Towards BCI-actuated smart wheelchair system

BioMedical Engineering OnLine 17, 111

DOI: 10.1186/s12938-018-0545-x

Citation Report

#	Article	IF	CITATIONS
1	A SLAM Integrated Hybrid Brain-Computer Interface for Accurate and Concise Control., 2019,,.		2
2	Brain rhythm related to the subjective music preferences. Nonlinear Theory and Its Applications IEICE, 2019, 10, 249-255.	0.4	1
3	Brain Computer Interface (BCI) For Controlling Path Planning Mobile Robots: A Review. , 2019, , .		1
4	Online learning using projections onto shrinkage closed balls for adaptive brain-computer interface. Pattern Recognition, 2020, 97, 107017.	5.1	3
5	Novel hybrid brain–computer interface system based on motor imagery and P300. Cognitive Neurodynamics, 2020, 14, 253-265.	2.3	27
6	Indoor Simulated Training Environment for Brain-Controlled Wheelchair Based on Steady-State Visual Evoked Potentials. Frontiers in Neurorobotics, 2019, 13, 101.	1.6	12
7	A Literature Review: A Novel Human Vital Sign based Wheel Chair Cum Stretcher for Disabled Person. , 2020, , .		4
8	An Experimental Study of the Accuracy vs Inference Speed of RGB-D Object Recognition in Mobile Robotics. , 2020, , .		2
9	Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review. Frontiers in Neurorobotics, 2020, 14, 25.	1.6	208
10	Temporal frequency joint sparse optimization and fuzzy fusion for motor imagery-based brain-computer interfaces. Journal of Neuroscience Methods, 2020, 340, 108725.	1.3	12
11	Declaration on the ethics of brain–computer interfaces and augment intelligence. Al and Ethics, 2021, 1, 209-211.	4.6	6
12	Brain-Controlled Wheelchair Review: From Wet Electrode to Dry Electrode, From Single Modal to Hybrid Modal, From Synchronous to Asynchronous. IEEE Access, 2021, 9, 55920-55938.	2.6	13
13	A face-machine interface utilizing EEG artifacts from a neuroheadset for simulated wheelchair control. International Journal on Smart Sensing and Intelligent Systems, 2021, 14, 1-10.	0.4	0
14	P300 BCI for Persons with Spinal Cord Injury: A BCI in Search of an Application?. , 2021, , 193-216.		1
15	The brain-computer interface based robot gives spinal cord injury patients a full-cycle active rehabilitation. , 2021 , , .		1
16	Electric Powered Wheelchair Trajectory Planning on Artificial Potential Field Method. IOP Conference Series: Materials Science and Engineering, 2021, 1068, 012012.	0.3	2
17	Cluster decomposing and multi-objective optimization based-ensemble learning framework for motor imagery-based brainâ€"computer interfaces. Journal of Neural Engineering, 2021, 18, 026018.	1.8	17
18	Design and Analysis of an Intelligent Toilet Wheelchair Based on Planar 2DOF Parallel Mechanism with Coupling Branch Chains. Sensors, 2021, 21, 2677.	2.1	7

#	Article	IF	Citations
19	A Self-Paced BCI With a Collaborative Controller for Highly Reliable Wheelchair Driving: Experimental Tests With Physically Disabled Individuals. IEEE Transactions on Human-Machine Systems, 2021, 51, 109-119.	2.5	42
20	Facial-Machine Interface-based Virtual Reality Wheelchair Control using EEG Artifacts of Emotiv Neuroheadset. , 2021, , .		5
21	Exploring the Use of Brain-Computer Interfaces in Stroke Neurorehabilitation. BioMed Research International, 2021, 2021, 1-11.	0.9	23
22	A Cloud-based Brain-controlled Wheelchair with Autonomous Indoor Navigation System., 2021,,.		5
23	A study of classification techniques on P300 speller dataset. Materials Today: Proceedings, 2023, 80, 2047-2050.	0.9	2
24	Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain–Computer Interfaces: A Systematic Literature Review. Sensors, 2021, 21, 4754.	2.1	47
25	The Identification of Significant Time-Domain Features for Wink-Based EEG Signals. Lecture Notes in Electrical Engineering, 2022, , 957-965.	0.3	2
26	Brain-Computer Interface: Advancement and Challenges. Sensors, 2021, 21, 5746.	2.1	61
27	A Novel IOT Based Smart Wheelchair Design for Cerebral Palsy Patients. International Journal of Scientific Research in Science and Technology, 2021, , 540-553.	0.1	1
28	Control of a Smart Electric Wheelchair Based on EEG Signal and Graphical User Interface for Disabled People. , 2021, , .		3
29	Motor-Imagery EEG-Based BCIs in Wheelchair Movement and Control: A Systematic Literature Review. Sensors, 2021, 21, 6285.	2.1	39
30	Optimized Correlation-Based Time Window Selection Algorithm for Motor Imagery Based BCIs. Advances in Cognitive Neurodynamics, 2021, , 27-36.	0.1	0
31	Semi-automatic Eye Movement-Controlled Wheelchair Using Low-Cost Embedded System. Advances in Intelligent Systems and Computing, 2020, , 755-764.	0.5	2
32	Residential buildings with brain-computer interface functionality: An elevator case study. Building Services Engineering Research and Technology, 0, , 014362442110439.	0.9	2
33	Traded and combined cooperative control of a smart wheelchair. Robotica, 0, , 1-21.	1.3	0
34	Wheelchair Navigation System using EEG Signal and 2D Map for Disabled and Elderly People. , 2020, , .		3
35	P300-based brain–computer interface for communication and control. , 2022, , 271-292.		0
36	Steering a Robotic Wheelchair Based on Voice Recognition System Using Convolutional Neural Networks. Electronics (Switzerland), 2022, 11, 168.	1.8	18

#	Article	IF	Citations
37	Clinical Validation of BCI-Controlled Wheelchairs in Subjects With Severe Spinal Cord Injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 579-589.	2.7	10
38	A Brain-Computer Interface for Teleoperation of a Semiautonomous Mobile Robotic Assistive System Using SLAM. Journal of Robotics, 2022, 2022, 1-12.	0.6	1
39	A brain-computer interface based semi-autonomous robotic system., 2021,,.		1
40	Development of Voice Control Algorithm for Robotic Wheelchair Using MIN and LSTM Models. Computers, Materials and Continua, 2022, 73, 2441-2456.	1.5	2
41	Application of Neuroengineering Based on EEG Features in the Industrial Design of Comfort. Computational Intelligence and Neuroscience, 2022, 2022, 1-5.	1.1	2
42	Editorial: EEG-based assistive robotics for rehabilitation. Frontiers in Neurorobotics, 0, 16, .	1.6	1
43	Usability Evaluation of the SmartWheeler through Qualitative and Quantitative Studies. Sensors, 2022, 22, 5627.	2.1	4
44	A novel brain-controlled wheelchair combined with computer vision and augmented reality. BioMedical Engineering OnLine, 2022, 21, .	1.3	4
45	FBMSNet: A Filter-Bank Multi-Scale Convolutional Neural Network for EEG-Based Motor Imagery Decoding. IEEE Transactions on Biomedical Engineering, 2023, 70, 436-445.	2.5	14
46	Enhancing Human Robot Communication by Generating Spatial Information Using Uncertain Terms. , 2022, , .		0
47	Dynamic Environment-based Visual User Interface System for Intuitive Navigation Target Selection for Brain-actuated Wheelchairs. , 2022, , .		1
48	Integrated Neuroregenerative Techniques for Plasticity of the Injured Spinal Cord. Biomedicines, 2022, 10, 2563.	1.4	3
49	On the feasibility of simple brain-computer interface systems for enabling children with severe physical disabilities to explore independent movement. Frontiers in Human Neuroscience, 0, 16, .	1.0	6
50	Prediction of Lifted Weight Category Using EEG Equipped Headgear. , 2022, , .		0
51	Smart Wheelchairs: A Review on Control Methods. , 2022, , .		1
52	A Brief Review of Information Security and Privacy Risks of NeurolS Tools. Lecture Notes in Information Systems and Organisation, 2022, , 329-338.	0.4	0
53	Investigating User Proficiency of Motor Imagery for EEG-Based BCI System to Control Simulated Wheelchair. Sensors, 2022, 22, 9788.	2.1	2
54	Comparative Analysis of Full Training Set and Cross-Validation for Machine Learning Approach to Run Smart Wheelchair. Lecture Notes in Electrical Engineering, 2023, , 121-132.	0.3	1

CITATION REPORT

#	Article	IF	CITATIONS
55	An Interpretation on Brain Gate System Network and Technology- A Study. , 2022, , .		0
56	A Survey on Technical Challenges of Assistive Robotics for Elder People in Domestic Environments: The ASPiDA Concept. IEEE Transactions on Medical Robotics and Bionics, 2023, 5, 196-205.	2.1	10
57	Designing an XAI interface for BCI experts: A contextual design for pragmatic explanation interface based on domain knowledge in a specific context. International Journal of Human Computer Studies, 2023, 174, 103009.	3.7	5
58	Data-driven approach to designing a BCI-integrated smart wheelchair through cost–benefit analysis. High-Confidence Computing, 2023, 3, 100118.	2.2	0
62	A smart brain controlled wheelchair based on TGAM. , 2023, , .		0
64	Brain Computer Interface in Neurology: The Future of Neurorestoration, the Possibilities and Perils. A Narrative Review. IFMBE Proceedings, 2024, , 19-34.	0.2	0