
473	Chromosome-Scale Assembly of the Complete Genome Sequence of Leishmania (Mundinia) orientalis, Isolate LSCM4, Strain LV768. Microbiology Resource Announcements, 2021, 10, e0057421.	0.6	5
474	Painful and swollen tongue: mucosal leishmaniasis due to Leishmania infantum. International Journal of Infectious Diseases, 2021, 113, 109-112.	3.3	6
475	Imported leishmaniasis in travelers: a 7-year retrospective from a Parisian hospital in France. BMC Infectious Diseases, 2021, 21, 953.	2.9	7
476	Recent advances in point-of-care biosensors for the diagnosis of neglected tropical diseases. Sensors and Actuators B: Chemical, 2021, 349, 130821.	7.8	12
477	Variants of MIRNA146A rs2910164 and MIRNA499 rs3746444 are associated with the development of cutaneous leishmaniasis caused by Leishmania guyanensis and with plasma chemokine IL-8. PLoS Neglected Tropical Diseases, 2021, 15, e0009795.	3.0	8
478	Overcoming the Negligence in Laboratory Diagnosis of Mucosal Leishmaniasis. Pathogens, 2021, 10, 1116.	2.8	6
479	Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis. Biomedicine and Pharmacotherapy, 2021, 141, 111857.	5.6	12
480	The Paradox of a Phagosomal Lifestyle: How Innate Host Cell-Leishmania amazonensis Interactions Lead to a Progressive Chronic Disease. Frontiers in Immunology, 2021, 12, 728848.	4.8	7
481	Revisiting the heterogeneous global genomic population structure of Leishmania infantum. Microbial Genomics, 2021, 7, .	2.0	2
482	Cutaneous leishmaniasis: new oral therapeutic approaches under development. International Journal of Dermatology, 2022, 61, 89-98.	1.0	6

#	ARTICLE	IF	CITATIONS
483	Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis $\hat{a} \in A$ review. Biomedicine and Pharmacotherapy, 2021, 141, 111920.	5.6	27
484	Phenotypical and genotypical differences among Leishmania (Leishmania) amazonensis isolates that caused different clinical frames in humans and dogs: A systematic review. Acta Tropica, 2021, 221, 106018.	2.0	7
485	Extracellular Vesicles: Emerging Therapeutics in Cutaneous Lesions. International Journal of Nanomedicine, 2021, Volume 16, 6183-6202.	6.7	12
486	Design, synthesis and evaluation of novel \hat{l}^2 -carboline ester analogues as potential anti-leishmanial agents. Journal of Biomolecular Structure and Dynamics, 2022, 40, 12592-12607.	3.5	8
487	Discovery of 1,3,4,5-tetrasubstituted pyrazoles as anti-trypanosomatid agents: Identification of alterations in flagellar structure of L. amazonensis. Bioorganic Chemistry, 2021, 114, 105082.	4.1	5
488	From infection to vaccination: reviewing the global burden, history of vaccine development, and recurring challenges in global leishmaniasis protection. Expert Review of Vaccines, 2021, 20, 1431-1446.	4.4	27
489	Cysteine proteases as potential targets for anti-trypanosomatid drug discovery. Bioorganic and Medicinal Chemistry, 2021, 46, 116365.	3.0	3
490	Balancing de novo synthesis and salvage of lipids by Leishmania amastigotes. Current Opinion in Microbiology, 2021, 63, 98-103.	5.1	9
491	Immune-metabolic interactions between Leishmania and macrophage host. Current Opinion in Microbiology, 2021, 63, 231-237.	5.1	14
492	Oral combination of eugenol oleate and miltefosine induce immune response during experimental visceral leishmaniasis through nitric oxide generation with advanced cytokine demand. Cytokine, 2021, 146, 155623.	3.2	7
493	The lectin pathway of complement and the initial recognition of Leishmania infantum promastigotes. Life Sciences, 2021, 282, 119793.	4.3	4
494	Leishmania infantum strains from cats are similar in biological properties to canine and human strains. Veterinary Parasitology, 2021, 298, 109531.	1.8	3
495	Genome wide comparison of Leishmania donovani strains from Indian visceral leishmaniasis and para-kala-azar dermal leishmaniasis patients. Acta Tropica, 2021, 223, 106086.	2.0	4
496	Electrochemical biosensors for neglected tropical diseases: A review. Talanta, 2021, 234, 122617.	5.5	19
497	Full nucleotide sequencing of ribosomal DNA internal transcribed spacer of Leishmania species causing cutaneous leishmaniasis in Brazil and its potential for species typing. Acta Tropica, 2021, 223, 106093.	2.0	4
498	Curzerene antileishmania activity: Effects on Leishmania amazonensis and possible action mechanisms. International Immunopharmacology, 2021, 100, 108130.	3.8	6
499	Reactivation of latent infections in solid organ transplant recipients from sub-Saharan Africa: What should be remembered?. Transplantation Reviews, 2021, 35, 100632.	2.9	3
500	Early diagnosis of kala-azar in Bangladesh: Findings from a population based mixed methods research informing the post-elimination era. Parasitology International, 2021, 85, 102421.	1.3	4

#	Article	IF	CITATIONS
501	Integration of phlebotomine ecological niche modelling, and mapping of cutaneous leishmaniasis surveillance data, to identify areas at risk of under-estimation. Acta Tropica, 2021, 224, 106122.	2.0	3
502	6-Methyl-7-deazapurine nucleoside analogues as broad-spectrum antikinetoplastid agents. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 17, 57-66.	3.4	6
503	A 7-Year-Old Girl from South Sudan With Undulating Fever. , 2022, , 121-123.		0
504	American visceral leishmaniasis in a state of northeastern Brazil: clinical, epidemiological and laboratory aspects. Brazilian Journal of Biology, 2021, 82, e238383.	0.9	2
505	Characterization of a new Leishmania major strain for use in a controlled human infection model. Nature Communications, 2021, 12, 215.	12.8	28
507	Collaborative virtual screening to elaborate an imidazo[1,2- <i>a</i>]pyridine hit series for visceral leishmaniasis. RSC Medicinal Chemistry, 2021, 12, 384-393.	3.9	17
508	Systems biology and bioinformatics approaches in leishmaniasis. , 2021, , 509-548.		6
509	Visceral leishmaniasis outbreaks in Bihar: community-level investigations in the context of elimination of kala-azar as a public health problem. Parasites and Vectors, 2021, 14, 52.	2.5	8
510	OUP accepted manuscript. Journal of Pharmacy and Pharmacology, 2021, , .	2.4	2
511	Total Phenolic Fraction (TPF) from Extra Virgin Olive Oil: Induction of apoptotic-like cell death in Leishmania spp. promastigotes and in vivo potential of therapeutic immunomodulation. PLoS Neglected Tropical Diseases, 2021, 15, e0008968.	3.0	11
512	Visceral leishmaniasis in the island of Margarita, Venezuela: a neglected parasitic infection in the Caribbean. Therapeutic Advances in Infectious Disease, 2021, 8, 204993612110317.	1.8	0
513	Shotgun Lipidomic Analysis of Leishmania Cells. Methods in Molecular Biology, 2021, 2306, 215-225.	0.9	3
514	Temporal and spatial trends in human visceral leishmaniasis in an endemic area in Northeast Brazil and their association with social vulnerability. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2022, 116, 469-478.	1.8	6
515	Donor acquired visceral leishmaniasis following liver transplantation. Frontline Gastroenterology, 2021, 12, 690-694.	1.8	4
516	Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine. Chemical Society Reviews, 2021, 50, 2260-2279.	38.1	106
517	Application of CRISPR/Cas9-Mediated Genome Editing in Leishmania. Methods in Molecular Biology, 2020, 2116, 199-224.	0.9	18
518	Microautophagy upregulation in cutaneous lymph nodes of dogs naturally infected by Leishmania infantum. Parasitology Research, 2020, 119, 2245-2255.	1.6	8
519	Leishmania: Responding to environmental signals and challenges without regulated transcription. Computational and Structural Biotechnology Journal, 2020, 18, 4016-4023.	4.1	14

#	Article	IF	CITATIONS
520	Discovery of highly potent and selective antiparasitic new oxadiazole and hydroxy-oxindole small molecule hybrids. European Journal of Medicinal Chemistry, 2020, 201, 112418.	5 . 5	10
521	Iron and Heme Metabolism at the Leishmania–Host Interface. Trends in Parasitology, 2020, 36, 279-289.	3.3	27
522	Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Medicinal Chemistry, 2020, 11, 625-645.	3.9	18
523	Dual transcriptome analysis reveals differential gene expression modulation influenced by Leishmania arginase and host genetic background. Microbial Genomics, 2020, 6, .	2.0	9
528	Viruses of protozoan parasites and viral therapy: Is the time now right?. Virology Journal, 2020, 17, 142.	3.4	22
529	Insights from mathematical modelling and quantitative analysis on the proposed WHO 2030 targets for visceral leishmaniasis on the Indian subcontinent. Gates Open Research, 2019, 3, 1651.	1.1	5
530	Antileishmanial activity of synthetic analogs of the naturally occurring quinolone alkaloid N-methyl-8-methoxyflindersin. PLoS ONE, 2020, 15, e0243392.	2.5	10
531	Spatial dynamics and socioeconomic factors correlated with American cutaneous leishmaniasis in Pernambuco, Brazil from 2008 to 2017. Revista Da Sociedade Brasileira De Medicina Tropical, 2020, 53, e20190373.	0.9	5
532	Antileishmanial activity and immunomodulatory effect of secosubamolide, a butanolide isolated from Nectandra oppositifolia (Lauraceae). Journal of Venomous Animals and Toxins Including Tropical Diseases, 2019, 25, e20190008.	1.4	6
533	Repurposing Glyburide as Antileishmanial Agent to Fight Against Leishmaniasis. Protein and Peptide Letters, 2019, 26, 371-376.	0.9	6
534	Effect of Isolated Proteins from Crotalus Durissus Terrificus Venom on Leishmania (Leishmania) Amazonensis-Infected Macrophages. Protein and Peptide Letters, 2020, 27, 718-724.	0.9	6
535	Outwitting an Old Neglected Nemesis: A Review on Leveraging Integrated Data-Driven Approaches to Aid in Unraveling of Leishmanicides of Therapeutic Potential. Current Topics in Medicinal Chemistry, 2020, 20, 349-366.	2.1	13
536	In vitro Screening of Antileishmanial Activity of Natural Product Compounds: Determination of IC50, CC50 and SI Values. Bio-protocol, 2019, 9, e3410.	0.4	11
537	Antiparasitic and Cytotoxic Activity of Bokkosin, A Novel Diterpene-Substituted Chromanyl Benzoquinone From Calliandra portoricensis. Frontiers in Chemistry, 2020, 8, 574103.	3.6	9
538	Immune responses in post kala-azar dermal leishmaniasis. Indian Journal of Dermatology, 2020, 65, 452.	0.3	4
539	Case Report: Confirmation by Metagenomic Sequencing of Visceral Leishmaniasis in an Immunosuppressed Returned Traveler. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1930-1933.	1.4	9
540	Global genome diversity of the Leishmania donovani complex. ELife, 2020, 9, .	6.0	90
541	Nonconventional opponents: a review of malaria and leishmaniasis among United States Armed Forces. Peerl, 2019, 7, e6313.	2.0	11

#	Article	IF	CITATIONS
542	Matching Development of Point-of-Care Diagnostic Tests to the Local Context: A Case Study of Visceral Leishmaniasis in Kenya and Uganda. Global Health, Science and Practice, 2020, 8, 549-565.	1.7	5
543	Chalcone-rich extracts from <i>Lonchocarpus cultratus</i> roots present <i>in vitro</i> leishmanicidal and immunomodulatory activity. Journal of Pharmacy and Pharmacology, 2022, 74, 77-87.	2.4	1
544	Artemether-loaded nanostructured lipid carriers: preparation, characterization, and evaluation of in vitro effect on Leishmania major. Research in Pharmaceutical Sciences, 2021, 16, 623.	1.8	3
547	Prevalence and characteristics of malaria co-infection among individuals with visceral leishmaniasis in Africa and Asia: a systematic review and meta-analysis. Parasites and Vectors, 2021, 14, 545.	2.5	10
548	Clinical diversity and treatment results in Tegumentary Leishmaniasis: A European clinical report in 459 patients. PLoS Neglected Tropical Diseases, 2021, 15, e0009863.	3.0	12
549	Pancytopenia, needles, and parasites. BMJ, The, O, , n2087.	6.0	0
550	Drug associations as alternative and complementary therapy for neglected tropical diseases. Acta Tropica, 2022, 225, 106210.	2.0	7
551	Diagnostic Efficacy of Recombinase-Polymerase-Amplification Coupled with Lateral Flow Strip Reading in Patients with Cutaneous Leishmaniasis from the Amazonas Rainforest of Perú. Vector-Borne and Zoonotic Diseases, 2021, 21, 941-947.	1.5	9
552	New Insights into the Mechanism of Action of the Cyclopalladated Complex (CP2) in <i>Leishmania</i> : Calcium Dysregulation, Mitochondrial Dysfunction, and Cell Death. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0076721.	3.2	4
553	The impact of diabetes on cutaneous leishmaniasis: a case–control field assessment. Parasitology Research, 2021, 120, 3865-3874.	1.6	1
554	Network-Based Approaches Reveal Potential Therapeutic Targets for Host-Directed Antileishmanial Therapy Driving Drug Repurposing. Microbiology Spectrum, 2021, 9, e0101821.	3.0	9
555	Botryosphaeran, [(1Ââ†'Â3)(1Ââ†'Â6)-β-D-glucan], induces apoptosis-like death in promastigotes of Leishmania amazonensis, and exerts a leishmanicidal effect on infected macrophages by activating NF-kB and producing pro-inflammatory molecules. Chemico-Biological Interactions, 2022, 351, 109713.	4.0	2
556	Novel Nanocarrier Platform for Effective Treatment of Visceral Leishmaniasis. Bioconjugate Chemistry, 2021, 32, 2327-2341.	3.6	1
557	The effect of geo-climatic determinants on the distribution of cutaneous leishmaniasis in a recently emerging focus in eastern Iran. Parasites and Vectors, 2021, 14, 538.	2.5	3
558	Cross-reactive, natural IgG recognizing L. major promote parasite internalization by dendritic cells and promote protective immunity. Journal of Molecular Medicine, 2021, , 1.	3.9	0
560	Assessment of the Oxidative and Nitrosative Stress in the Serum of Saudi Patients with Cutaneous Leishmaniasis Before and After Treatment. Journal of Parasitology, 2021, 107, 810-816.	0.7	0
561	Lipid and fatty acid metabolism in trypanosomatids. Microbial Cell, 2021, 8, 262-275.	3.2	16
562	Embilica officinalis L. inhibits the growth and proliferation of Leishmania donovani through the induction of ultrastructural changes, mitochondrial dysfunction, oxidative stress and apoptosis-like cell death. Biomedicine and Pharmacotherapy, 2021, 143, 112156.	5.6	3

#	Article	IF	CITATIONS
563	Novel phenanthridine amide analogs as potential anti-leishmanial agents: In vitro and in silico insights. Bioorganic Chemistry, 2021, 117, 105414.	4.1	9
564	Evolution of a New Pathway of Reserve Carbohydrate Biosynthesis in <i>Leishmania</i> Parasites. SSRN Electronic Journal, 0, , .	0.4	O
565	Protozoen und Helminthen bei Kindern und Jugendlichen. Springer Reference Medizin, 2019, , 1-32.	0.0	0
566	In vitro and in vivo Assessment of Anti-Leishmanial Efficacy of Leaf, Fruit, and Fractions of Juniperus excelsa Against Axenic Amastigotes of Leishmania major and Topical Formulation in BALB/c Mice. Iranian Red Crescent Medical Journal, 2019, 21, .	0.5	2
570	A case of visceral leishmaniasis found by left oblique hernia: A case report. Experimental and Therapeutic Medicine, 2020, 19, 2697-2701.	1.8	2
574	LeishCare \hat{A}^{o} : A Software Designed for the Management of Individuals with Leishmaniases. American Journal of Tropical Medicine and Hygiene, 2020, 103, 909-916.	1.4	5
576	ENHANCED APOPTOTIC INDEX, CHEMOKINES AND INFLAMMATORY RECRUITMENT IN RENAL TISSUES SHOWS RELATIONSHIP WITH THE CLINICAL SIGNS IN Leishmania-INFECTED DOGS. Veterinary Parasitology, 2021, 300, 109611.	1.8	1
577	Sesamol Induces Apoptosis-Like Cell Death in Leishmania donovani. Frontiers in Cellular and Infection Microbiology, 2021, 11, 749420.	3.9	10
578	Protozoal Infections., 2022,, 1-16.		0
579	Insights from Leishmania (Viannia) guyanensis in vitro behavior and intercellular communication. Parasites and Vectors, 2021, 14, 556.	2.5	4
580	Variation in Leishmania chemokine suppression driven by diversification of the GP63 virulence factor. PLoS Neglected Tropical Diseases, 2021, 15, e0009224.	3.0	7
581	Leishmania Promastigotes Enhance Neutrophil Recruitment through the Production of CXCL8 by Endothelial Cells. Pathogens, 2021, 10, 1380.	2.8	3
582	The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. International Journal of Molecular Sciences, 2021, 22, 11533.	4.1	23
583	Metabolic characterization and biomarkers screening for visceral leishmaniasis in golden hamsters. Acta Tropica, 2022, 225, 106222.	2.0	5
584	Design, synthesis and biological evaluation of N-oxide derivatives with potent in vivo antileishmanial activity. PLoS ONE, 2021, 16, e0259008.	2.5	6
585	Antiprotozoal Drugs. , 2020, , 1-15.		O
586	Dogs as a Model for Chemotherapy of Chagas Disease and Leishmaniasis. Current Pharmaceutical Design, 2021, 27, 1741-1756.	1.9	7
587	How can proteomics overhaul our understanding of Leishmania biology?. Expert Review of Proteomics, 2020, 17, 789-792.	3.0	2

#	Article	IF	CITATIONS
588	Progress in the photodynamic therapy treatment of Leishmaniasis. Brazilian Journal of Medical and Biological Research, 2021, 54, e11570.	1.5	6
589	In vitro and In vivo Evaluation of Dialkylphosphorylhydrazones Against Leishmania chagasi Promastigotes and Amastigotes. New Journal of Chemistry, 0, , .	2.8	0
590	Anti-Leishmania amazonensis activity of the terpenoid fraction from Eugenia pruniformis leaves. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20201181.	0.8	5
591	The heterologous expression of Escherichia coli MutT enzyme is involved in the protection against oxidative stress in Leishmania braziliensis. Memorias Do Instituto Oswaldo Cruz, 2020, 115, e190469.	1.6	0
592	Protozoen und Helminthen. Springer Reference Medizin, 2020, , 1387-1418.	0.0	0
593	Leishmaniasis and phlebotomine sand flies in Oman Sultanate. Parasite, 2020, 27, 68.	2.0	1
594	Determination of Intracellular Ca2+ Concentration in the Human Pathogens Trypanosomatids Leishmania mexicana and Trypanosoma cruzi by the Use of the Fluorescent Ca2+ Indicator Fura-2. Bio-protocol, 2020, 10, e3766.	0.4	0
595	Efficacy of the 7-chloro-4-(3-hydroxy-benzilidenehydrazo)quinoline derivative against infection caused by Leishmania amazonensis. Revista Da Sociedade Brasileira De Medicina Tropical, 2020, 53, e20200091.	0.9	O
596	Leishmania donovani infection in Eastern Sudan: Comparing direct agglutination and rK39 rapid test for diagnosis-a retrospective study. Asian Pacific Journal of Tropical Medicine, 2020, 13, 322.	0.8	1
597	Estimation of Leishmania spp. infection in asymptomatic people from Muzaffarpur, Bihar, India by antigen-antibody and skin testing. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2020, 62, e67.	1.1	1
598	Types of Skin Disease and Their Causes. , 2020, , 23-64.		0
599	Immunity of Parasitic Infections of the Liver. , 2020, , 197-209.		0
602	Leishmaniasis in Saudi Arabia: Current situation and future perspectives. Pakistan Journal of Medical Sciences, 2020, 36, 836-842.	0.6	4
604	Resistance Against Leishmania major Infection Depends on Microbiota-Guided Macrophage Activation. Frontiers in Immunology, 2021, 12, 730437.	4.8	7
605	Drug discovery in leishmaniasis using protein lipidation as a target. Biophysical Reviews, 2021, 13, 1139-1146.	3.2	6
606	Clinical and laboratory characteristics of hemophagocytic lymphohistiocytosis induced by Leishmania infantum infection. PLoS Neglected Tropical Diseases, 2021, 15, e0009944.	3.0	7
607	E-NTPDases: Possible Roles on Host-Parasite Interactions and Therapeutic Opportunities. Frontiers in Cellular and Infection Microbiology, 2021, 11, 769922.	3.9	2
609	Body location of "New World―cutaneous leishmaniasis lesions and its impact on the quality of life of patients in Suriname. PLoS Neglected Tropical Diseases, 2020, 14, e0008759.	3.0	9

#	Article	IF	CITATIONS
614	Pediatric cutaneous leishmaniasis: A clinico-epidemiological study from North India. Indian Dermatology Online Journal, 2021, 12, 852.	0.5	1
615	Leishmaniasis & Heart. , 2022, , 73-81.		0
616	lgG3 and IL10 are effective biomarkers for monitoring therapeutic effectiveness in Post Kala-Azar Dermal Leishmaniasis. PLoS Neglected Tropical Diseases, 2021, 15, e0009906.	3.0	6
617	Distinct microbiome profiles and biofilms in Leishmania donovani-driven cutaneous leishmaniasis wounds. Scientific Reports, 2021, 11, 23181.	3.3	10
618	Changes in the microbiological diagnosis and epidemiology of cutaneous leishmaniasis in real-time PCR era: A six-year experience in a referral center in Barcelona. PLoS Neglected Tropical Diseases, 2021, 15, e0009884.	3.0	8
619	Cell Cycle, Telomeres, and Telomerase in Leishmania spp.: What Do We Know So Far?. Cells, 2021, 10, 3195.	4.1	5
620	Oral Efficacy of a Diselenide Compound Loaded in Nanostructured Lipid Carriers in a Murine Model of Visceral Leishmaniasis. ACS Infectious Diseases, 2021, 7, 3197-3209.	3.8	9
621	Synthesis, biological evaluation and molecular docking studies of quinolineâ€conjugated 1,2, <scp>3â€triazole</scp> derivatives as antileishmanial agents. Journal of Heterocyclic Chemistry, 2022, 59, 739-749.	2.6	3
622	Epidemiological and diagnostic aspects of feline leishmaniasis with emphasis on Brazil: a narrative review. Parasitology Research, 2022, 121, 21-34.	1.6	15
623	Assay development in leishmaniasis drug discovery: a comprehensive review. Expert Opinion on Drug Discovery, 2022, 17, 151-166.	5.0	7
624	Extracellular Vesicles Released by Leishmania: Impact on Disease Development and Immune System Cells. , 0, , .		1
625	Effective Genome Editing in Leishmania (Viannia) braziliensis Stably Expressing Cas9 and T7 RNA Polymerase. Frontiers in Cellular and Infection Microbiology, 2021, 11, 772311.	3.9	8
626	Anti-Leishmania activity of artesunate and combination effects with amphotericin B against Leishmania (Mundinia) martiniquensis in vitro. Acta Tropica, 2022, 226, 106260.	2.0	2
627	Proteomic Analysis of the Promastigote Secretome of Seven <i>Leishmania</i> Species. Journal of Proteome Research, 2022, 21, 30-48.	3.7	13
628	Chalcones identify cTXNPx as a potential antileishmanial drug target. PLoS Neglected Tropical Diseases, 2021, 15, e0009951.	3.0	15
629	New method for screening anti-Leishmania compounds in plants extracts by HPTLC-bioautography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1188, 123061.	2.3	3
630	Antileishmanial Drug Discovery and Development: Time to Reset the Model?. Microorganisms, 2021, 9, 2500.	3.6	32
631	Treating Leishmaniasis in Amazonia, Part 2: Multi-Target Evaluation of Widely Used Plants to Understand Medicinal Practices. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
633	Antiprotozoal Drugs., 2021, , 197-212.		0
634	Exploring Imidazolium Salts as Anti- <i>Leishmania</i> Drug Prototypes. SSRN Electronic Journal, 0, , .	0.4	0
635	Sensitive and specific serodiagnosis of tegumentary leishmaniasis using a new chimeric protein based on specific B-cell epitopes of Leishmania antigenic proteins. Microbial Pathogenesis, 2022, 162, 105341.	2.9	3
636	In vitro selection of ketoconazole-pentamidine-resistant Leishmania (Viannia) braziliensis strains. Experimental Parasitology, 2022, 233, 108206.	1.2	0
637	Oral administration of buparvaquone nanostructured lipid carrier enables in vivo activity against Leishmania infantum. European Journal of Pharmaceutical Sciences, 2022, 169, 106097.	4.0	7
638	Impact assessment of different DNA extraction methods for non-invasive molecular diagnosis of tegumentary leishmaniasis. Acta Tropica, 2022, 227, 106275.	2.0	0
639	A candidate vaccine composed of live nonpathogenic Iranian Lizard Leishmania mixed with Chitin microparticles protects mice against Leishmania major infection. Acta Tropica, 2022, 227, 106298.	2.0	5
640	Nano and Microstructured Delivery Systems for Current Antileishmanial Drugs. Topics in Medicinal Chemistry, 2021, , .	0.8	0
641	Methods and parameters of melting curve analysis for identification of Leishmania species: A scoping review. Asian Pacific Journal of Tropical Medicine, 2021, 14, 528.	0.8	2
642	Targeting Carbonic Anhydrases from Trypanosoma cruzi and Leishmania spp. as a Therapeutic Strategy to Obtain New Antiprotozoal Drugs. Topics in Medicinal Chemistry, 2021, , 1.	0.8	1
644	A profile of research on the parasitic trypanosomatids and the diseases they cause. PLoS Neglected Tropical Diseases, 2022, 16, e0010040.	3.0	22
645	Transmission patterns of Leishmania tropica around the Mediterranean basin: Could Morocco be impacted by a zoonotic spillover?. PLoS Neglected Tropical Diseases, 2022, 16, e0010009.	3.0	9
646	Surveillance of leishmaniasis cases from 15 European centres, 2014 to 2019: a retrospective analysis. Eurosurveillance, 2022, 27, .	7.0	16
647	Interleukin-4 Responsive Dendritic Cells Are Dispensable to Host Resistance Against Leishmania mexicana Infection. Frontiers in Immunology, 2021, 12, 759021.	4.8	1
648	Covalent Conjugation of Amphotericin B to Hyaluronic Acid: An Injectable Water-Soluble Conjugate with Reduced Toxicity and Anti-Leishmanial Potential. Biomacromolecules, 2022, 23, 1169-1182.	5.4	3
649	An intraspecies Leishmania donovani hybrid from the Indian subcontinent is associated with an atypical phenotype of cutaneous disease. IScience, 2022, 25, 103802.	4.1	12
650	N-acetylglucosamine-phosphatidylinositol de-N-acetylase as a novel target for probing potential inhibitor against <i>Leishmania donovani</i> . Journal of Biomolecular Structure and Dynamics, 2023, 41, 1904-1918.	3.5	4
651	CRISPR-dCas9 based DNA detection scheme for diagnostics in resource-limited settings. Nanoscale, 2022, 14, 1885-1895.	5.6	12

#	Article	IF	Citations
652	Cutaneous leishmaniasis in a returned traveler. IDCases, 2022, 27, e01433.	0.9	0
653	Modulation of Host Immune Response during Leishmania infantum Natural Infection: A Whole-Transcriptome Analysis of the Popliteal Lymph Nodes in Dogs. Frontiers in Immunology, 2021, 12, 794627.	4.8	8
654	<i>In vitro</i> anti- <i>Leishmania</i> activity of 8-hydroxyquinoline and its synergistic effect with amphotericin B deoxycholate against <i>Leishmania martiniquensis</i> . PeerJ, 2022, 10, e12813.	2.0	2
655	N-modification of 7-Deazapurine nucleoside analogues as Anti-Trypanosoma cruzi and anti-Leishmania agents: Structure-activity relationship exploration and InÂvivo evaluation. European Journal of Medicinal Chemistry, 2022, 231, 114165.	5 . 5	7
656	Recent Progress in the Development of Indole-Based Compounds Active against Malaria, Trypanosomiasis and Leishmaniasis. Molecules, 2022, 27, 319.	3.8	17
657	Mutation Characteristics and Phylogenetic Analysis of Five Leishmania Clinical Isolates. Animals, 2022, 12, 321.	2.3	0
658	Revealing a Novel Antigen Repressor of Differentiation Kinase 2 for Diagnosis of Human Visceral Leishmaniasis in India. Pathogens, 2022, 11, 120.	2.8	3
659	Visceral Leishmaniasis Associated with B-Cell Chronic Lymphocytic Leukemia: Report of a Case and Review of the Literature. Life, 2022, 12, 185.	2.4	0
660	Splenectomy for Visceral Leishmaniasis Out of an Endemic Region: A Case Report and Literature Review. Medicina (Lithuania), 2022, 58, 184.	2.0	1
661	ldentification of asymptomatic Leishmania infections: a scoping review. Parasites and Vectors, 2022, 15, 5.	2.5	27
662	Facing Diseases Caused by Trypanosomatid Parasites: Rational Design of Pd and Pt Complexes With Bioactive Ligands. Frontiers in Chemistry, 2021, 9, 816266.	3.6	9
663	Designing, Optimization and Characterization of Trifluralin Transfersomal Gel to Passively Target Cutaneous Leishmaniasis. Journal of Pharmaceutical Sciences, 2022, 111, 1798-1811.	3.3	22
664	Diagnosis of visceral and cutaneous leishmaniasis using loop-mediated isothermal amplification (LAMP) protocols: a systematic review and meta-analysis. Parasites and Vectors, 2022, 15, 34.	2.5	11
665	Parasites causing cutaneous wounds: Theory and practice from a dermatological point of view. Acta Tropica, 2022, 228, 106332.	2.0	1
666	A novel leishmanial copper P-type ATPase plays a vital role in parasite infection and intracellular survival. Journal of Biological Chemistry, 2022, 298, 101539.	3.4	5
667	<i>Leishmania</i> and its relationships with bacteria. Future Microbiology, 2022, 17, 199-218.	2.0	1
668	Molecular-based assay for genotyping Leishmania spp. from clinically suspected cutaneous leishmaniasis lesions in the Garmian area, Kurdistan Region of Iraq. Parasite Epidemiology and Control, 2022, 17, e00240.	1.8	3
669	Phlebotomine Sandfly (Diptera: Psychodidae) Fauna and The Association Between Climatic Variables and The Abundance of <i>Lutzomyia longipalpis</i> sensu lato in an Intense Transmission Area for Visceral Leishmaniasis in Central Western Brazil. Journal of Medical Entomology, 2022, 59, 997-1007.	1.8	8

#	Article	IF	CITATIONS
670	Transcriptome-Wide Identification of Coding and Noncoding RNA-Binding Proteins Defines the Comprehensive RNA Interactome of Leishmania mexicana. Microbiology Spectrum, 2022, 10, e0242221.	3.0	8
671	Leishmanicidal activity of fungal bioproducts: A systematic review. Fungal Biology Reviews, 2022, 40, 91-113.	4.7	1
672	miR-548d-3pÂls Up-Regulated in Human Visceral Leishmaniasis and Suppresses Parasite Growth inÂMacrophages. Frontiers in Cellular and Infection Microbiology, 2022, 12, 826039.	3.9	2
673	Exploration of potential inhibitors for autophagyâ€related protein 8 as antileishmanial agents. Chemical Biology and Drug Design, 2022, 99, 816-827.	3.2	3
674	miR-294 and miR-410 Negatively Regulate Tnfa, Arginine Transporter Cat1/2, and Nos2 mRNAs in Murine Macrophages Infected with Leishmania amazonensis. Non-coding RNA, 2022, 8, 17.	2.6	5
675	AmBisome Monotherapy and Combination AmBisome–Miltefosine Therapy for the Treatment of Visceral Leishmaniasis in Patients Coinfected With Human Immunodeficiency Virus in India: A Randomized Open-Label, Parallel-Arm, Phase 3 Trial. Clinical Infectious Diseases, 2022, 75, 1423-1432.	5.8	16
676	Carboxymethyl chitosan modified lipid nanoformulations as a highly efficacious and biocompatible oral anti-leishmanial drug carrier system. International Journal of Biological Macromolecules, 2022, 204, 373-385.	7.5	15
677	Treating leishmaniasis in Amazonia, part 2: Multi-target evaluation of widely used plants to understand medicinal practices. Journal of Ethnopharmacology, 2022, 289, 115054.	4.1	3
678	Hyaluronic acid–amphotericin B nanocomplexes: a promising anti-leishmanial drug delivery system. Biomaterials Science, 2022, 10, 1952-1967.	5.4	1
679	Antioxidant defence system as a rational target for Chagas disease and Leishmaniasis chemotherapy. Memorias Do Instituto Oswaldo Cruz, 2022, 117, e210401.	1.6	15
680	Host cholesterol influences the activity of sterol biosynthesis inhibitors in Leishmania amazonensis. Memorias Do Instituto Oswaldo Cruz, 2022, 117, e220407.	1.6	3
681	Boron-containing small molecules as antiparasitic agents. , 2022, , 155-201.		0
682	Past and future of trypanosomatids high-throughput phenotypic screening. Memorias Do Instituto Oswaldo Cruz, 2022, 117, e210402.	1.6	1
683	Persistent Cutaneous Leishmania major Infection Promotes Infection-Adapted Myelopoiesis. Microorganisms, 2022, 10, 535.	3.6	6
684	Functionalized 1,2,3-triazolium salts as potential agents against visceral leishmaniasis. Parasitology Research, 2022, 121, 1389-1406.	1.6	2
685	Antileishmanial Efficacy of the Calpain Inhibitor MDL28170 in Combination with Amphotericin B. Tropical Medicine and Infectious Disease, 2022, 7, 29.	2.3	1
686	Nanotechnological approaches for pentamidine delivery. Drug Delivery and Translational Research, 2022, 12, 1911-1927.	5.8	8
687	Intralesional injections of meglumine antimoniate to treat complex facial leishmania infantum acquired in Spain: a case report. Journal of the European Academy of Dermatology and Venereology, 2022, 36, .	2.4	0

#	ARTICLE	IF	CITATIONS
688	Leishmaniasis: Plants as a source of antileishmanial agents. Journal of Experimental Biology and Agricultural Sciences, 2022, 10, 227-247.	0.4	0
689	Targeted Deletion of Centrin in Leishmania braziliensis Using CRISPR-Cas9-Based Editing. Frontiers in Cellular and Infection Microbiology, 2021, 11, 790418.	3.9	8
690	Treatment of Cutaneous Leishmaniasis and Insights into Species-Specific Responses: A Narrative Review. Infectious Diseases and Therapy, 2022, 11, 695-711.	4.0	20
691	Antileishmanial Activity of Tamoxifen by Targeting Sphingolipid Metabolism: A Review. Clinical Pharmacology: Advances and Applications, 2022, Volume 14, 11-17.	1.2	2
692	TREM-1 Expression on the Surface of Neutrophils in Patients With Visceral Leishmaniasis Is Associated With Immunopathogenesis. Frontiers in Cellular and Infection Microbiology, 2022, 12, 863986.	3.9	0
693	Cutaneous leishmaniasis presenting with painless ulcer on the right forearm: A case report. World Journal of Clinical Cases, 2022, 10, 2301-2306.	0.8	2
694	A Betulinic Acid Derivative, BA5, Induces GO/G1 Cell Arrest, Apoptosis Like-Death, and Morphological Alterations in Leishmania sp. Frontiers in Pharmacology, 2022, 13, 846123.	3.5	5
695	A phase II multicenter randomized study to evaluate the safety and efficacy of combining thermotherapy and a short course of miltefosine for the treatment of uncomplicated cutaneous leishmaniasis in the New World. PLoS Neglected Tropical Diseases, 2022, 16, e0010238.	3.0	4
696	The Dangerous Liaisons in the Oxidative Stress Response to Leishmania Infection. Pathogens, 2022, 11, 409.	2.8	11
697	Granulomatous lesions of the skin: Do not fall into the trap. European Journal of Internal Medicine, 2022, , .	2.2	0
698	Diagnosis of Visceral Leishmaniasis in an Elimination Setting: A Validation Study of the Diagnostic Algorithm in India. Diagnostics, 2022, 12, 670.	2.6	4
699	Tp-e Interval, Tp-e/QT and Tp-e/QTc Ratios in Female Patients with Small Heart Syndrome. Bagcilar Medical Bulletin, 2022, 7, 1-5.	0.1	0
700	Host–Pathogen Interaction in Leishmaniasis: Immune Response and Vaccination Strategies. Immuno, 2022, 2, 218-254.	1.5	21
701	Acoustophoretic Motion of Leishmania spp. Parasites. Ultrasound in Medicine and Biology, 2022, , .	1.5	1
702	Protozoan phagotrophy from predators to parasites: An overview of the enigmatic cytostomeâ€cytopharynx complex of <i>Trypanosoma cruzi</i> . Journal of Eukaryotic Microbiology, 2022, 69, e12896.	1.7	4
703	Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasites and Vectors, 2022, 15, 112.	2.5	26
704	Influence of the presence of mannose-binding lectin polymorphisms on the occurrence of leishmaniasis: a systematic review and meta-analysis. Anais Brasileiros De Dermatologia, 2022, , .	1.1	0
705	Caspase-8 has dual roles in regulatory T cell homeostasis balancing immunity to infection and collateral inflammatory damage. Science Immunology, 2022, 7, eabn8041.	11.9	8

#	Article	IF	CITATIONS
706	Kidney complications of parasitic diseases. Nature Reviews Nephrology, 2022, 18, 396-406.	9.6	10
707	In-Depth Quantitative Proteomics Characterization of In Vitro Selected Miltefosine Resistance in Leishmania infantum. Proteomes, 2022, 10, 10.	3.5	2
708	Characterization of the glutathione Sâ€transferase genes in the sand flies <i>Phlebotomus papatasi</i> and <i>Lutzomyia longipalpis</i> shows expansion of the novel glutathione Sâ€transferase <i>xi</i> (X) class. Insect Molecular Biology, 2022, 31, 417-433.	2.0	4
709	Current and future strategies against cutaneous parasites. Pharmaceutical Research, 2022, 39, 631-651.	3.5	5
710	Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Communications Biology, 2022, 5, 305.	4.4	59
711	Leishmaniasis: evaluación clÃnica y diagnóstico. Revista Medica Sinergia, 2022, 7, e781.	0.1	1
712	Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease - An update overview. European Journal of Pharmacology, 2022, 923, 174934.	3.5	9
713	Down regulation of IL-10 and TGF- \hat{l}^21 mRNA expression associated with reduced inflammatory process correlates with control of parasitism in the liver after treatingL. infantuminfected dogs with the LBMPL vaccine therapy. Cytokine, 2022, 153, 155838.	3.2	1
714	Leishmania (Viannia) braziliensis replicates in mouse bone marrow. Acta Tropica, 2022, 230, 106407.	2.0	0
715	Involvement of tryparedoxin peroxidase (TryP) and trypanothione reductase (TryR) in antimony unresponsive of Leishmania tropica clinical isolates of Iran. Acta Tropica, 2022, 230, 106392.	2.0	5
716	Pharmacokinetic study of AmB-NP-GR: A new granule form with amphotericin B to treat leishmaniasis and fungal infections. European Journal of Pharmaceutical Sciences, 2022, 173, 106173.	4.0	1
717	Retinoic acid restores the levels of cellular cholesterol in Leishmania donovani infected macrophages by increasing npc1 and npc2 expressions. Biochimie, 2022, 198, 23-32.	2.6	9
718	Comparative Study of Real-Time PCR (TaqMan Probe and Sybr Green), Serological Techniques (ELISA, IFA) Tj ETQqQ Infected Dogs. Microorganisms, 2021, 9, 2627.	0 0 0 rgBT 3 . 6	/Overlock 1 7
719	In Silico Design of Recombinant Chimera T Cell Peptide Epitope Vaccines for Visceral Leishmaniasis. Methods in Molecular Biology, 2022, 2410, 463-480.	0.9	2
720	Long-Term In Vitro Passaging Had a Negligible Effect on Extracellular Vesicles Released by Leishmania amazonensis and Induced Protective Immune Response in BALB/c Mice. Journal of Immunology Research, 2021, 2021, 1-13.	2.2	5
721	Protective and Pathogenic Immune Responses to Cutaneous Leishmaniasis. , 0, , .		0
722	Factores relacionados con histoplasmosis diseminada en los pacientes admitidos con VIH-SIDA y fiebre, CHDrAAM, 2017 - 2019. Revista Medica De Panama, 0, , 42-47.	0.0	0
723	Nutritional Modulation of the Immune Response Mediated by Nucleotides in Canine Leishmaniosis. Microorganisms, 2021, 9, 2601.	3.6	7

#	Article	IF	CITATIONS
725	Challenges and Tools for In Vitro Leishmania Exploratory Screening in the Drug Development Process: An Updated Review. Pathogens, 2021, 10, 1608.	2.8	7
726	Intracellular Parasites: Kinetoplastids. , 2022, , .		0
728	Metamorphosis of neutrophil transcriptional programme during <i>Leishmania</i> infection. Parasite Immunology, 2022, 44, e12922.	1.5	1
729	Exploring IL-17 gene promoter polymorphisms in canine leishmaniasis. Acta Tropica, 2022, 232, 106452.	2.0	1
730	Transcriptional profiling of macrophages reveals distinct parasite stage-driven signatures during early infection by Leishmania donovani. Scientific Reports, 2022, 12, 6369.	3.3	9
731	Predicting absorption of amphotericin B encapsulated in a new delivery system by an in vitro Caco-2†cell model. Journal of Drug Delivery Science and Technology, 2022, , 103345.	3.0	0
756	Detection of Leishmania tarentolae DNA in Sergentomyia antennata in Togo. Journal of Vector Borne Diseases, 2021, 58, 175.	0.4	1
757	Mitochondrial dysfunction on Leishmania (Leishmania) amazonensis induced by ketoconazole: insights into drug mode of action. Memorias Do Instituto Oswaldo Cruz, 2022, 117, e210157.	1.6	3
758	Emerging computational technologies in human leishmaniasis: where are we?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2022, 116, 981-985.	1.8	2
759	Protozoal Infections. , 2022, , 375-390.		0
760	Polyamine Metabolism in Leishmania Parasites: A Promising Therapeutic Target. Medical Sciences (Basel,) Tj ETQo	η0,0,0 rgB	Γ/Overlock 1
762	Fifty years of struggle to control cutaneous leishmaniasis in the highest endemic county in Iran: A longitudinal observation inferred with interrupted time series model. PLoS Neglected Tropical Diseases, 2022, 16, e0010271.	3.0	7
763	The Astonishing Large Family of HSP40/DnaJ Proteins Existing in Leishmania. Genes, 2022, 13, 742.	2.4	4
764	Tag Thy Neighbour: Nanometre-Scale Insights Into Kinetoplastid Parasites With Proximity Dependent Biotinylation. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	1
765	Dipeptidylcarboxypeptidase of Leishmania donovani: A potential vaccine molecule against experimental visceral leishmaniasis. Cellular Immunology, 2022, 375, 104529.	3.0	2
766	T Lymphocyte Exhaustion During Human and Experimental Visceral Leishmaniasis. Frontiers in Immunology, 2022, 13, 835711.	4.8	14
767	Tackling Drug Resistance and Other Causes of Treatment Failure in Leishmaniasis. Frontiers in Tropical Diseases, 2022, 3, .	1.4	17
768	Discriminator for Cutaneous Leishmaniasis Using MALDI-MSI in a Murine Model. Journal of the American Society for Mass Spectrometry, 2022, , .	2.8	0

#	Article	IF	CITATIONS
769	Highly sensitive nested polymerase chain reaction to improve the detection of Leishmania species in clinical specimens. Journal of Parasitic Diseases, 2022, 46, 754-763.	1.0	1
770	Metalloprotease Gp63-Targeting Novel Glycoside Exhibits Potential Antileishmanial Activity. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	5
771	The pathogenicity and virulence of Leishmania - interplay of virulence factors with host defenses. Virulence, 2022, 13, 903-935.	4.4	15
772	Solidagenone in vivo leishmanicidal activity acting in tissue repair response, and immunomodulatory capacity in Leishmania amazonensis. Chemico-Biological Interactions, 2022, 361, 109969.	4.0	2
773	Exploration of 6-methyl-7-(Hetero)Aryl-7-Deazapurine ribonucleosides as antileishmanial agents. European Journal of Medicinal Chemistry, 2022, 237, 114367.	5.5	4
774	In vitro activity and cell death mechanism induced by acrylonitrile derivatives against Leishmania amazonensis. Bioorganic Chemistry, 2022, 124, 105872.	4.1	4
775	Naphthoquinone as a New Chemical Scaffold for Leishmanicidal Inhibitors of Leishmania GSK-3. Biomedicines, 2022, 10, 1136.	3.2	4
776	Burden and risk factors of cutaneous leishmaniasis in Ethiopia: a systematic review and metaâ€analysis. International Journal of Dermatology, 2022, 61, 1336-1345.	1.0	4
777	Hemoglobin Endocytosis and Intracellular Trafficking: A Novel Way of Heme Acquisition by Leishmania. Pathogens, 2022, 11, 585.	2.8	6
778	Acidic Microenvironments Found in Cutaneous Leishmania Lesions Curtail NO-Dependent Antiparasitic Macrophage Activity. Frontiers in Immunology, 2022, 13, 789366.	4.8	4
779	Mucocutaneous Leishmaniasis due to Leishmania infantum Infection. Acta Dermato-Venereologica, 0, , .	1.3	1
780	Infectious diseases data observatory (IDDO) visceral leishmaniasis library of clinical therapeutic studies: A protocol for a living systematic review of clinical studies. Wellcome Open Research, 0, 7, 155.	1.8	3
781	Acute kidney injury as initial presentation of visceral leishmaniasis in a young patient- A case report. Annals of Medicine and Surgery, 2022, 78, .	1.1	3
782	Parasitological and immunological evaluation of a quinoline derivative salt incorporated into a polymeric micelle formulation against Leishmania infantum infection. Parasitology Research, 2022, 121, 2129-2140.	1.6	5
783	Two Concomitant and Exceedingly Rare Causes of Oropharyngeal Dysphagia. JAMA Otolaryngology - Head and Neck Surgery, 0, , .	2.2	0
785	Establish an allele-specific real-time PCR for Leishmania species identification. Infectious Diseases of Poverty, 2022, 11 , .	3.7	1
786	Design, synthesis and evaluation of novel phenanthridine triazole analogs as potential antileishmanial agents. Future Medicinal Chemistry, 2022, 14, 867-880.	2.3	2
787	Imaging Leishmania major Antigens in Experimentally Infected Macrophages and Dermal Scrapings from Cutaneous Leishmaniasis Lesions in Tunisia. Microorganisms, 2022, 10, 1157.	3.6	3

#	Article	IF	CITATIONS
788	Bats as hosts of Leishmania (Leishmania) infantum in Minas Gerais, an endemic area for visceral leishmaniasis. Veterinary Parasitology: Regional Studies and Reports, 2022, 32, 100740.	0.5	O
789	Cutaneous leishmaniasis in travellers and migrants: a 10-year case series in a Canadian reference centre for tropical diseases. CMAJ Open, 2022, 10, E546-E553.	2.4	0
790	Leishmania tarentolae as Potential Live Vaccine Co-Expressing Distinct Salivary Gland Proteins Against Experimental Cutaneous Leishmaniasis in BALB/c Mice Model. Frontiers in Immunology, $0,13,13$	4.8	5
791	Visceral leishmaniasis: an unusual cause of isolated lymphadenopathy. BMJ Case Reports, 2022, 15, e249249.	0.5	0
792	Comparison of serum cytokine levels in symptomatic and asymptomatic HIV-Leishmania coinfected individuals from a Brazilian visceral leishmaniasis endemic area. PLoS Neglected Tropical Diseases, 2022, 16, e0010542.	3.0	3
793	Long-term hematopoietic stem cells as a parasite niche during treatment failure in visceral leishmaniasis. Communications Biology, 2022, 5, .	4.4	12
795	Expression Profile of Genes Related to the Th17 Pathway in Macrophages Infected by Leishmania major and Leishmania amazonensis: The Use of Gene Regulatory Networks in Modeling This Pathway. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	2
796	Transcriptional Profiling of Leishmania infantum Infected Dendritic Cells: Insights into the Role of Immunometabolism in Host-Parasite Interaction. Microorganisms, 2022, 10, 1271.	3.6	6
797	Reconstitution of Mycobacterium marinum Nonhomologous DNA End Joining Pathway in <i>Leishmania</i> . MSphere, 2022, 7, .	2.9	4
799	Case Report: The First Case Report of Visceral Leishmaniasis in Cambodia. American Journal of Tropical Medicine and Hygiene, 2022, 107, 336-338.	1.4	1
800	Host SUMOylation Pathway Negatively Regulates Protective Immune Responses and Promotes Leishmania donovani Survival. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3
801	Models for cytotoxicity screening of antileishmanial drugs: what has been done so far?. International Journal of Antimicrobial Agents, 2022, 60, 106612.	2.5	3
802	Assembly of a Large Collection of Maxicircle Sequences and Their Usefulness for Leishmania Taxonomy and Strain Typing. Genes, 2022, 13, 1070.	2.4	5
803	Essential Role of Enzymatic Activity in the Leishmanicidal Mechanism of the Eosinophil Cationic Protein (RNase 3). ACS Infectious Diseases, 2022, 8, 1207-1217.	3.8	1
805	Ageing impairs protective immunity and promotes susceptibility to murine visceral leishmaniasis. Parasitology, 2022, 149, 1249-1256.	1.5	2
806	A Mouse Model of Ulcerative Cutaneous Leishmaniasis by Leishmania (Viannia) panamensis to Investigate Infection, Pathogenesis, Immunity, and Therapeutics. Frontiers in Microbiology, 0, 13, .	3 . 5	2
807	Pamidronate, a promising repositioning drug to treat leishmaniasis, displays antileishmanial and immunomodulatory potential. International Immunopharmacology, 2022, 110, 108952.	3.8	5
811	Prevalence of Leishmania RNA virus in Leishmania parasites in patients with tegumentary leishmaniasis: A systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 2022, 16, e0010427.	3.0	4

#	Article	IF	Citations
812	IDENTİFİCATİON OF LEİSHMANİA TROPİCA FROM PEDİATRİC VİSCERAL LEİSHMANİASİS İN MEDITERRANEAN REGION OF TURKEY Mediterranean Journal of Hematology and Infectious Diseases, 2022, 14, e2022053.	SOUTHER 1.3	RN 1
815	Thiolated Methylantimonials: A New Organoantimony Group Identified in Mouse and Human Urines. Environmental Science and Technology Letters, 2022, 9, 792-797.	8.7	2
816	Ruthenium Complexes, an Emerging Class of Leishmanicidal Drug Candidates., 2022, 1, 129-142.		3
817	Case Report: Leishmaniasis in a 33-Year-Old Man with Multiple Sclerosis. American Journal of Tropical Medicine and Hygiene, 2022, , .	1.4	0
818	Finding Correlations Between mRNA and Protein Levels in Leishmania Development: Is There a Discrepancy?. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	4
819	Current Status of Regulatory Non-Coding RNAs Research in the Tritryp. Non-coding RNA, 2022, 8, 54.	2.6	4
820	Unusual cause of acute liver failure. Journal of Paediatrics and Child Health, 2022, 58, 1278-1278.	0.8	0
821	Imported cases of cutaneous leishmaniasis in Cuba, 2017: role of human movement. Tropical Diseases, Travel Medicine and Vaccines, 2022, 8, .	2.2	1
822	Bromodomain factor 5 is an essential regulator of transcription in Leishmania. Nature Communications, 2022, 13, .	12.8	8
823	Impact of collaborative actions of <i>Leishmania (Viannia) braziliensis</i> subpopulations on the infection profile. Parasitology, 2022, 149, 1526-1535.	1.5	1
824	Combined immunotherapeutic effect of Leishmania-derived recombinant aldolase and Ambisome against experimental visceral leishmaniasis. Journal of Microbiology, Immunology and Infection, 2023, 56, 163-171.	3.1	2
825	In vivo transcriptional analysis of mice infected with Leishmania major unveils cellular heterogeneity and altered transcriptomic profiling at single-cell resolution. PLoS Neglected Tropical Diseases, 2022, 16, e0010518.	3.0	9
826	Isolation, typing, and drug susceptibility of Leishmania (Leishmania) infantum isolates from dogs of the municipality of Embu das Artes, an endemic region for canine leishmaniasis in Brazil. Parasitology Research, 2022, 121, 2683-2695.	1.6	1
827	Histological and neuronal changes in the duodenum of hamsters infected with Leishmania (Leishmania) infantum. Experimental Parasitology, 2022, 239, 108315.	1.2	1
828	A Recombinant Chimeric Protein-Based Vaccine Containing T-Cell Epitopes from Amastigote Proteins and Combined with Distinct Adjuvants, Induces Immunogenicity and Protection against Leishmania infantum Infection. Vaccines, 2022, 10, 1146.	4.4	11
830	The cytotoxic and anti-leishmanial activity of Oregano (Origanum vulgare) essential oil: An in vitro, in vivo, and in silico study. Industrial Crops and Products, 2022, 187, 115367.	5.2	7
831	A rare case of secondary haemophagocytic lymphohistiocytosis in visceral leishmaniasis. Tropical Doctor, 0, , 004947552210993.	0.5	0
832	Microbial ecology of sand fly breeding sites: aging and larval conditioning alter the bacterial community composition of rearing substrates. Parasites and Vectors, 2022, 15, .	2.5	2

#	Article	IF	CITATIONS
833	Visceral leishmaniasis: A leucaemia mimicker: A case report. Tropical Doctor, 2022, 52, 586-587.	0.5	1
835	Efficacy Evaluation of 10-Hydroxy Chondrofoline and Tafenoquine against Leishmania tropica (HTD7). Pharmaceuticals, 2022, 15, 1005.	3.8	3
836	Dissection of the macrophage response towards infection by the Leishmania-viral endosymbiont duo and dynamics of the type I interferon response. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	0
837	Nucleosome Structures Built from Highly Divergent Histones: Parasites and Giant DNA Viruses. Epigenomes, 2022, 6, 22.	1.8	3
839	Possible clinical implications and future directions of managing bacterial biofilms in cutaneous leishmaniasis wounds. Tropical Medicine and Health, 2022, 50, .	2.8	1
840	Quantum Biochemistry Screening and In Vitro Evaluation of Leishmania Metalloproteinase Inhibitors. International Journal of Molecular Sciences, 2022, 23, 8553.	4.1	1
841	Improving Aqueous Solubility and In Vitro Pharmacokinetic Properties of the 3-Nitroimidazo[1,2-a]pyridine Antileishmanial Pharmacophore. Pharmaceuticals, 2022, 15, 998.	3.8	2
842	A Historical Review of Military Medical Strategies for Fighting Infectious Diseases: From Battlefields to Global Health. Biomedicines, 2022, 10, 2050.	3.2	8
844	Test combination to detect latent Leishmania infection: A prevalence study in a newly endemic area for L. infantum, northeastern Italy. PLoS Neglected Tropical Diseases, 2022, 16, e0010676.	3.0	2
845	Anti-trypanosomatid drug discovery: progress and challenges. Nature Reviews Microbiology, 2023, 21, 35-50.	28.6	52
846	Visceral leishmaniasis elimination in India: progress and the road ahead. Expert Review of Anti-Infective Therapy, 2022, 20, 1381-1388.	4.4	7
848	Possibility of Leishmania Transmission via Lutzomyia spp. Sand Flies Within the USA and Implications for Human and Canine Autochthonous Infection. Current Tropical Medicine Reports, 2022, 9, 160-168.	3.7	3
849	Complex cutaneous infection by Leishmania mexicana treated with miltefosine. JAAD Case Reports, 2022, 29, 18-20.	0.8	1
850	Reporter gene systems: A powerful tool for Leishmania studies. Current Research in Microbial Sciences, 2022, 3, 100165.	2.3	0
851	Gain-of-function STAT1 mutation and visceral leishmaniasis. Einstein (Sao Paulo, Brazil), 2022, 20, .	0.7	2
852	Impavido Attenuates Inflammation, Reduces Atherosclerosis, and Alters Gut Microbiota in Hyperlipidemic Mice. SSRN Electronic Journal, 0 , , .	0.4	0
853	Study on the zoonotic cycle of tegumentary leishmaniasis in an endemic area of a metropolitan region in the Northeastern region of Brazil. Revista Do Instituto De Medicina Tropical De Sao Paulo, 0, 64, .	1.1	0
854	The Trypanosomatids Cell Cycle: A Brief Report. Methods in Molecular Biology, 2022, , 25-34.	0.9	2

#	Article	IF	CITATIONS
855	Impact of Visceral Leishmaniasis on Local Organ Metabolism in Hamsters. Metabolites, 2022, 12, 802.	2.9	5
856	Prevalence and determinants of asymptomatic Leishmania infection in HIV-infected individuals living within visceral leishmaniasis endemic areas of Bihar, India. PLoS Neglected Tropical Diseases, 2022, 16, e0010718.	3.0	3
857	Knowledge, Attitude, and Practices among HIV/Leishmaniasis Co-Infected Patients in Bihar, India. American Journal of Tropical Medicine and Hygiene, 2022, , .	1.4	0
858	Shifting Macrophage Phenotypes in Leishmaniasis., 0,,.		O
859	In Vitro Antiparasitic Activities of Monovalent Ionophore Compounds for Human and Canine Leishmaniases. Animals, 2022, 12, 2337.	2.3	1
860	A Novel Role of Secretory Cytosolic Tryparedoxin Peroxidase in Delaying Apoptosis of <i>Leishmania</i> hi>-Infected Macrophages. Molecular and Cellular Biology, 2022, 42, .	2.3	1
861	Endoplasmic Stress Affects the Coinfection of Leishmania Amazonensis and the Phlebovirus (Bunyaviridae) Icoaraci. Viruses, 2022, 14, 1948.	3.3	1
862	Novel CRISPR-based detection of Leishmania species. Frontiers in Microbiology, 0, 13, .	3.5	10
863	Aspectos gerais da Leishmaniose Visceral em humanos e cães. Conjeturas, 2022, 22, 844-857.	0.0	0
864	Visceral Leishmaniasis: Epidemiology, Diagnosis, and Treatment Regimens in Different Geographical Areas with a Focus on Pediatrics. Microorganisms, 2022, 10, 1887.	3.6	30
865	Liposomal drug delivery systems for the treatment of leishmaniasis. Parasitology Research, 2022, 121, 3073-3082.	1.6	12
866	Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Neglected Tropical Diseases, 2022, 16, e0010779.	3.0	16
867	Recent approaches in nanocarrierâ€based therapies for neglected tropical diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	11
868	Direct In Vitro Comparison of the Anti-Leishmanial Activity of Different Olive Oil Total Polyphenolic Fractions and Assessment of Their Combined Effects with Miltefosine. Molecules, 2022, 27, 6176.	3.8	1
869	HIV and Mediterranean Zoonoses: A Review of the Literature. Infectious Disease Reports, 2022, 14, 694-709.	3.1	3
870	Meglumine antimoniate was associated with a higher cure rate than liposomal amphotericin B in the treatment of American tegumentary leishmaniasis: A retrospective cohort study from a Leishmania braziliensis-endemic area. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3
871	Integral Role of Water in the Solid-State Behavior of the Antileishmanial Drug Miltefosine. Crystal Growth and Design, 2022, 22, 6262-6266.	3.0	2
872	Thymus, undernutrition, and infection: Approaching cellular and molecular interactions. Frontiers in Nutrition, $0, 9, .$	3.7	9

#	Article	IF	CITATIONS
873	Development of an Indirect Fluorescent Antibody (IFA) Assay for the Detection of Leishmania RNA Virus 2 (LRV2) in Leishmania Parasites. Iranian Journal of Parasitology, 0, , .	0.6	0
874	Cutaneous Leishmaniasis: A 2022 Updated Narrative Review into Diagnosis and Management Developments. American Journal of Clinical Dermatology, 2022, 23, 823-840.	6.7	34
875	Genome deletions to overcome the directed loss of gene function in Leishmania. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	2
876	Revisiting Leishmania GP63 host cell targets reveals a limited spectrum of substrates. PLoS Pathogens, 2022, 18, e1010640.	4.7	8
877	Cholesterol improves stability of amphotericin B nanoemulsion: promising use in the treatment of cutaneous leishmaniasis. Nanomedicine, 2022, 17, 1237-1251.	3.3	2
878	Leishmania major Strain-Dependent Macrophage Activation Contributes to Pathogenicity in the Absence of Lymphocytes. Microbiology Spectrum, 0, , .	3.0	4
879	G-Quadruplex DNAzyme-Substrated CRISPR/Cas12 Assay for Label-Free Detection of Single-Celled Parasitic Infection. ACS Sensors, 2022, 7, 2968-2977.	7.8	9
880	New multifunctional Ru(II) organometallic compounds show activity against Trypanosoma brucei and Leishmania infantum. Journal of Inorganic Biochemistry, 2022, 237, 112016.	3.5	5
881	Leishmaniasis epidemiology in endemic areas of metropolitan France and its overseas territories from 1998 to 2020. PLoS Neglected Tropical Diseases, 2022, 16, e0010745.	3.0	5
882	1-jÄ h riges MÄdchen mit BlÄsse und ausladendem Abdomen. , 2022, , 241-245.		0
883	Potenciais aplicações medicinais de compostos 1,2,3-triazólicos: uma revisão. HU Revista, 0, 48, 1-15.	0.3	3
884	Detection of Leishmania (Mundinia) macropodum (Kinetoplastida: Trypanosomatidae) and heterologous Leishmania species antibodies among blood donors in a region of Australia with marsupial Leishmania endemicity. International Journal of Infectious Diseases, 2023, 130, 42-47.	3.3	0
885	Spatiotemporal Distribution of Leishmaniasis in an Endemic Area of Northeast Brazil: Implications for Intervention Actions. Journal of Medical Entomology, 0, , .	1.8	0
886	Parasite Genotype Is a Major Predictor of Mortality from Visceral Leishmaniasis. MBio, 2022, 13, .	4.1	3
887	Linear and conformational determinants of visceral leishmaniasis diagnostic antigens rK28 and rK39. Parasites and Vectors, 2022, 15, .	2.5	0
888	Cutaneous/Mucocutaneous Leishmaniasis Treatment for Wound Healing: Classical versus New Treatment Approaches. Microbiology Research, 2022, 13, 836-852.	1.9	2
889	The Effect of BTK Inhibitor Ibrutinib on Leishmania infantum Infection In Vitro. Acta Parasitologica, 0, ,	1.1	0
890	Chemical Constituents from Uapaca guineensis (Phyllanthaceae), and the Computational Validation of Their Antileishmanial and Anti-inflammatory Potencies. Journal of Chemistry, 2022, 2022, 1-21.	1.9	4

#	Article	IF	CITATIONS
891	Livestock and rodents within an endemic focus of Visceral Leishmaniasis are not reservoir hosts for Leishmania donovani. PLoS Neglected Tropical Diseases, 2022, 16, e0010347.	3.0	3
892	Visceral leishmaniasis (kala-azar) caused by <i>L. mexicana</i> in a patient with AIDS. Baylor University Medical Center Proceedings, 0, , 1-3.	0.5	0
893	HAS 1: A natural product from soil-isolated Streptomyces species with potent activity against cutaneous leishmaniasis caused by Leishmania tropica. Frontiers in Pharmacology, $0,13,1$	3.5	2
894	Efficacy of Mesenchymal Stem Cells Therapy in Parasitic Infections: Are Anti-parasitic Drugs Combined with MSCs More Effective?. Acta Parasitologica, 2022, 67, 1487-1499.	1.1	2
895	Spatio-Temporal Pattern and Meteo-Climatic Determinants of Visceral Leishmaniasis in Italy. Tropical Medicine and Infectious Disease, 2022, 7, 337.	2.3	10
896	Osmotic gradient ektacytometry: A tool for more than just hereditary haemolytic anaemia. International Journal of Laboratory Hematology, 2023, 45, .	1.3	0
898	Bioanalytical methods for pharmacokinetic studies of antileishmanial drugs. Biomedical Chromatography, 0, , .	1.7	0
899	Comparison between Colorimetric In Situ Hybridization, Histopathology, and Immunohistochemistry for the Diagnosis of New World Cutaneous Leishmaniasis in Human Skin Samples. Tropical Medicine and Infectious Disease, 2022, 7, 344.	2.3	2
900	Sequencing of hsp70 for discernment of species from the Leishmania (Viannia) guyanensis complex from endemic areas in Colombia. Parasites and Vectors, 2022, 15, .	2.5	2
901	Unveiling a New Selenocyanate as a Multitarget Candidate with Anticancer, Antileishmanial and Antibacterial Potential. Molecules, 2022, 27, 7477.	3.8	7
902	Draft Genome Sequence of the Protozoan Parasite Leishmania braziliensis Strain BA788, Isolated from a Clinical Case in Bahia State, Brazil. Microbiology Resource Announcements, 0, , .	0.6	0
903	Identification of 1,2,3-triazolium salt-based inhibitors of Leishmania infantum trypanothione disulfide reductase with enhanced antileishmanial potency in cellulo and increased selectivity. European Journal of Medicinal Chemistry, 2022, 244, 114878.	5.5	4
904	Asian Ancistrocladus Lianas as Creative Producers of Naphthylisoquinoline Alkaloids. Progress in the Chemistry of Organic Natural Products, 2023, , 1-335.	1.1	3
905	Laboratory diagnostics for human Leishmania infections: a polymerase chain reaction-focussed review of detection and identification methods. Parasites and Vectors, 2022, 15, .	2.5	8
906	Current Status on 1,4-Dihydropyridine Derivatives against Human Pathogenic Parasites. Current Medicinal Chemistry, 2023, 30, 1689-1711.	2.4	2
907	Case Report: Autochthonous Disseminated Cutaneous, Mucocutaneous, and Visceral Leishmaniasis Caused by Leishmania martiniquensis in a Patient with HIV/AIDS from Northern Thailand and Literature Review. American Journal of Tropical Medicine and Hygiene, 2022, 107, 1196-1202.	1.4	8
908	Case Report: Visceral Leishmaniasis-associated Hemophagocytic Lymphohistiocytosis in Adults: A Case Series and Literature Review. American Journal of Tropical Medicine and Hygiene, 2022, , .	1.4	1
910	First Evidence of Co-Circulation of Emerging Leishmania martiniquensis, Leishmania orientalis, and Crithidia sp. in Culicoides Biting Midges (Diptera: Ceratopogonidae), the Putative Vectors for Autochthonous Transmission in Southern Thailand. Tropical Medicine and Infectious Disease, 2022, 7, 379.	2.3	8

#	Article	IF	CITATIONS
911	Three types of Leishmania mexicana amastigotes: Proteome comparison by quantitative proteomic analysis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3
912	Mucosal Leishmaniasis of the lip: Report of an Exuberant case in a Young man. Head and Neck Pathology, 2023, 17, 540-545.	2.6	1
913	A curious case of pancytopenia and fever in a patient with Erdheim–Chester disease. Internal and Emergency Medicine, 0, , .	2.0	0
914	Leishmania Species (Leishmaniasis). , 2023, , 1354-1364.e4.		1
915	Travel and Risk of Infections. , 2022, , 49-65.		0
916	Timeline and Infectious Disease Evaluation of Candidates to New Therapies. , 2022, , 17-24.		0
917	Design and synthesis of novel halogen rich salicylanilides as potential antileishmanial agents. European Journal of Medicinal Chemistry, 2023, 246, 114996.	5.5	5
918	New antileishmanial quinoline linked isatin derivatives targeting DHFR-TS and PTR1: Design, synthesis, and molecular modeling studies. European Journal of Medicinal Chemistry, 2023, 246, 114959.	5.5	8
919	Insights into the drug screening approaches in leishmaniasis. International Immunopharmacology, 2023, 114, 109591.	3.8	9
920	First evidence of a serine arginine protein kinase (SRPK) in leishmania braziliensis and its potential as therapeutic target. Acta Tropica, 2023, 238, 106801.	2.0	1
921	Dataset of dual RNA-seq mapping in visceral leishmaniasis: Inquiry on parasite transcripts in human blood transcriptome upon Leishmania infantum infection. Data in Brief, 2023, 46, 108811.	1.0	0
922	Co-occurrence of mucosal leishmaniasis caused by Leishmania infantum and mucosal-associated lymphoid tissue lymphoma. Travel Medicine and Infectious Disease, 2023, 52, 102519.	3.0	1
923	Infiltración de médula ósea por leishmania spp. en paciente con mieloma múltiple. Revista De Medicina De Laboratorio, 2022, , .	0.0	0
924	Organic Light-Emitting Diodes as Wearable Light Sources for Antiparasitic Photodynamic Therapy. , 2022, , .		0
925	Applications of MALDI-TOF Mass Spectrometry to the Identification of Parasites and Arthropod Vectors of Human Diseases. Microorganisms, 2022, 10, 2300.	3.6	4
926	Case Report: Simple Nodular Cutaneous Leishmaniasis Caused by Autochthonous Leishmania (Mundinia) orientalis in an 18-Month-Old Girl: The First Pediatric Case in Thailand and Literature Review. American Journal of Tropical Medicine and Hygiene, 2023, 108, 44-50.	1.4	3
927	Investigating the Leishmania donovaniÂsacp Gene and Its Role in Macrophage Infection and Survival in Mice. Tropical Medicine and Infectious Disease, 2022, 7, 384.	2.3	2
928	Molecular Detection of Neglected Tropical Diseases: The Case for Automated Near–Point-of-Care Diagnosis of Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2022, , .	1.4	0

#	Article	IF	CITATIONS
929	Prevalence of visceral leishmaniasis among people with HIV: a systematic review and meta-analysis. European Journal of Clinical Microbiology and Infectious Diseases, 2023, 42, 1-12.	2.9	7
930	Use of N-acetylcysteine as treatment adjuvant regulates immune response in visceral leishmaniasis: Pilot clinical trial and in vitro experiments. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	1
931	Leishmania spp. in indigenous populations: A mini-review. Frontiers in Public Health, 0, 10, .	2.7	2
932	Establishment of an indicator framework for the transmission risk of the mountain-type zoonotic visceral leishmaniasis based on the Delphi-entropy weight method. Infectious Diseases of Poverty, 2022, 11, .	3.7	6
933	Review of the Clinical Presentation, Pathology, Diagnosis, and Treatment of Leishmaniasis. Laboratory Medicine, 2023, 54, 363-371.	1.2	13
934	Quinolinyl \hat{l}^2 -enaminone derivatives exhibit leishmanicidal activity against <i>Leishmania donovani</i> by impairing the mitochondrial electron transport chain complex and inducing ROS-mediated programmed cell death. Journal of Antimicrobial Chemotherapy, 0, , .	3.0	2
935	Crystal structure of Leishmania donovani glucose 6-phosphate dehydrogenase reveals a unique N-terminal domain. Communications Biology, 2022, 5, .	4.4	2
936	A systematic review and global analysis of the seasonal activity of Phlebotomus (Paraphlebotomus) sergenti, the primary vectors of L. tropica. PLoS Neglected Tropical Diseases, 2022, 16, e0010886.	3.0	3
937	Chapter 13: Sand fly sex/aggregation pheromones. , 2022, , 349-371.		3
938	Polylactide Nanoparticles as a Biodegradable Vaccine Adjuvant: A Study on Safety, Protective Immunity and Efficacy against Human Leishmaniasis Caused by Leishmania Major. Molecules, 2022, 27, 8677.	3.8	3
939	Detecting Leishmania in dogs: A hierarchical-modeling approach to investigate the performance of parasitological and qPCR-based diagnostic procedures. PLoS Neglected Tropical Diseases, 2022, 16, e0011011.	3.0	0
940	Towards further understanding the structural insights of isoxazoles analogues against leishmaniasis using QSAR, molecular docking and molecular dynamics model. Journal of the Indian Chemical Society, 2023, 100, 100847.	2.8	2
941	Leishmania infantum infection does not affect the main composition of the intestinal microbiome of the Syrian hamster. Parasites and Vectors, 2022, 15, .	2.5	1
942	Centrin-deficient Leishmania mexicana confers protection against Old World visceral leishmaniasis. Npj Vaccines, 2022, 7, .	6.0	9
943	Miltefosine and Nifuratel Combination: A Promising Therapy for the Treatment of Leishmania donovani Visceral Leishmaniasis. International Journal of Molecular Sciences, 2023, 24, 1635.	4.1	6
944	Infections and Cardiovascular Disease. Journal of the American College of Cardiology, 2023, 81, 71-80.	2.8	9
945	In vitro anti-Leishmania activity of triclabendazole and its synergic effect with amphotericin B. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	2
946	Comparative transcriptomic analysis of long noncoding RNAs in Leishmania-infected human macrophages. Frontiers in Genetics, 0, 13, .	2.3	2

#	ARTICLE	IF	Citations
947	Imidazolium salts as an alternative for anti-Leishmania drugs: Oxidative and immunomodulatory activities. Frontiers in Immunology, $0,13,.$	4.8	3
948	Does infection with Leishmania protect against Covid-19?. Immunology Letters, 2023, 253, 28-29.	2.5	0
949	Genetic Iron Overload Hampers Development of Cutaneous Leishmaniasis in Mice. International Journal of Molecular Sciences, 2023, 24, 1669.	4.1	2
950	Targeting trypanosomes: how chemogenomics and artificial intelligence can guide drug discovery. Biochemical Society Transactions, 2023, 51, 195-206.	3.4	2
951	Comparative Proteomics and Genome-Wide Druggability Analyses Prioritized Promising Therapeutic Targets against Drug-Resistant Leishmania tropica. Microorganisms, 2023, 11, 228.	3.6	3
953	Co-delivery of trifluralin and miltefosin with enhanced skin penetration and localization in <i>Leishmania</i> affected macrophages. Journal of Dispersion Science and Technology, 2024, 45, 355-367.	2.4	0
954	Exploring the repositioning of the amodiaquine as potential drug against visceral leishmaniasis: The in vitro effect against Leishmania infantum is associated with multiple mechanisms, involving mitochondria dysfunction, oxidative stress and loss of cell cycle control. Chemico-Biological Interactions, 2023, 371, 110333.	4.0	O
955	Asymptomatic Leishmania infection in humans: A systematic review. Journal of Infection and Public Health, 2023, 16, 286-294.	4.1	3
956	In vitro miltefosine and amphotericin B susceptibility of strains and clinical isolates of Leishmania species endemic in Brazil that cause tegumentary leishmaniasis. Experimental Parasitology, 2023, 246, 108462.	1.2	3
957	In Vitro Leishmanicidal Activity of Different Chalcone, Phthalonitrile and Their Peripheral Tetra Zinc Phthalocyanine Derivatives. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2022, 15, 802-818.	0.2	O
958	Lethal action of Licarin A derivatives in Leishmania (L.) infantum: Imbalance of calcium and bioenergetic metabolism. Biochimie, 2022, , .	2.6	1
959	Liposomal Amphotericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes to the Design of Effective Topical and Oral Formulations. Pharmaceutics, 2023, 15, 99.	4.5	13
960	Immunoinformatics Approach to Design a Multi-Epitope Nanovaccine against Leishmania Parasite: Elicitation of Cellular Immune Responses. Vaccines, 2023, 11, 304.	4.4	6
961	Infection and Immunity. , 2023, , 493-598.		1
962	Life in plastic, it's fantastic! How Leishmania exploit genome instability to shape gene expression. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	4
963	Comparison of Sampling Procedures for the Molecular Diagnosis of Leishmaniases. American Journal of Tropical Medicine and Hygiene, 2023, , .	1.4	0
964	Intertwining of Retinoic Acid and Cholesterol Pathway and its Consequences in Leishmania donovani-Infected Macrophages., 2023,, 19-43.		0
965	Nanoparticle-based approach toward leishmaniasis treatment. , 2023, , 449-465.		1

#	ARTICLE	IF	CITATIONS
966	Computer-aided drug design approaches applied toÂscreen natural product's structural analogs targeting arginase in Leishmania spp. F1000Research, 0, 12, 93.	1.6	0
967	Cytotoxic and Antileishmanial Effects of the Monoterpene \hat{I}^2 -Ocimene. Pharmaceuticals, 2023, 16, 183.	3.8	10
968	Dermatologische Infektionen. , 2023, , 41-67.		0
969	Malaria and leishmaniasis: Updates on co-infection. Frontiers in Immunology, 0, 14, .	4.8	10
970	Does immune dysregulation contribute towards development of hypopigmentation in Indian post kalaâ€azar dermal leishmaniasis?. Experimental Dermatology, 2023, 32, 740-751.	2.9	1
971	Câ°'H Functionalized Molecules: Synthesis, Reaction Mechanism, and Biological Activity. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	1
972	Alpha-galactosylceramide as adjuvant induces protective cell-mediated immunity against Leishmania mexicana infection in vaccinated BALB/c mice. Cellular Immunology, 2023, 386, 104692.	3.0	0
973	A short-term method to evaluate anti-leishmania drugs by inhibition of stage differentiation in Leishmania mexicana using flow cytometry. Experimental Parasitology, 2023, 249, 108519.	1.2	0
974	Structural design, synthesis, and anti-Trypanosomatidae profile of new Pyridyl-thiazolidinones. European Journal of Medicinal Chemistry, 2023, 254, 115310.	5.5	1
975	TLR9 agonist CpG ODN 2395 promotes the immune response against Leishmania donovani in obesity and undernutrition mice. Acta Tropica, 2023, 242, 106921.	2.0	2
976	Cutaneous Leishmaniasis Lesion on the Ear from Kashan, Central Iran: A Case Report. Iranian Journal of Parasitology, 0, , .	0.6	0
977	New immunodiagnostic methods for human tegumentary leishmaniasis in the last 10 years: Technological prospecting. Acta Tropica, 2023, 242, 106903.	2.0	1
979	Membraneâ€acting biomimetic peptoids against visceral leishmaniasis. FEBS Open Bio, 2023, 13, 519-531.	2.3	5
980	Leishmania tarentolae: a vaccine platform to target dendritic cells and a surrogate pathogen for next generation vaccine research in leishmaniases and viral infections. Parasites and Vectors, 2023, 16, .	2.5	6
981	Role of Treg, Breg and other cytokine sets in host protection and immunopathology during human leishmaniasis: Are they potential valuable markers in clinical settings and vaccine evaluation?. Acta Tropica, 2023, 240, 106849.	2.0	5
982	6-Chloro-3-nitro-2-[(phenylsulfonyl)methyl]imidazo[1,2-b]pyridazine. MolBank, 2023, 2023, M1573.	0.5	0
983	Biological Activities of Morita-Baylis-Hillman Adducts (MBHA). Mini-Reviews in Medicinal Chemistry, 2023, 23, 1691-1710.	2.4	2
984	The paradigm of intracellular parasite survival and drug resistance in leishmanial parasite through genome plasticity and epigenetics: Perception and future perspective. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	0

#	Article	IF	CITATIONS
985	Immunoproteomics and phage display in the context of leishmaniasis complexity. Frontiers in Immunology, 0, 14, .	4.8	1
986	Interleukin 6 and interferon gamma haplotypes are related to cytokine serum levels in dogs in an endemic Leishmania infantum region. Infectious Diseases of Poverty, 2023, 12, .	3.7	1
987	Exploring drug repositioning for leishmaniasis treatment: Ivermectin plus polymeric micelles induce immunological response and protection against tegumentary leishmaniasis. Cytokine, 2023, 164, 156143.	3.2	4
988	Label-Free Mass Spectrometry Proteomics Reveals Different Pathways Modulated in THP-1 Cells Infected with Therapeutic Failure and Drug Resistance <i>Leishmania infantum</i> Clinical Isolates. ACS Infectious Diseases, 2023, 9, 470-485.	3.8	O
989	A Systematic Review of Drug-Carrying Nanosystems Used in the Treatment of Leishmaniasis. ACS Infectious Diseases, 2023, 9, 423-449.	3.8	3
991	Leishmanicidal Activity of Guanidine Derivatives against Leishmania infantum. Tropical Medicine and Infectious Disease, 2023, 8, 141.	2.3	4
992	Description, Biology, and Medical Significance of Leishmania (Mundinia) Chancei n. sp. (Kinetoplastea:) Tj ETQq0	0 0 rgBT / 0.7	Overlock 10 7
993	A Sero-Epidemiological Study on Visceral Leishmaniasis among Volunteer Children and Adults in Rural Areas of Shahroud, Iran 2018–2019. Iranian Journal of Arthropod-borne Diseases, 0, , .	0.8	0
995	Recombinant protein KR95 as an alternative for serological diagnosis of human visceral leishmaniasis in the Americas. PLoS ONE, 2023, 18, e0282483.	2.5	1
996	Chromosome-Scale Assembly of the Complete Genome Sequence of Leishmania (Mundinia) procaviensis Isolate 253, Strain LV425. Microbiology Resource Announcements, 2023, 12, .	0.6	O
998	Cutaneous leishmaniasis by a needlestick injury, an occupational infection?. PLoS Neglected Tropical Diseases, 2023, 17, e0011150.	3.0	3
999	Complex cutaneous leishmaniasis in pregnancy. American Journal of Obstetrics and Gynecology, 2023, 229, 337-339.	1.3	O
1000	Constituents of the Stem Bark of Symphonia globulifera Linn. f. with Antileishmanial and Antibacterial Activities. Molecules, 2023, 28, 2473.	3.8	1
1001	30th Annual GP2A Medicinal Chemistry Conference. Pharmaceuticals, 2023, 16, 432.	3.8	0
1002	Cutaneous leishmaniasis in a newly established treatment centre in the Lay Gayint district, Northwest Ethiopia. Skin Health and Disease, 0 , , .	1.5	1
1003	The Bioactivity of Xylene, Pyridine, and Pyrazole Aza Macrocycles against Three Representative Leishmania Species. Pharmaceutics, 2023, 15, 992.	4.5	1
1004	Selective whole-genome amplification reveals population genetics of Leishmania braziliensis directly from patient skin biopsies. PLoS Pathogens, 2023, 19, e1011230.	4.7	2
1005	Impavido attenuates inflammation, reduces atherosclerosis, and alters gut microbiota in hyperlipidemic mice. IScience, 2023, 26, 106453.	4.1	2

#	Article	IF	CITATIONS
1006	Vaccines for Canine Leishmaniasis. , 2023, , 281-306.		0
1007	Visceral and Tegumentary Leishmaniasis. , 2023, , 235-261.		O
1008	Blood parasite load by qPCR as therapeutic monitoring in visceral leishmaniasis patients in Brazil: a case series study. Revista Da Sociedade Brasileira De Medicina Tropical, 0, 56, .	0.9	1
1009	Leishmaniasis Epidemiology and Psychosocial Aspect., 0, , .		1
1010	A difficult to treat Leishmania infantum relapse after allogeneic stem cell transplantation. IDCases, 2023, 32, e01753.	0.9	0
1011	6-Chloro-3-nitro-8-(phenylthio)-2-[(phenylthio)methyl] imidazo[1,2-a]pyridine. MolBank, 2023, 2023, M1613.	0.5	0
1012	Zinc(II)-Sterol Hydrazone Complex as a Potent Anti-Leishmania Agent: Synthesis, Characterization, and Insight into Its Mechanism of Antiparasitic Action. Pharmaceutics, 2023, 15, 1113.	4. 5	1
1013	Parasitic and Protozoal Infections. , 2023, , 339-360.		O
1014	A Nonhealing Ulcerating Lip Lesion. Journal of Pediatrics, 2023, 262, 113397.	1.8	0
1015	Arthropod vectors of disease agents: Their role in public and veterinary health in Turkiye and their control measures. Acta Tropica, 2023, 243, 106893.	2.0	8
1016	Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates. Biomolecules, 2023, 13, 637.	4.0	4
1017	A systematic review of peptide-based serological tests for the diagnosis of leishmaniasis. Parasite, 2023, 30, 10.	2.0	1
1018	Molecular Diagnosis of Leishmaniasis in Spain: Development and Validation of Ready-To-Use Gel-Form Nested and Real-Time PCRs To Detect <i>Leishmania</i>	3.0	1
1019	Cutaneous leishmaniasis: an underdiagnosed entity in the first contact. International Journal of Research in Dermatology, 0, , .	0.1	O
1020	In Vitro Evaluation of Aerosol Therapy with Pentamidine-Loaded Liposomes Coated with Chondroitin Sulfate or Heparin for the Treatment of Leishmaniasis. Pharmaceutics, 2023, 15, 1163.	4.5	2
1021	Unawareness About Vector-Borne Diseases Among Citizens as a Health Risk Consequence of Climate Change—A Case Study on Leishmaniosis in Northwest Portugal. Climate Change Management, 2023, , 197-208.	0.8	2
1022	Photodynamic therapy mediated by a red LED and methylene blue inactivates resistant Leishmania amazonensis. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 0, , .	1.5	0
1023	Clinicopathological characteristics of cutaneous and mucocutaneous leishmaniasis in patients treated with TNFâ€Î± inhibitors. JDDG - Journal of the German Society of Dermatology, 2023, 21, 473-480.	0.8	2

#	Article	IF	Citations
1024	A QSAR Study for Antileishmanial 2-Phenyl-2,3-dihydrobenzofurans â€. Molecules, 2023, 28, 3399.	3.8	1
1025	Nanoemulsions for increased penetrability and sustained release of leishmanicidal compounds. Archiv Der Pharmazie, 0, , .	4.1	0
1026	Using pentamidine to treat cutaneous leishmaniasis in children: a 10-year study in French Guiana. Clinical and Experimental Dermatology, 2023, 48, 913-915.	1.3	1
1027	Evaluation of Recombinase Polymerase Amplification assay for monitoring parasite load in patients with kala-azar and post kala-azar dermal leishmaniasis. PLoS Neglected Tropical Diseases, 2023, 17, e0011231.	3.0	2
1028	Expression analysis of DHFR and PTR1 genes in Leishmania major exposed to olive leaf extract. South African Journal of Botany, 2023, 157, 520-524.	2.5	0
1029	Analysis of Global Leishmaniasis Burden Trends Based on GBD Data. Advances in Clinical Medicine, 2023, 13, 6091-6098.	0.0	0
1030	Unlocking the potential of snake venom-based molecules against the malaria, Chagas disease, and leishmaniasis triad. International Journal of Biological Macromolecules, 2023, 242, 124745.	7.5	2
1031	Cysteine synthase: multiple structures of a key enzyme in cysteine synthesis and a potential drug target for Chagas disease and leishmaniasis. Acta Crystallographica Section D: Structural Biology, 2023, 79, 518-530.	2.3	2
1032	Ferroptosis Is a Potential Therapeutic Target for Pulmonary Infectious Diseases. Cellular Microbiology, 2023, 2023, 1-14.	2.1	0
1033	Senescent T cells: Beneficial and detrimental roles. Immunological Reviews, 2023, 316, 160-175.	6.0	9
1034	Gene Expression Profiling of Classically Activated Macrophages in Leishmania infantum Infection: Response to Metabolic Pre-Stimulus with Itaconic Acid. Tropical Medicine and Infectious Disease, 2023, 8, 264.	2.3	1
1035	Design and synthesis of N-acyl and dimeric N-Arylpiperazine derivatives as potential antileishmanial agents. Bioorganic Chemistry, 2023, 137, 106593.	4.1	1
1036	High Selectivity of 8-Hydroxyquinoline on Leishmania (Leishmania) and Leishmania (Viannia) Species Correlates with a Potent Therapeutic Activity In Vivo. Pharmaceuticals, 2023, 16, 707.	3.8	2
1037	Molecular-level strategic goals and repressors in Leishmaniasis – Integrated data to accelerate target-based heterocyclic scaffolds. European Journal of Medicinal Chemistry, 2023, 257, 115471.	5.5	4
1038	Targeting the nucleotide metabolism of <i>Trypanosoma brucei</i> and other trypanosomatids. FEMS Microbiology Reviews, 2023, 47, .	8.6	8
1039	Biochemical characterization and assessment of leishmanicidal effects of a new L-amino acid oxidase from Crotalus durissus collilineatus snake venom (CollinLA AO-I). Toxicon, 2023, 230, 107156.	1.6	1
1040	Formation and three-dimensional architecture of Leishmania adhesion in the sand fly vector. ELife, 0, 12 , .	6.0	10
1041	Recent Advances in Chemotherapeutics for Leishmaniasis: Importance of the Cellular Biochemistry of the Parasite and Its Molecular Interaction with the Host. Pathogens, 2023, 12, 706.	2.8	5

#	Article	IF	CITATIONS
1042	Leishmania Animal Models Used in Drug Discovery: A Systematic Review. Animals, 2023, 13, 1650.	2.3	3
1043	Efficacy of oleylphosphocholine in experimental cutaneous leishmaniasis. Journal of Antimicrobial Chemotherapy, 0, , .	3.0	0
1044	Both the Infection Status and Inflammatory Microenvironment Induce Transcriptional Remodeling in Macrophages in Murine Leishmanial Lesions. Journal of Parasitology, 2023, 109, .	0.7	0
1045	Overexpression of Leishmania major protein arginine methyltransferase 6 reduces parasite infectivity in vivo. Acta Tropica, 2023, 244, 106959.	2.0	0
1047	First reported case of leishmaniasis in a cat in Trinidad and Tobago. Veterinary Parasitology: Regional Studies and Reports, 2023, 42, 100896.	0.5	0
1048	What else in times of COVID-19? The role of minimally invasive autopsy for the differential diagnosis of acute respiratory failure in a case of kala-azar. Revista Do Instituto De Medicina Tropical De Sao Paulo, 0, 65, .	1.1	O
1049	Discovery, SAR and mechanistic studies of quinazolinone-based acetamide derivatives in experimental visceral leishmaniasis. European Journal of Medicinal Chemistry, 2023, 257, 115524.	5.5	1
1050	Total serum N-glycans mark visceral leishmaniasis in human infections with Leishmania infantum. IScience, 2023, , 107021.	4.1	0
1051	Temporal patterns, spatial risks, and characteristics of tegumentary leishmaniasis in Brazil in the first twenty years of the 21st Century. PLoS Neglected Tropical Diseases, 2023, 17, e0011405.	3.0	2
1052	First molecular description of autochthonous urban cases of canine visceral leishmaniasis in the city of BelÃ $@$ m, ParÃ $_{i}$, Brazil. Brazilian Journal of Biology, 0, 83, .	0.9	0
1053	Co-expression analysis of lncRNA and mRNA suggests a role for ncRNA-mediated regulation of host-parasite interactions in primary skin lesions of patients with American tegumentary leishmaniasis. Acta Tropica, 2023, 245, 106966.	2.0	1
1054	Cysteinyl-leukotrienes promote cutaneous Leishmaniasis control. Frontiers in Cellular and Infection Microbiology, $0,13,.$	3.9	0
1055	Neglected Diseases in Developing Countries I., 2023, , 1-28.		0
1056	Efficacy of an Immunotherapy Combining Immunogenic Chimeric Protein Plus Adjuvant and Amphotericin B against Murine Visceral Leishmaniasis. Biology, 2023, 12, 851.	2.8	0
1057	Hypercalcemia during initiation of antiretroviral therapy in human immunodeficiency virus and Leishmania coinfection: A case report. Medicine (United States), 2023, 102, e33848.	1.0	0
1058	Effect of 3-Carene and the Micellar Formulation on Leishmania (Leishmania) amazonensis. Tropical Medicine and Infectious Disease, 2023, 8, 324.	2.3	1
1059	Time series analysis of cutaneous leishmaniasis incidence in Shahroud based on ARIMA model. BMC Public Health, 2023, 23, .	2.9	2
1060	Leishmaniose Visceral em Doente Imunocompetente: Relato de um Caso. Acta Medica Portuguesa, 0, , .	0.4	1

#	Article	IF	CITATIONS
1061	Bayesian multivariate longitudinal model for immune responses to <i>Leishmania</i> : A tickâ€borne coâ€infection study. Statistics in Medicine, 2023, 42, 3860-3876.	1.6	0
1062	In vitro screening of natural product-based compounds for leishmanicidal activity. Journal of Parasitic Diseases, 0, , .	1.0	0
1063	Cyanotriazoles are selective topoisomerase II poisons that rapidly cure trypanosome infections. Science, 2023, 380, 1349-1356.	12.6	9
1064	In Vivo Antileishmanial Effect of 3,5-Diaryl-isoxazole Analogues Based on Veraguensin, Grandisin, and Machilin G: A Glance at a Preclinical Study. ACS Infectious Diseases, 2023, 9, 1150-1159.	3.8	2
1065	Cutaneous Leishmaniasis in a Non-endemic Area in Mexico. Cureus, 2023, , .	0.5	0
1066	Synthesis and biological evaluation of 9-aryl-1,8-dioxo-octahydroxanthene derivatives as antileishmanial agents. Results in Chemistry, 2023, 5, 100943.	2.0	0
1067	Synergistic Antileishmanial Effect of Oregano Essential Oil and Silver Nanoparticles: Mechanisms of Action on Leishmania amazonensis. Pathogens, 2023, 12, 660.	2.8	2
1068	Deciphering Divergent Trypanosomatid Nuclear Complexes by Analyzing Interactomic Datasets with AlphaFold2 and Genetic Approaches. ACS Infectious Diseases, 2023, 9, 1267-1282.	3.8	1
1069	The stigma associated with cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (MCL): A protocol for a systematic review. PLoS ONE, 2023, 18, e0285663.	2.5	5
1070	Structure of Leishmania donovani 6-Phosphogluconate Dehydrogenase and Inhibition by Phosphine Gold(I) Complexes: A Potential Approach to Leishmaniasis Treatment. International Journal of Molecular Sciences, 2023, 24, 8615.	4.1	2
1071	Klinischâ€pathologische Eigenschaften kutaner und mukokutaner Leishmaniose bei mit TNFâ€Î±â€Inhibitoren behandelten Patienten. JDDG - Journal of the German Society of Dermatology, 2023, 21, 473-481.	0.8	0
1072	Which trial do we need? A collaborative platform trial for cutaneous leishmaniasis amongst international travellers. Clinical Microbiology and Infection, 2023, 29, 1237-1240.	6.0	0
1073	Molecular phylogeny of Psychodopygina (Diptera, Psychodidae) supporting morphological systematics of this group of vectors of New World tegumentary leishmaniasis. Parasite, 2023, 30, 18.	2.0	0
1074	Computer-aided drug design approaches applied toÂscreen natural product's structural analogs targeting arginase in Leishmania spp. F1000Research, 0, 12, 93.	1.6	4
1075	Antileishmanial activity of tetra-cationic porphyrins with peripheral Pt(II) and Pd(II) complexes mediated by photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2023, 42, 103641.	2.6	1
1076	Effect of Local Administration of Meglumine Antimoniate and Polyhexamethylene Biguanide Alone or in Combination with a Toll-like Receptor 4 Agonist for the Treatment of Papular Dermatitis due to Leishmania infantum in Dogs. Pathogens, 2023, 12, 821.	2.8	1
1077	Visceral Leishmaniasis Caused by Leishmania Tropica. Acta Parasitologica, 2023, 68, 699-704.	1.1	2
1078	Leishmania donovani visceral leishmaniasis diagnosed by metagenomics next-generation sequencing in an infant with acute lymphoblastic leukemia: a case report. Frontiers in Public Health, $0,11,.$	2.7	1

#	Article	IF	CITATIONS
1080	Antiprotozoal activity of auranofin on <i>Trypanosoma cruzi, Leishmania tropica</i> and <i>Toxoplasma gondii</i> : in vitro and ex vivo study. Transactions of the Royal Society of Tropical Medicine and Hygiene, $0,$	1.8	0
1081	<i>Leishmania amazonensis</i> infection impairs VLA-4 clustering and adhesion complex assembly at the adhesion site of J774 cells. Pathogens and Disease, 0, , .	2.0	0
1082	Silver(I) and Copper(II) 1,10-Phenanthroline-5,6-dione Complexes as Promising Antivirulence Strategy against Leishmania: Focus on Gp63 (Leishmanolysin). Tropical Medicine and Infectious Disease, 2023, 8, 348.	2.3	1
1083	Leishmania donovani Exploits Tunneling Nanotubes for Dissemination and Propagation of B Cell Activation. Microbiology Spectrum, 0, , .	3.0	0
1084	In Vitro Drug Susceptibility of a Leishmania (Leishmania) infantum Isolate from a Visceral Leishmaniasis Pediatric Patient after Multiple Relapses. Tropical Medicine and Infectious Disease, 2023, 8, 354.	2.3	0
1085	Influence of Testosterone in Neglected Tropical Diseases: Clinical Aspects in Leprosy and In Vitro Experiments in Leishmaniasis. Tropical Medicine and Infectious Disease, 2023, 8, 357.	2.3	0
1086	Computer-aided drug design approaches applied toÂscreen natural product's structural analogs targeting arginase in Leishmania spp. F1000Research, 0, 12, 93.	1.6	0
1087	A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules, 2023, 13, 1130.	4.0	2
1088	The association between rLiHyp1 protein plus adjuvant and amphotericin B is an effective immunotherapy against visceral leishmaniasis in mice. Acta Tropica, 2023, 246, 106986.	2.0	2
1089	Emerging infectious diseases of the skin: a review of clinical and histologic findings. Human Pathology, 2023, 140, 196-213.	2.0	2
1090	Neglected Zoonotic Diseases: Advances in the Development of Cell-Penetrating and Antimicrobial Peptides against Leishmaniosis and Chagas Disease. Pathogens, 2023, 12, 939.	2.8	1
1091	Localized Leishmania major infection disrupts systemic iron homeostasis that can be controlled by oral iron supplementation. Journal of Biological Chemistry, 2023, , 105064.	3.4	1
1092	Proteasome as a Drug Target in Trypanosomatid Diseases. Current Drug Targets, 2023, 24, .	2.1	0
1093	TAK1 Deficiency in Macrophages Increases Host Susceptibility to Leishmania Infection. Infectious Microbes & Diseases, 0, , .	1.3	0
1094	A disfiguring neglected tropical disease sweeps war-torn Yemen: a community-based study of prevalence and risk factors of cutaneous leishmaniasis among rural communities in the western highlands. Transactions of the Royal Society of Tropical Medicine and Hygiene, 0, , .	1.8	0
1095	From Infection to Death: An Overview of the Pathogenesis of Visceral Leishmaniasis. Pathogens, 2023, 12, 969.	2.8	3
1096	Oral immunization with heat-inactivated Mycobacterium bovis reduces local parasite dissemination and hepatic granuloma development in mice infected with Leishmania amazonensis. Research in Veterinary Science, 2023, , 104963.	1.9	1
1098	Clinical and immunological spectra of human cutaneous leishmaniasis in North Africa and French Guiana. Frontiers in Immunology, 0, 14, .	4.8	2

#	Article	IF	CITATIONS
1099	Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection. Tropical Medicine and Infectious Disease, 2023, 8, 384.	2.3	0
1101	Parasitic Protozoa. , 2024, , 1246-1258.		0
1102	Exploring Novel Drug Combinations: The Therapeutic Potential of Selanyl Derivatives for Leishmania Treatment. Molecules, 2023, 28, 5845.	3.8	2
1103	Functionally distinct regions of the locus Leishmania major response 15 control lgE or IFN \hat{I}^3 level in addition to skin lesions. Frontiers in Immunology, 0, 14, .	4.8	0
1104	Host preference and human blood index of <i>Phlebotomus orientalis</i> , an exophilic sand fly vector of visceral leishmaniasis in eastern Sudan. Medical and Veterinary Entomology, 2023, 37, 782-792.	1.5	2
1106	Synthesis of 1,2,3-Triazole-Containing Methoxylated Cinnamides and Their Antileishmanial Activity against the Leishmania braziliensis Species. Pharmaceuticals, 2023, 16, 1113.	3.8	1
1107	Immune dysregulation and inflammation causing hypopigmentation in post kala-azar dermal leishmaniasis: partners in crime?. Trends in Parasitology, 2023, , .	3.3	0
1110	Metabolomics analysis of visceral leishmaniasis based on urine of golden hamsters. Parasites and Vectors, 2023, 16, .	2.5	0
1111	Epidemiology of Visceral Leishmaniasis in India., 0,,.		0
1112	Antimicrobial Peptides (AMP) in the Cell-Free Culture Media of Xenorhabdus budapestensis and X. szentirmaii Exert Anti-Protist Activity against Eukaryotic Vertebrate Pathogens including HistomonasÂmeleagridis and Leishmania donovani Species. Antibiotics, 2023, 12, 1462.	3.7	O
1113	<i>Leishmania</i> LPG interacts with LRR5/LRR6 of macrophage TLR4 for parasite invasion and impairs the macrophage functions. Pathogens and Disease, 2023, 81, .	2.0	0
1114	Systematic Exploration of Functional Group Relevance for Anti-Leishmanial Activity of Anisomycin. Biomedicines, 2023, 11, 2541.	3.2	0
1115	Modulation of Macrophage Redox and Apoptotic Processes to Leishmania infantum during Coinfection with the Tick-Borne Bacteria Borrelia burgdorferi. Pathogens, 2023, 12, 1128.	2.8	0
1116	Mucosal Relapse of Visceral Leishmaniasis in a Child with SARS-CoV-2 Infection. Pathogens, 2023, 12, 1127.	2.8	0
1117	Triose Phosphate Isomerase Structure-Based Virtual Screening and In Vitro Biological Activity of Natural Products as LeishmaniaÂmexicana Inhibitors. Pharmaceutics, 2023, 15, 2046.	4. 5	1
1118	Molecular Docking and Molecular Dynamics Simulations in Related to Leishmania donovani: An Update and Literature Review. Tropical Medicine and Infectious Disease, 2023, 8, 457.	2.3	3
1119	In silico and in vitro potentials of crocin and amphotericin B on Leishmania major: Multiple synergistic mechanisms of actions. PLoS ONE, 2023, 18, e0291322.	2.5	0
1120	Antileishmanial activity of 2-amino-thiophene derivative SB-200. International Immunopharmacology, 2023, 123, 110750.	3.8	2

#	Article	IF	CITATIONS
1121	Field-Deployable Treatments For Leishmaniasis: Intrinsic Challenges, Recent Developments and Next Steps. Research and Reports in Tropical Medicine, 0, Volume 14, 61-85.	1.4	1
1123	Self-application of aminoglycoside-based creams to treat cutaneous leishmaniasis in travelers. PLoS Neglected Tropical Diseases, 2023, 17, e0011492.	3.0	0
1124	New insights in photodynamic inactivation of Leishmania amazonensis: A focus on lipidomics and resistance. PLoS ONE, 2023, 18, e0289492.	2.5	0
1125	Melatonin: A look at protozoal and helminths. Biochimie, 2023, , .	2.6	0
1126	The fluorescenceâ€based competitive counterflow assay developed for organic anion transporting polypeptides <scp>1A2</scp> , <scp>1B1</scp> , <scp>1B3</scp> and <scp>2B1</scp> identifies pentamidine as a selective <scp>OATP1A2</scp> substrate. FASEB Journal, 2023, 37, .	0.5	1
1127	Transcriptome Analysis Identifies the Crosstalk between Dendritic and Natural Killer Cells in Human Cutaneous Leishmaniasis. Microorganisms, 2023, 11, 1937.	3.6	0
1128	Fever of unknown origin and splenomegaly: a case report of visceral leishmaniasis diagnosed by metagenomic next-generation sequencing. Future Microbiology, 2023, 18, 699-705.	2.0	0
1129	Pteridine reductase (PTR1): initial structure-activity relationships studies of potential leishmanicidal arylindole derivatives compounds. SAR and QSAR in Environmental Research, 2023, 34, 661-687.	2.2	0
1130	The status of combination therapy for visceral leishmaniasis: an updated review. Lancet Infectious Diseases, The, 2023, , .	9.1	3
1131	Healing effects of autologous platelet gel and growth factors on cutaneous leishmaniasis wounds in addition to antimony; a self-controlled clinical trial with randomized lesion assignment. BMC Research Notes, 2023, 16, .	1.4	1
1133	Organic and inorganic light-emitting diodes for photodynamic therapy of cutaneous leishmaniasis. Global Journal of Infectious Diseases and Clinical Research, 2023, 9, 025-030.	0.5	0
1134	Pediatrik Kutanöz Leishmania Olgularının Değerlendirilmesi. Osmangazİ Journal of Medicine, 2023, 45, .	0.1	0
1135	Synthesis and Biophysical and Biological Studies of <i>N</i> -Phenylbenzamide Derivatives Targeting Kinetoplastid Parasites. Journal of Medicinal Chemistry, 2023, 66, 13452-13480.	6.4	1
1136	Multi-sensorial perceptions of risk: the aesthetics behind (muco)cutaneous leishmaniasis-related stigma in Ecuador. Anthropology and Medicine, 2023, 30, 362-379.	1.2	0
1137	Vaccine value profile for leishmaniasis. Vaccine, 2023, 41, S153-S175.	3.8	3
1139	Design, synthesis, and biological evaluation of quinoline-piperazine/pyrrolidine derivatives as possible antileishmanial agents. European Journal of Medicinal Chemistry, 2023, 261, 115863.	5.5	1
1140	Tregs tame skin bacteria and IFN-γ–associated pathology. Journal of Experimental Medicine, 2023, 220, .	8.5	0
1141	Molecular diagnosis of visceral leishmaniasis: a French study comparing a reference PCR method targeting kinetoplast DNA and a commercial kit targeting ribosomal DNA. Microbiology Spectrum, 0, , .	3.0	O

#	Article	IF	CITATIONS
1142	Diethyl (5-Benzyl-2-(4-(N′-hydroxycarbamimidoyl)phenyl)-5-methyl-4,5-dihydrofuran-3-yl)phosphonate. MolBank, 2023, 2023, M1736.	0.5	1
1143	Follow-up assessment of visceral leishmaniasis treated patients and the impact of COVID-19 on control services in Nepal. Tropical Medicine and Health, 2023, 51, .	2.8	0
1144	Synthesis and Evaluation of Marine-Inspired Compounds Result in Hybrids with Antitrypanosomal and Antileishmanial Activities. Marine Drugs, 2023, 21, 551.	4.6	0
1145	Leishmania genetic exchange is mediated by IgM natural antibodies. Nature, 0, , .	27.8	2
1146	Prognostic prediction models for clinical outcomes in patients diagnosed with visceral leishmaniasis: protocol for a systematic review. BMJ Open, 2023, 13, e075597.	1.9	0
1147	Bromodomain Factor 5 as a Target for Antileishmanial Drug Discovery. ACS Infectious Diseases, 2023, 9, 2340-2357.	3.8	0
1148	Leishmanial activity of Brazilian brown propolis and its diterpenes. Natural Product Research, 0, , 1-5.	1.8	0
1149	Production of leishmanin skin test antigen from Leishmania donovani for future reintroduction in the field. Nature Communications, 2023, 14, .	12.8	2
1150	Evaluation of Proinflammatory Chemokines in HIV Patients with Asymptomatic Leishmania Infantum Infection. Tropical Medicine and Infectious Disease, 2023, 8, 495.	2.3	1
1152	Therapeutic Potential of Marine-Derived Cyclic Peptides as Antiparasitic Agents. Marine Drugs, 2023, 21, 609.	4.6	0
1153	Geographical and climatic risk factors of cutaneous leishmaniasis in the hyper-endemic focus of Bam County in southeast Iran. Frontiers in Public Health, $0,11,1$	2.7	0
1154	Incidence of Human and Free-Ranging Wild Rodent Infections with Leishmania (Viannia) braziliensis, Aetiological Agent of Cutaneous Leishmaniasis. Pathogens, 2023, 12, 1395.	2.8	0
1155	Molecular survey on vector-borne pathogens in clinically healthy stray cats in Zaragoza (Spain). Parasites and Vectors, 2023, 16, .	2.5	0
1156	Drug Discovery for Cutaneous Leishmaniasis: A Review of Developments in the Past 15 Years. Microorganisms, 2023, 11, 2845.	3.6	0
1157	Immunosuppressants alter the immune response associated with Glucantime \hat{A}^{\circledast} treatment for Leishmania infantum infection in a mouse model. Frontiers in Immunology, 0, 14, .	4.8	0
1158	Nanostructured Lipid Carriers as Robust Systems for Lupeol Delivery in the Treatment of Experimental Visceral Leishmaniasis. Pharmaceuticals, 2023, 16, 1646.	3.8	0
1159	Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chemico-Biological Interactions, 2024, 387, 110773.	4.0	2
1160	Bat-associated microbes: Opportunities and perils, an overview. Heliyon, 2023, 9, e22351.	3.2	0

#	Article	IF	CITATIONS
1161	Some Azo Dyes Containing Uracil: DFT Study and Antiparasitic Activity for Leishmania promastigotes and Trichomonas vaginalis. Russian Journal of Bioorganic Chemistry, 2023, 49, 1408-1421.	1.0	0
1162	Developments in Leishmaniasis diagnosis: A patent landscape from 2010 to 2022. PLOS Global Public Health, 2023, 3, e0002557.	1.6	0
1163	Modern Aspects of Leishmaniasis: Basis of Development New Approaches against Infection. , 0, , .		0
1164	Visceral Leishmaniasis Revealing Undiagnosed Inborn Errors of Immunity. Revista Da Sociedade Brasileira De Medicina Tropical, 0, 56, .	0.9	0
1165	Prediction of an immunogenic peptide ensemble and multi-subunit vaccine for Visceral leishmaniasis using bioinformatics approaches. Heliyon, 2023, 9, e22121.	3.2	0
1166	High-throughput screening of compounds targeting RNA editing in Trypanosoma brucei: Novel molecular scaffolds with broad trypanocidal effects. Biochemical Pharmacology, 2024, 219, 115937.	4.4	0
1167	Antileishmanial effects of \hat{I}^3 CdcPLI, a phospholipase A2 inhibitor from Crotalus durissus collilineatus snake serum, on Leishmania (Leishmania) amazonensis. Memorias Do Instituto Oswaldo Cruz, 0, 118, .	1.6	0
1169	Antimony resistance and gene expression in <i>Leishmania</i> : spotlight on molecular and proteomic aspects. Parasitology, 2024, 151, 1-14.	1.5	0
1170	Emerging One Health Preparedness to Combat National Burden of Diseases in Pakistan: A Comprehensive Insight., 2023, 4, 080-088.		0
1171	The immune response in canine and human leishmaniasis and how this influences the diagnosis- a review and assessment of recent research. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	0
1172	Anti- <i>Leishmania </i> compounds can be screened using <i>Leishmania </i> spp. expressing red fluorescence (<i>tdTomato </i>). Antimicrobial Agents and Chemotherapy, 0, , .	3.2	0
1174	Comparative Analysis of Leishmania major Nucleoside Hydrolases Toward Selecting Multi-target Strategy. Acta Parasitologica, 0, , .	1.1	O
1175	Inhibition of HSP90 distinctively modulates the global phosphoproteome of <i>Leishmania mexicana</i> developmental stages. Microbiology Spectrum, 2023, 11, .	3.0	0
1176	Automated Identification of Cutaneous Leishmaniasis Lesions Using Deep-Learning-Based Artificial Intelligence. Biomedicines, 2024, 12, 12.	3.2	0
1177	Facing diseases caused by trypanosomatid parasites: rational design of multifunctional oxidovanadium(IV) complexes with bioactive ligands. , 0, 2, .		0
1178	Leishmanicidal activity and 4DÂquantitative structure–activity relationship and molecular docking studies of vanillin-containing 1,2,3-triazole derivatives. Future Medicinal Chemistry, 0, , .	2.3	0
1179	Extracellular Vesicles Released by Leishmania (Leishmania) amazonensis Promastigotes with Distinct Virulence Profile Differently Modulate the Macrophage Functions. Microorganisms, 2023, 11, 2973.	3.6	0
1181	<i>In vitro</i> Leishmanicidal and antimicrobial activity of fluorinated pyrazoline substituted silicon(IV), zinc(II), cobalt(II) and iron(II) metallophthalocyanines. Journal of Coordination Chemistry, 2023, 76, 2014-2027.	2.2	0

#	Article	IF	CITATIONS
1182	Exploring diverse frontiers: Advancements of bioactive 4-aminoquinoline-based molecular hybrids in targeted therapeutics and beyond. European Journal of Medicinal Chemistry, 2024, 264, 116043.	5.5	2
1183	Tongue, larynx and esophageal leishmaniosis in an immunocompetent patient: a case report with description of imaging findings and discussion of current literature: A case of multifocal mucosal leishmaniosis. Radiology Case Reports, 2024, 19, 886-889.	0.6	O
1184	The role of tryptophan derivatives as anti-kinetoplastid agents. Heliyon, 2024, 10, e23895.	3.2	1
1185	New Ï-Santonin Derivatives from Crossostephium chinense and Their Anti-Proliferative Activities against Leishmania major and Human Cancer Cells A549. Molecules, 2023, 28, 8108.	3.8	O
1186	PERFIL EPIDEMIOLÓGICO DE PACIENTES DIAGNOSTICADOS COM LEISHMANIOSE CUTÃ,NEA EM MANAUS-AM, ENTRE 2017 E 2022. , 2023, 3, 28037-28059.		0
1187	Evaluation of the Diagnostic Sensitivity of the VIASURE Leishmania Real-Time PCR Detection Kit Prototype for the Diagnosis of Cutaneous and Visceral Leishmaniasis. Transboundary and Emerging Diseases, 2023, 2023, 1-8.	3.0	O
1189	A 10-Year Retrospective Study on Pediatric Visceral Leishmaniasis in a European Endemic Area: Diagnostic and Short-Course Therapeutic Strategies. Healthcare (Switzerland), 2024, 12, 23.	2.0	0
1190	Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Leishmania Strains. Acta Parasitologica, 2024, 69, 121-134.	1.1	O
1191	Antileishmanial Effect of 1,5- and 1,8-Substituted Fused Naphthyridines. Molecules, 2024, 29, 74.	3.8	0
1192	Cultivation of monoxenous trypanosomatids: A minireview. Journal of Invertebrate Pathology, 2024, 203, 108047.	3.2	O
1193	Experimental structure based drug design (SBDD) applications for antiâ€leishmanial drugs: A paradigm shift?. Medicinal Research Reviews, 0, , .	10.5	0
1194	Evidence of Guanidines Potential against Leishmania (Viannia) braziliensis: Exploring In Vitro Effectiveness, Toxicities and of Innate Immunity Response Effects. Biomolecules, 2024, 14, 26.	4.0	0
1195	Antileishmanial and Antitrypanosomes Drugs for the Current Century. Microorganisms, 2024, 12, 43.	3.6	0
1196	Solid Lipid Nanoparticles Enhancing the Leishmanicidal Activity of Delamanid. Pharmaceutics, 2024, 16, 41.	4.5	O
1197	Evaluation of Four Adult Visceral Leishmaniasis Cases. Turkiye Parazitolojii Dergisi, 2023, 47, 275-279.	0.6	0
1198	Serological characteristics and clinical implications of <scp>IgG</scp> subclasses in visceral leishmaniasis. Tropical Medicine and International Health, 2024, 29, 152-160.	2.3	O
1199	Synthesis, characterization, and biological evaluation of hybrid copper(<scp>ii</scp>) complexes containing azole drugs and planar ligands against neglected diseases. New Journal of Chemistry, 2024, 48, 2515-2526.	2.8	0
1200	Biosynthesis of ergosterol as a relevant molecular target of metal-based antiparasitic and antifungal compounds. Coordination Chemistry Reviews, 2024, 503, 215608.	18.8	O

#	Article	IF	Citations
1201	Fragment Merging, Growing, and Linking Identify New Trypanothione Reductase Inhibitors for Leishmaniasis. Journal of Medicinal Chemistry, 2024, 67, 402-419.	6.4	0
1202	Leishmania Proteomics: Insight into Diagnostics and Vaccine Development. , 2023, , 81-107.		0
1203	Exploring Herbal Remedies for Anti-Leishmanial Activity: A Comprehensive Review. BIO Web of Conferences, 2024, 86, 01032.	0.2	0
1204	Polyamine Metabolism for Drug Intervention in Trypanosomatids. Pathogens, 2024, 13, 79.	2.8	0
1205	Induced pluripotent stem cell-derived human macrophages as an infection model for Leishmania donovani. PLoS Neglected Tropical Diseases, 2024, 18, e0011559.	3.0	0
1206	Prevalence of HIV infection among visceral leishmaniasis patients in India: A systematic review and meta-analysis. Clinical Epidemiology and Global Health, 2024, 25, 101504.	1.9	0
1207	Chronic High-Level Parasitemia in Human Immunodeficiency Virus–Infected Individuals With or Without Visceral Leishmaniasis in an Endemic Area in Northwest Ethiopia: Potential Superspreaders?. Clinical Infectious Diseases, 0, , .	5.8	0
1208	IFN- \hat{l} »3 is induced by <i>Leishmania donovani</i> and can inhibit parasite growth in cell line models but not in the mouse model, while it shows a significant association with leishmaniasis in humans. Infection and Immunity, 2024, 92, .	2.2	0
1209	Interaction between diterpene icetexanes and old yellow enzymes of Leishmania braziliensis and Trypanosoma cruzi. International Journal of Biological Macromolecules, 2024, 259, 129192.	7. 5	1
1211	The changing epidemiology of human leishmaniasis in the non-endemic country of Austria between 2000 to 2021, including a congenital case. PLoS Neglected Tropical Diseases, 2024, 18, e0011875.	3.0	0
1212	A novel enemy of cancer: recent investigations into protozoan anti-tumor properties. Frontiers in Cellular and Infection Microbiology, $0,13,.$	3.9	0
1213	Neglected and Emerging Infections of The Kidney. Seminars in Nephrology, 2023, 43, 151472.	1.6	0
1215	Deletion of the lipid droplet protein kinase gene affects lipid droplets biogenesis, parasite infectivity, and resistance to trivalent antimony in Leishmania infantum. PLoS Neglected Tropical Diseases, 2024, 18, e0011880.	3.0	0
1216	Knowledge and Attitude Regarding Cutaneous Leishmaniasis Among Adult Population in Tabuk, Saudi Arabia. Cureus, 2024, , .	0.5	0
1217	Unveiling the role of serine o-acetyltransferase in drug resistance and oxidative stress tolerance in Leishmania donovani through the regulation of thiol-based redox metabolism. Free Radical Biology and Medicine, 2024, 213, 371-393.	2.9	0
1218	Association between clinical outcomes, peripheral blood and cytomorphologic features of bone marrow in visceral leishmaniasis. Hematology, Transfusion and Cell Therapy, 2024, , .	0.2	0
1219	A review on potential therapeutic targets for the treatment of leishmaniasis. Parasitology International, 2024, 100, 102863.	1.3	1
1220	Musculoskeletal involvement in neglected tropical diseases: a comprehensive review. Skeletal Radiology, 0, , .	2.0	O

#	Article	IF	CITATIONS
1221	The Parasitemia has Contributed to the Severity of Cases of Visceral Leishmaniasis. Indian Journal of Microbiology, 0 , , .	2.7	0
1222	Heat Shock Proteins as Emerging Therapeutic and Vaccine Targets Against Leishmaniasis. , 2023, , 213-243.		0
1223	KalaCORE: A Programme to Tackle Visceral Leishmaniasis in South Asia and East Africa (2014–2019). , 2023, , 19-41.		0
1224	The Burden of Visceral Leishmaniasis: Need of Review, Innovations, and Solutions. , 2023, , 1-17.		0
1225	Synthetic biology for combating leishmaniasis. Frontiers in Microbiology, 0, 15, .	3.5	0
1226	The intersection of host <i>in vivo</i> metabolism and immune responses to infection with kinetoplastid and apicomplexan parasites. Microbiology and Molecular Biology Reviews, 2024, 88, .	6.6	0
1227	Design and Synthesis of Novel 3-Nitro- $1H-1,2,4$ -triazole- $1,2,3$ -triazole- $1,4$ -disubstituted Analogs as Promising Antitrypanosomatid Agents: Evaluation of In Vitro Activity against Chagas Disease and Leishmaniasis. Journal of Medicinal Chemistry, 2024, 67, 2584-2601.	6.4	0
1228	Original algorithms for the detection of cardiovascular involvement of neglected tropical diseases. Expert Review of Cardiovascular Therapy, 2024, 22, 59-74.	1.5	0
1230	Metallic nanoparticles and treatment of cutaneous leishmaniasis: A systematic review. Journal of Trace Elements in Medicine and Biology, 2024, 83, 127404.	3.0	0
1231	Clemastine/tamoxifen hybrids as easily accessible antileishmanial drug leads. Organic and Biomolecular Chemistry, 2024, 22, 1812-1820.	2.8	0
1232	Therapeutic potential of antimicrobial peptides against pathogenic protozoa. Parasitology Research, 2024, 123, .	1.6	1
1233	Targeting with Structural Analogs of Natural Products the Purine Salvage Pathway in Leishmania (Leishmania) infantum by Computer-Aided Drug-Design Approaches. Tropical Medicine and Infectious Disease, 2024, 9, 41.	2.3	1
1234	The Potential Use of Peptides in the Fight against Chagas Disease and Leishmaniasis. Pharmaceutics, 2024, 16, 227.	4.5	0
1235	Beyond schistosomiasis: unraveling co-infections and altered immunity. Clinical Microbiology Reviews, 2024, 37, .	13.6	0
1236	In silico identification of human microRNAs pointing centrin genes in Leishmania donovani: Considering the RNAi-mediated gene control. Frontiers in Genetics, 0, 14, .	2.3	0
1237	Identification of potential inhibitor against Leishmania donovani mitochondrial DNA primase through in-silico and in vitro drug repurposing approaches. Scientific Reports, 2024, 14, .	3.3	0
1238	Review of Leishmaniasis Treatment: Can We See the Forest through the Trees?. Pharmacy (Basel,) Tj ETQq0 0 0 rg	gBT /Overlo	ock 10 Tf 50
1239	Unconventional role of Rab4 in the secretory pathway in Leishmania. Biochimica Et Biophysica Acta - Molecular Cell Research, 2024, 1871, 119687.	4.1	0

#	Article	IF	Citations
1240	CD4+ Th1 and Th17 responses and multifunctional CD8 T lymphocytes associated with cure or disease worsening in human visceral leishmaniasis. Frontiers in Immunology, $0,15,.$	4.8	0
1241	Effect of the aggregated protein dye YAT2150 on <i>Leishmania</i> parasite viability. Antimicrobial Agents and Chemotherapy, 2024, 68, .	3.2	0
1242	Synthesis and Evaluation of (Bis)benzyltetrahydroisoquinoline Alkaloids as Antiparasitic Agents. Jacs Au, 2024, 4, 847-854.	7.9	0
1243	Infectious eye disease in the 21st centuryâ€"an overview. Eye, 0, , .	2.1	0
1244	Liver transplantation in tropical settings. , 0, , 217-226.		0
1245	Subcellular particles for characterization of host-parasite interactions. Microbes and Infection, 2024, , 105314.	1.9	0
1246	Overlapping between squamous cell carcinoma and mucocutaneous leishmaniasis in a diabetic patient. Oxford Medical Case Reports, 2024, 2024, .	0.4	0
1248	New synthetic molecules incorporated into polymeric micelles used for treatment against visceral leishmaniasis. Cytokine, 2024, 177, 156543.	3.2	0
1249	In Situ versus Systemic Immune Response in the Pathogenesis of Cutaneous Leishmaniasis. Pathogens, 2024, 13, 199.	2.8	0
1250	31st Annual GP2A Medicinal Chemistry Conference. , 2024, 3, 209-243.		0
1251	Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis. Frontiers in Immunology, 0, 15 , .	4.8	0
1252	Autochthonous and Imported Visceral Leishmaniasis in Bulgaria—Clinical Experience and Treatment of Patients. Pathogens, 2024, 13, 205.	2.8	0
1253	Whole cell reconstructions of Leishmania mexicana through the cell cycle. PLoS Pathogens, 2024, 20, e1012054.	4.7	0
1254	Selenosugars targeting the infective stage of Trypanosoma brucei with high selectivity. International Journal for Parasitology: Drugs and Drug Resistance, 2024, 24, 100529.	3.4	0
1255	Clinical and laboratory characterization of cutaneous leishmaniasis in Chinese migrant workers returned from Iraq. PLoS Neglected Tropical Diseases, 2024, 18, e0012006.	3.0	0
1256	Rodents as Key Hosts of Zoonotic Pathogens and Parasites in the Neotropics. , 2024, , 143-184.		0
1257	PEX1 is essential for glycosome biogenesis and trypanosomatid parasite survival. Frontiers in Cellular and Infection Microbiology, 0, 14, .	3.9	0
1258	Challenges for maintaining post elimination phase of visceral leishmaniasis control programme in India: A field-based study. PLoS Neglected Tropical Diseases, 2024, 18, e0012028.	3.0	0

#	Article	IF	CITATIONS
1259	Editorial: Strategies in the drug discovery and development for leishmaniasis: immunomodulators, natural products, synthetic compounds, and drug repositioning. Frontiers in Cellular and Infection Microbiology, 0, 14 , .	3.9	0
1260	The spleen is the graveyard of CD4+ cells in patients with immunological failure of visceral leishmaniasis and AIDS. Parasites and Vectors, 2024, 17, .	2.5	0
1261	Treatment using vanillin-derived synthetic molecules incorporated into polymeric micelles is effective against infection caused by Leishmania amazonensis species. Experimental Parasitology, 2024, 260, 108743.	1.2	0
1262	Exploring host epigenetic enzymes as targeted therapies for visceral leishmaniasis: in silico design and in vitro efficacy of KDM6B and ASH1L inhibitors. Molecular Diversity, 0, , .	3.9	0
1263	Immunization with centrin-Deficient Leishmania braziliensis Does Not Protect against Homologous Challenge. Vaccines, 2024, 12, 310.	4.4	0
1264	Gold(I) and Silver(I) Complexes Containing Hybrid Sulfonamide/Thiourea Ligands as Potential Leishmanicidal Agents. Pharmaceutics, 2024, 16, 452.	4.5	0