AARON: An Automated Reaction Optimizer for New Ca

Journal of Chemical Theory and Computation 14, 5249-5261 DOI: 10.1021/acs.jctc.8b00578

Citation Report

#	Article	IF	CITATIONS
1	Importance of thorough conformational analysis in modelling transition metal-mediated reactions: Case studies on pincer complexes containing phosphine groups. Journal of Saudi Chemical Society, 2019, 23, 1206-1218.	2.4	6
2	Automatic Conformational Search of Transition States for Catalytic Reactions Using Genetic Algorithm. Journal of Physical Chemistry A, 2019, 123, 10303-10314.	1.1	11
3	Computational assessment on the Tolman cone angles for P-ligands. Dalton Transactions, 2019, 48, 15036-15048.	1.6	62
4	Relative Strength of Common Directing Groups in Palladium-Catalyzed Aromatic Câ^'H Activation. IScience, 2019, 20, 373-391.	1.9	34
5	Integration of machine learning approaches for accelerated discovery of transition-metal dichalcogenides as HgO sensing materials. Applied Energy, 2019, 254, 113651.	5.1	21
6	A Computational Study on the Stereo- and Regioselective Formation of the C4α–C6′ Bond of Tethered Catechin Moieties by an Exhaustive Search of the Transition States. Journal of Organic Chemistry, 2019, 84, 2840-2849.	1.7	3
7	Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chemical Reviews, 2019, 119, 6509-6560.	23.0	130
8	Activity-Based Screening of Homogeneous Catalysts through the Rapid Assessment of Theoretically Derived Turnover Frequencies. ACS Catalysis, 2019, 9, 5716-5725.	5.5	48
9	Automatic Proposal of Multistep Reaction Mechanisms using a Graph-Driven Search. Journal of Physical Chemistry A, 2019, 123, 3407-3417.	1.1	35
10	Computational Ligand Descriptors for Catalyst Design. Chemical Reviews, 2019, 119, 6561-6594.	23.0	254
11	Organometallics in Process Chemistry: An Historical Snapshot. Topics in Organometallic Chemistry, 2019, , 1-29.	0.7	0
12	Exploration of Reaction Pathways and Chemical Transformation Networks. Journal of Physical Chemistry A, 2019, 123, 385-399.	1.1	141
13	Rapid enantioselective catalyst optimization. Nature Catalysis, 2019, 2, 8-9.	16.1	4
14	Understanding the Acetalization Reaction Based on its Reaction Path Network. ChemSystemsChem, 2020, 2, e1900022.	1.1	2
15	Quantitative Structure–Selectivity Relationships in Enantioselective Catalysis: Past, Present, and Future. Chemical Reviews, 2020, 120, 1620-1689.	23.0	117
16	Reactions of Allylmagnesium Reagents with Carbonyl Compounds and Compounds with Câ•N Double Bonds: Their Diastereoselectivities Generally Cannot Be Analyzed Using the Felkin–Anh and Chelation-Control Models. Chemical Reviews, 2020, 120, 1513-1619.	23.0	59
17	Bicyclic Guanidine-Catalyzed Asymmetric Cycloaddition Reaction of Anthrones—Bifunctional Binding Modes and Origin of Stereoselectivity. Journal of Organic Chemistry, 2020, 85, 15139-15153.	1.7	7
18	Established and Emerging Computational Tools to Study Homogeneous Catalysis—From Quantum Mechanics to Machine Learning. CheM, 2020, 6, 1904- <u>1913.</u>	5.8	44

	CITATION R	EPORT	
#	Article	IF	CITATIONS
19	Optimization of Catalyst Structure for Asymmetric Propargylation of Aldehydes with Allenyltrichlorosilane. Advanced Synthesis and Catalysis, 2020, 362, 5467-5474.	2.1	10
20	How does the nickel catalyst control the doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles? The rebound mechanism. Organic Chemistry Frontiers, 2020, 7, 3411-3419.	2.3	8
21	Development of a Computer-Guided Workflow for Catalyst Optimization. Descriptor Validation, Subset Selection, and Training Set Analysis. Journal of the American Chemical Society, 2020, 142, 11578-11592.	6.6	48
22	Computational Analysis of the Selective Formation of the C4α—C8′ Bond in the Intermolecular Coupling of Catechin Derivatives. Journal of Organic Chemistry, 2020, 85, 5010-5018.	1.7	2
23	Transition State Force Field for the Asymmetric Redox-Relay Heck Reaction. Journal of the American Chemical Society, 2020, 142, 9700-9707.	6.6	15
24	M <scp>olassembler</scp> : Molecular Graph Construction, Modification, and Conformer Generation for Inorganic and Organic Molecules. Journal of Chemical Information and Modeling, 2020, 60, 3884-3900.	2.5	36
25	<i>cgbind</i> : A Python Module and Web App for Automated Metallocage Construction and Host–Guest Characterization. Journal of Chemical Information and Modeling, 2020, 60, 3546-3557.	2.5	26
26	Re-Engineering Organocatalysts for Asymmetric Friedel–Crafts Alkylation of Indoles through Computational Studies. Journal of Organic Chemistry, 2020, 85, 9969-9978.	1.7	15
27	Artificial Force-Induced Reaction Method for Systematic Elucidation of Mechanism and Selectivity in Organometallic Reactions. Topics in Organometallic Chemistry, 2020, , 57-80.	0.7	7
28	Automated in Silico Design of Homogeneous Catalysts. ACS Catalysis, 2020, 10, 2354-2377.	5.5	119
29	autodE: Automated Calculation of Reaction Energy Profiles— Application to Organic and Organometallic Reactions. Angewandte Chemie, 2021, 133, 4312-4320.	1.6	5
30	<scp>QChASM</scp> : Quantum chemistry automation and structure manipulation. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1510.	6.2	28
31	autodE: Automated Calculation of Reaction Energy Profiles— Application to Organic and Organometallic Reactions. Angewandte Chemie - International Edition, 2021, 60, 4266-4274.	7.2	49
32	Computational methods for training set selection and error assessment applied to catalyst design: guidelines for deciding which reactions to run first and which to run next. Reaction Chemistry and Engineering, 2021, 6, 694-708.	1.9	12
33	Computational and Experimental Insights into Asymmetric Rh atalyzed Hydrocarboxylation with CO 2. European Journal of Organic Chemistry, 2021, 2021, 663-670.	1.2	4
34	Systematic Search for Transition States in Complex Molecules: Computational Analyses of Regio- and Stereoselective Interflavan Bond Formation in Flavan-3-ols. Heterocycles, 2021, 102, 1061.	0.4	2
35	Building a Toolbox for the Analysis and Prediction of Ligand and Catalyst Effects in Organometallic Catalysis. Accounts of Chemical Research, 2021, 54, 837-848.	7.6	41
36	Selectivity in organocatalysis—From qualitative to quantitative predictive models. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1518.	6.2	23

CITATION REPORT

#	Article	IF	CITATIONS
37	Navigating through the Maze of Homogeneous Catalyst Design with Machine Learning. Trends in Chemistry, 2021, 3, 96-110.	4.4	39
38	Organic reactivity from mechanism to machine learning. Nature Reviews Chemistry, 2021, 5, 240-255.	13.8	88
39	Exploring paths of chemical transformations in molecular and periodic systems: An approach utilizing force. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1538.	6.2	59
40	<scp>SEQCROW</scp> : A <scp>ChimeraX</scp> bundle to facilitate quantum chemical applications to complex molecular systems. Journal of Computational Chemistry, 2021, 42, 1750-1754.	1.5	14
41	Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chemical Reviews, 2021, 121, 9927-10000.	23.0	110
42	Mechanisms, challenges, and opportunities of dual Ni/ <scp>photoredoxâ€catalyzed</scp> C(sp ²)–C(sp ³) <scp>crossâ€couplings</scp> . Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1573.	6.2	20
43	Automated Construction and Optimization Combined with Machine Learning to Generate Pt(II) Methane C–H Activation Transition States. Topics in Catalysis, 2022, 65, 312-324.	1.3	11
44	Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts. Chemical Science, 2021, 12, 6879-6889.	3.7	54
45	Computational modelling of Pd-catalysed alkoxycarbonylation of alkenes and alkynes. Physical Chemistry Chemical Physics, 2021, 23, 15869-15880.	1.3	7
46	A Dataset of Computational Reaction Barriers for the Claisen Rearrangement: Chemical and Numerical Analysis. Molecular Informatics, 2022, 41, e2100216.	1.4	2
47	A Computational Study on the Intramolecular C4-C8′ Interflavan Bond Formations of Tethered Catechin Derivatives. Bulletin of the Chemical Society of Japan, 2020, 93, 1107-1113.	2.0	1
48	Computational mechanistic study in organometallic catalysis: Why prediction is still a challenge. Wiley Interdisciplinary Reviews: Computational Molecular Science, 0, , e1590.	6.2	8
49	Computational Insight into the Rope-Skipping Isomerization of Diarylether Cyclophanes. Symmetry, 2021, 13, 2127.	1.1	1
50	Computational insights into metal-catalyzed asymmetric hydrogenation. Advances in Catalysis, 2021, 68, 385-426.	0.1	1
51	Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis, 2022, 65, 6-39.	1.3	27
52	Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C–H Functionalization Reactions. Journal of the American Chemical Society, 2022, 144, 1881-1898.	6.6	15
53	Transition Structures, Reaction Paths, and Kinetics: Methods and Applications in Catalysis. , 2024, , 496-518.		0
54	Genetic Optimization of Homogeneous Catalysts. Chemistry Methods, 2022, 2, .	1.8	14

CITATION REPORT

#	Article	IF	CITATIONS
55	Virtual Ligand-Assisted Screening Strategy to Discover Enabling Ligands for Transition Metal Catalysis. ACS Catalysis, 2022, 12, 3752-3766.	5.5	8
56	AutoSolvate: A toolkit for automating quantum chemistry design and discovery of solvated molecules. Journal of Chemical Physics, 2022, 156, 124801.	1.2	12
57	New Insights and Predictions into Complex Homogeneous Reactions Enabled by Computational Chemistry in Synergy with Experiments: Isotopes and Mechanisms. Accounts of Chemical Research, 2022, 55, 1109-1123.	7.6	18
58	Machine learning activation energies of chemical reactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	24
59	Conformational Sampling for Transition State Searches on a Computational Budget. Journal of Chemical Theory and Computation, 2022, 18, 3006-3016.	2.3	15
60	Importance of favourable non-covalent contacts in the stereoselective synthesis of tetrasubstituted chromanones. Organic Chemistry Frontiers, 2022, 9, 3027-3033.	2.3	5
61	The (not so) simple prediction of enantioselectivity – a pipeline for high-fidelity computations. Chemical Science, 2022, 13, 6858-6864.	3.7	6
62	Machine learning and semi-empirical calculations: a synergistic approach to rapid, accurate, and mechanism-based reaction barrier prediction. Chemical Science, 2022, 13, 7594-7603.	3.7	13
63	Harvesting the fragment-based nature of bifunctional organocatalysts to enhance their activity. Organic Chemistry Frontiers, 2022, 9, 4041-4051.	2.3	3
64	Mechanistic Inference from Statistical Models at Different Data-Size Regimes. ACS Catalysis, 2022, 12, 7886-7906.	5.5	12
65	Machine Learning Models Predict Calculation Outcomes with the Transferability Necessary for Computational Catalysis. Journal of Chemical Theory and Computation, 2022, 18, 4282-4292.	2.3	9
66	An induced-fit model for asymmetric organocatalytic reactions: a case study of the activation of olefins <i>via</i> chiral BrĂ,nsted acid catalysts. Chemical Science, 2022, 13, 8848-8859.	3.7	8
67	Theoretical Perspectives in Organocatalysis. Chemistry - A European Journal, 2022, 28, .	1.7	11
68	Portable Models for Entropy Effects on Kinetic Selectivity. Journal of the American Chemical Society, 2022, 144, 13996-14004.	6.6	9
69	Automated Mechanism Discovery. , 2024, , 454-484.		0
70	Chemoton 2.0: Autonomous Exploration of Chemical Reaction Networks. Journal of Chemical Theory and Computation, 2022, 18, 5393-5409.	2.3	22
71	Understanding chemistry: from "heuristic (soft) explanations and reasoning by analogy―to "quantum chemistry― Chemical Science, 2022, 13, 11461-11486.	3.7	9
72	Physics-based representations for machine learning properties of chemical reactions. Machine Learning: Science and Technology, 2022, 3, 045005.	2.4	6

#	Article	IF	CITATIONS
73	Unifying views on catalyst deactivation. Nature Catalysis, 2022, 5, 854-866.	16.1	99
74	OSCAR: an extensive repository of chemically and functionally diverse organocatalysts. Chemical Science, 2022, 13, 13782-13794.	3.7	11
75	Noncovalent interactions as a solution for the metal-free one-pot asymmetric synthesis of (S)-2-aryl-2,3-dihydro-4(1H)-quinolones. Journal of Molecular Modeling, 2022, 28, .	0.8	0
76	XTBDFT: Automated workflow for conformer searching of minima and transition states powered by extended tight binding and density functional theory. SoftwareX, 2022, 20, 101242.	1.2	2
78	Towards predictive computational catalysis – a case study of olefin metathesis with Mo imido alkylidene N-heterocyclic carbene catalysts. Chemical Modelling, 2022, , 1-23.	0.2	1
79	Toward Ab Initio Reaction Discovery Using the Artificial Force Induced Reaction Method. Annual Review of Physical Chemistry, 2023, 74, 287-311.	4.8	6
80	An artificial neural network using multi-head intermolecular attention for predicting chemical reactivity of organic materials. Journal of Materials Chemistry A, 2023, 11, 12784-12792.	5.2	0
81	Theoretical Mechanistic Investigation of the Dynamic Kinetic Resolution of N-Protected Amino Acid Esters using Phase-Transfer Catalysts. Journal of Organic Chemistry, 2023, 88, 7748-7754.	1.7	2
82	AQME: Automated quantum mechanical environments for researchers and educators. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	10
83	Highly chemoselective ligands for Suzuki–Miyaura cross-coupling reaction based on virtual ligand-assisted screening. Organic and Biomolecular Chemistry, 2023, 21, 3132-3142.	1.5	2
84	Virtual Ligand Strategy in Transition Metal Catalysis Toward Highly Efficient Elucidation of Reaction Mechanisms and Computational Catalyst Design. ACS Catalysis, 2023, 13, 5697-5711.	5.5	3
85	How to Develop Organometallic Catalytic Reactions in the Pharmaceutical Industry. Organic Process Research and Development, 2023, 27, 831-846.	1.3	5

CITATION REPORT