Capacity Characterization of UAV-Enabled Two-User Br

IEEE Journal on Selected Areas in Communications 36, 1955-1971

DOI: 10.1109/jsac.2018.2864421

Citation Report

#	ARTICLE	IF	CITATIONS
1	Post-Disaster 4G/5G Network Rehabilitation Using Drones: Solving Battery and Backhaul Issues. , 2018, , .		39
2	Cooperative Trajectory Design and Resource Allocation for a Two-UAV Two-User Wireless Powered Communication System., 2018,,.		9
4	Modeling and Validation of Free Road with Geometric Parameter Representation for wheeled mobile robots. , 2018, , .		1
5	UAV-Enabled Cellular Networks with Multi-Hop Backhauls: Placement optimization and Wireless Resource Allocation. , $2018, , .$		14
6	RF-based Direction Finding of UAVs Using DNN. , 2018, , .		24
7	Energy Optimization for Cellular-Connected Multi-UAV Mobile Edge Computing Systems with Multi-Access Schemes. Journal of Communications and Information Networks, 2018, 3, 33-44.	3.5	45
8	Placement Optimization for UAV-Enabled Wireless Networks with Multi-Hop Backhauls. Journal of Communications and Information Networks, 2018, 3, 64-73.	3.5	47
9	Guest Editorial Airborne Communication Networks. IEEE Journal on Selected Areas in Communications, 2018, 36, 1903-1906.	9.7	6
10	Common Throughput Maximization in UAV-Enabled OFDMA Systems With Delay Consideration. IEEE Transactions on Communications, 2018, 66, 6614-6627.	4.9	309
11	Joint 3D UAV Placement and Resource Allocation in Software-Defined Cellular Networks With Wireless Backhaul. IEEE Access, 2019, 7, 104279-104293.	2.6	41
12	Secrecy Transmission in Large-Scale UAV-Enabled Wireless Networks. IEEE Transactions on Communications, 2019, 67, 7656-7671.	4.9	20
13	An Efficient Solution for Joint Power and Trajectory Optimization in UAV-Enabled Wireless Network. IEEE Access, 2019, 7, 59640-59652.	2.6	12
14	Optimal 1D Trajectory Design for UAV-Enabled Multiuser Wireless Power Transfer. IEEE Transactions on Communications, 2019, 67, 5674-5688.	4.9	92
15	UAVs to the Rescue: Prolonging the Lifetime of Wireless Devices Under Disaster Situations. IEEE Transactions on Green Communications and Networking, 2019, 3, 942-954.	3.5	20
16	Joint Optimization of a UAV's Trajectory and Transmit Power for Covert Communications. IEEE Transactions on Signal Processing, 2019, 67, 4276-4290.	3.2	122
17	Secrecy Transmission Capacity of Large-Scale UAV-Enabled Wireless Networks. , 2019, , .		5
18	Decarboxylation of Oleic Acid over Ordered Mesoporous Pt/SAPO-11. Energy & Decamp; Fuels, 2019, 33, 9956-9964.	2.5	6
19	Joint Maneuver and Beamwidth Optimization for UAV-Enabled Multicasting. IEEE Access, 2019, 7, 149503-149514.	2.6	10

#	Article	IF	CITATIONS
20	Cellular-Connected UAV: Uplink Association, Power Control and Interference Coordination. IEEE Transactions on Wireless Communications, 2019, 18, 5380-5393.	6.1	122
21	Cognitive UAV Communication via Joint Maneuver and Power Control. IEEE Transactions on Communications, 2019, 67, 7872-7888.	4.9	65
22	Position Prediction Based Fast Beam Tracking Scheme for Multi-User UAV-mmWave Communications. , 2019, , .		20
23	Trajectory and Power Optimization for Multi-UAV Enabled Emergency Wireless Communications Networks. , 2019, , .		4
24	Positioning Optimization for Sum-Rate Maximization in UAV-Enabled Interference Channel. IEEE Signal Processing Letters, 2019, 26, 1466-1470.	2.1	22
25	Completion Time Minimization for Multi-UAV Information Collection via Trajectory Planning. Sensors, 2019, 19, 4032.	2.1	27
26	Joint Trajectory and Precoding Optimization for UAV-Assisted NOMA Networks. IEEE Transactions on Communications, 2019, 67, 3723-3735.	4.9	236
27	3D Trajectory Optimization in Rician Fading for UAV-Enabled Data Harvesting. IEEE Transactions on Wireless Communications, 2019, 18, 3192-3207.	6.1	250
28	UAV-Enabled Communication Using NOMA. IEEE Transactions on Communications, 2019, 67, 5126-5138.	4.9	151
29	The multi-objective deployment optimization of UAV-mounted cache-enabled base stations. Physical Communication, 2019, 34, 114-120.	1.2	27
30	Interference Management for Cellular-Connected UAVs: A Deep Reinforcement Learning Approach. IEEE Transactions on Wireless Communications, 2019, 18, 2125-2140.	6.1	249
31	Resource Allocation for Secure UAV-Assisted SWIPT Systems. IEEE Access, 2019, 7, 24248-24257.	2.6	36
32	Joint Trajectory and Power Design for UAV-Enabled Secure Communications With No-Fly Zone Constraints. IEEE Access, 2019, 7, 44459-44470.	2.6	22
33	Learning-Based User Association for Dual-UAV Enabled Wireless Networks With D2D Connections. IEEE Access, 2019, 7, 30672-30682.	2.6	15
34	Optimal 3D-Trajectory Design and Resource Allocation for Solar-Powered UAV Communication Systems. IEEE Transactions on Communications, 2019, 67, 4281-4298.	4.9	285
35	Uplink Cooperative NOMA for Cellular-Connected UAV. IEEE Journal on Selected Topics in Signal Processing, 2019, 13, 644-656.	7.3	153
36	Joint Position and Time Allocation Optimization of UAV Enabled Time Allocation Optimization Networks. IEEE Transactions on Communications, 2019, 67, 3806-3816.	4.9	54
37	Joint Blocklength and Location Optimization for URLLC-Enabled UAV Relay Systems. IEEE Communications Letters, 2019, 23, 498-501.	2.5	149

#	Article	IF	Citations
38	Fundamental Trade-offs in Communication and Trajectory Design for UAV-Enabled Wireless Network. IEEE Wireless Communications, 2019, 26, 36-44.	6.6	160
39	UAV-Assisted Emergency Networks in Disasters. IEEE Wireless Communications, 2019, 26, 45-51.	6.6	443
40	Covert Wireless Data Collection Based on Unmanned Aerial Vehicles. , 2019, , .		5
41	Gated Recurrent Units Learning for Optimal Deployment of Visible Light Communications Enabled UAVs. , 2019, , .		6
42	3D Trajectory Optimization for Secure UAV Communication with CoMP Reception., 2019,,.		13
43	Capacity Characterization of UAV-Enabled Multiple Access Channel with Trajectory Optimization. , 2019, , .		3
44	Throughput Improvement for Multi-Hop UAV Relaying. IEEE Access, 2019, 7, 147732-147742.	2.6	33
45	Trajectory and Beamforming Vector Optimization for Multi-UAV Multicast Network., 2019,,.		4
46	Accessing From the Sky: A Tutorial on UAV Communications for 5G and Beyond. Proceedings of the IEEE, 2019, 107, 2327-2375.	16.4	828
47	Secure UAV Communication With Cooperative Jamming and Trajectory Control. IEEE Communications Letters, 2019, 23, 286-289.	2.5	138
48	Cyclical NOMA Based UAV-Enabled Wireless Network. IEEE Access, 2019, 7, 4248-4259.	2.6	41
49	Cellular-Enabled UAV Communication: A Connectivity-Constrained Trajectory Optimization Perspective. IEEE Transactions on Communications, 2019, 67, 2580-2604.	4.9	274
50	Securing UAV Communications via Joint Trajectory and Power Control. IEEE Transactions on Wireless Communications, 2019, 18, 1376-1389.	6.1	419
51	UAV-Aided Projection-Based Compressive Data Gathering in Wireless Sensor Networks. IEEE Internet of Things Journal, 2019, 6, 1893-1905.	5 . 5	154
52	Throughput Maximization for UAV-Enabled Wireless Powered Communication Networks. IEEE Internet of Things Journal, 2019, 6, 1690-1703.	5.5	269
53	UAV Trajectory Planning for Data Collection from Time-Constrained IoT Devices. IEEE Transactions on Wireless Communications, 2020, 19, 34-46.	6.1	238
54	Joint Position, Decoding Order, and Power Allocation Optimization in UAV-Based NOMA Downlink Communications. IEEE Systems Journal, 2020, 14, 2949-2960.	2.9	43
55	Utility-Aware Optimal Resource Allocation Protocol for UAV-Assisted Small Cells With Heterogeneous Coverage Demands. IEEE Transactions on Wireless Communications, 2020, 19, 1221-1236.	6.1	16

#	ARTICLE	IF	CITATIONS
56	Fundamental Rate Limits of UAV-Enabled Multiple Access Channel With Trajectory Optimization. IEEE Transactions on Wireless Communications, 2020, 19, 458-474.	6.1	55
57	UAVs joint optimization problems and machine learning to improve the 5G and Beyond communication. Computer Networks, 2020, 182, 107478.	3.2	30
58	Experimentally Analyzing Diverse Antenna Placements and Orientations for UAV Communications. IEEE Transactions on Vehicular Technology, 2020, 69, 14989-15004.	3.9	16
59	Coverage Probability-Constrained Maximum Throughput in UAV-Aided SWIPT Networks. , 2020, , .		4
60	Online Maneuver Design for UAV-Enabled NOMA Systems via Reinforcement Learning. , 2020, , .		11
61	Comparing Capacity Gains of Static and UAV-Based Millimeter-Wave Relays in Clustered Deployments. , 2020, , .		2
62	Intelligent Ubiquitous Network Accessibility for Wireless-Powered MEC in UAV-Assisted B5G. IEEE Transactions on Network Science and Engineering, 2021, 8, 2801-2813.	4.1	64
63	Enabling Capacity Estimation With Ergodic Interference Power in Cellular-Based Multiple UAV Systems. IEEE Access, 2020, 8, 178539-178551.	2.6	0
64	Unmanned aerial vehicles integrated <scp>HetNet < /scp> for smart dense urban area. Transactions on Emerging Telecommunications Technologies, 2022, 33, .</scp>	2.6	22
65	Secure beamforming design for the UAV-enabled transmission over NOMA networks. Eurasip Journal on Wireless Communications and Networking, 2020, 2020, .	1.5	4
66	Cognitive NOMA for UAV-Enabled Secure Communications: Joint 3D Trajectory Design and Power Allocation. IEEE Access, 2020, 8, 159965-159978.	2.6	21
67	Outage Performance of Multi-Antenna Mobile UAV-Assisted NOMA Relay Systems Over Nakagami- <i>m</i> Fading Channels. IEEE Access, 2020, 8, 215033-215043.	2.6	27
69	Robust Non-Orthogonal Multiple Access for Aerial and Ground Users. IEEE Transactions on Wireless Communications, 2020, 19, 4793-4805.	6.1	21
70	Deep Reinforcement Learning With Application to Air Confrontation Intelligent Decision-Making of Manned/Unmanned Aerial Vehicle Cooperative System. IEEE Access, 2020, 8, 67887-67898.	2.6	29
71	Common Throughput Maximization for UAV-Enabled Interference Channel With Wireless Powered Communications. IEEE Transactions on Communications, 2020, 68, 3197-3212.	4.9	63
72	Softwarization of UAV Networks: A Survey of Applications and Future Trends. IEEE Access, 2020, 8, 98073-98125.	2.6	127
73	Lightweight 3-D Beamforming Design in 5G UAV Broadcasting Communications. IEEE Transactions on Broadcasting, 2020, 66, 515-524.	2.5	23
74	3D UAV Trajectory and Communication Design for Simultaneous Uplink and Downlink Transmission. IEEE Transactions on Communications, 2020, 68, 5908-5923.	4.9	66

#	Article	IF	Citations
75	On the 3-D Placement of Airborne Base Stations Using Tethered UAVs. IEEE Transactions on Communications, 2020, 68, 5202-5215.	4.9	63
76	Unmanned Aerial Vehicle Relay System: Performance Evaluation and 3D Location Optimization. IEEE Access, 2020, 8, 67635-67645.	2.6	14
77	Routing Protocols for Unmanned Aerial Vehicle-Aided Vehicular Ad Hoc Networks: A Survey. IEEE Access, 2020, 8, 77535-77560.	2.6	78
78	Edge Caching in Multi-UAV-Enabled Radio Access Networks: 3D Modeling and Spectral Efficiency Optimization. IEEE Transactions on Signal and Information Processing Over Networks, 2020, 6, 329-341.	1.6	25
79	Performance Evaluation of Next-Generation Wireless (5G) UAV Relay. Wireless Personal Communications, 2020, 113, 945-960.	1.8	31
80	Energy Management and Trajectory Optimization for UAV-Enabled Legitimate Monitoring Systems. IEEE Transactions on Wireless Communications, 2021, 20, 142-155.	6.1	31
81	Joint Optimization for Secure Intelligent Reflecting Surface Assisted UAV Networks. IEEE Wireless Communications Letters, 2021, 10, 276-280.	3.2	112
82	QoE-Driven UAV-Enabled Pseudo-Analog Wireless Video Broadcast: A Joint Optimization of Power and Trajectory. IEEE Transactions on Multimedia, 2021, 23, 2398-2412.	5.2	12
83	Mathematical framework for 5Gâ€UAV relay. Transactions on Emerging Telecommunications Technologies, 2021, 32, e4194.	2.6	3
84	Optimal UAV's Deployment and Transmit Power Design for Two Users Uplink NOMA Systems. Frontiers in Neurorobotics, 2020, 14, 599344.	1.6	2
85	UAV-Enabled Covert Wireless Data Collection. IEEE Journal on Selected Areas in Communications, 2021, 39, 3348-3362.	9.7	41
86	UAV Trajectory and Communication Co-Design: Flexible Path Discretization and Path Compression. IEEE Journal on Selected Areas in Communications, 2021, 39, 3506-3523.	9.7	14
87	Accuracy-awareness: A pessimistic approach to optimal control of triggered mobile communication networks. IFAC-PapersOnLine, 2021, 54, 296-301.	0.5	0
88	Performance Analysis and Optimization of a UAV-Enabled Two-Way Relaying Network Under FSMH, NC, and PNC Schemes. IEEE Internet of Things Journal, 2021, 8, 17802-17816.	5.5	10
89	Joint Resource, Trajectory, and Artificial Noise Optimization in Secure Driven 3-D UAVs With NOMA and Imperfect CSI. IEEE Journal on Selected Areas in Communications, 2021, 39, 3363-3377.	9.7	25
90	Novel Optimal Trajectory Design in UAV-Assisted Networks: A Mechanical Equivalence-Based Strategy. IEEE Journal on Selected Areas in Communications, 2021, 39, 3524-3541.	9.7	11
91	Hybrid Beamforming Design and Resource Allocation for UAV-Aided Wireless-Powered Mobile Edge Computing Networks With NOMA. IEEE Journal on Selected Areas in Communications, 2021, 39, 3271-3286.	9.7	47
92	UAV-Assisted Time-Efficient Data Collection via Uplink NOMA. IEEE Transactions on Communications, 2021, 69, 7851-7863.	4.9	19

#	Article	IF	CITATIONS
93	User Grouping and Energy Harvesting in UAV-NOMA System With AF/DF Relaying. IEEE Transactions on Vehicular Technology, 2021, 70, 11855-11868.	3.9	39
94	Energy-Efficient Optimization Design for UAV-Assisted Wireless Powered MEC Systems. Lecture Notes in Computer Science, 2021, , 146-155.	1.0	0
95	Multi-UAV Enabled Data Collection with Efficient Joint Adaptive Interference Management and Trajectory Design. Electronics (Switzerland), 2021, 10, 547.	1.8	8
96	3D Trajectory and Transmit Power Optimization for UAV-Enabled Multi-Link Relaying Systems. IEEE Transactions on Green Communications and Networking, 2021, 5, 392-405.	3.5	29
97	Vehicle Assisted Computing Offloading for Unmanned Aerial Vehicles in Smart City. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 1932-1944.	4.7	67
98	Energy-efficient design for mmWave-enabled NOMA-UAV networks. Science China Information Sciences, 2021, 64, 1.	2.7	113
99	Joint Position and Time Allocation Optimization of UAV-Aided Wireless Powered Relay Communication Systems. Wireless Communications and Mobile Computing, 2021, 2021, 1-10.	0.8	2
100	Outage-Constrained Robust Multigroup Multicast Beamforming for Satellite-Based Internet of Things Coexisting With Terrestrial Networks. IEEE Internet of Things Journal, 2021, 8, 8159-8172.	5.5	13
101	Radio Frequency Method for Emulating Multiple UAVs. , 2021, , .		1
102	Spectral efficiency in non-terrestrial heterogeneous networks with spectrum underlay access. Physical Communication, 2021, 46, 101313.	1.2	3
103	Game Theoretical Secure Bandwidth Allocation in UAV-assisted Heterogeneous Networks. , 2021, , .		2
104	Learning-based joint UAV trajectory and power allocation optimization for secure IoT networks. Digital Communications and Networks, 2022, 8, 415-421.	2.7	17
105	Radio-Map-Based UAV Placement Design for UAV-Assisted Relaying Networks. , 2021, , .		3
106	A Novel Non-Stationary 6G UAV Channel Model for Maritime Communications. IEEE Journal on Selected Areas in Communications, 2021, 39, 2992-3005.	9.7	45
107	Reconfigurable Intelligent Surface-Assisted Aerial-Terrestrial Communications via Multi-Task Learning. IEEE Journal on Selected Areas in Communications, 2021, 39, 3035-3050.	9.7	57
108	A Comprehensive Overview on 5G-and-Beyond Networks With UAVs: From Communications to Sensing and Intelligence. IEEE Journal on Selected Areas in Communications, 2021, 39, 2912-2945.	9.7	202
109	A UAV-Assisted Ubiquitous Trust Communication System in 5G and Beyond Networks. IEEE Journal on Selected Areas in Communications, 2021, 39, 3444-3458.	9.7	44
110	SDN Architecture for UAVs and EVs using Satellite: A Hypothetical Model and New Challenges for Future., 2021,,.		9

#	Article	IF	CITATIONS
111	UAV-Enabled Wireless Power Transfer: A Tutorial Overview. IEEE Transactions on Green Communications and Networking, 2021, 5, 2042-2064.	3.5	34
112	A Trust Based Scheme to Protect 5G UAV Communication Networks. IEEE Open Journal of the Computer Society, 2021, 2, 300-307.	5 . 2	2
113	Federated Learning for Task and Resource Allocation in Wireless High-Altitude Balloon Networks. IEEE Internet of Things Journal, 2021, 8, 17460-17475.	5.5	38
115	Performance Evaluation of Downlink Multiple Users NOMA-Enable UAV-Aided Communication Systems Over Nakagami- <i>m</i> Fading Environments. IEEE Access, 2021, 9, 151641-151653.	2.6	4
116	Characterization of the Human Body Impact on UAV-to-Ground Channels at Ultra-Low Altitudes. IEEE Transactions on Vehicular Technology, 2022, 71, 339-353.	3.9	2
117	Trajectory optimization and resource allocation for UAV base stations under in-band backhaul constraint. Eurasip Journal on Wireless Communications and Networking, 2020, 2020, .	1.5	12
118	Joint UAVs' Load Balancing and UEs' Data Rate Fairness Optimization by Diffusion UAV Deployment Algorithm in Multi-UAV Networks. Entropy, 2021, 23, 1470.	1.1	4
119	Renewable Energy-Enabled Cellular Networks. SSRN Electronic Journal, 0, , .	0.4	3
120	A Survey on Spectrum Management for Unmanned Aerial Vehicles (UAVs). IEEE Access, 2022, 10, 11443-11499.	2.6	29
121	Forming a Two-Tier Heterogeneous Air-Network via Combination of High and Low Altitude Platforms. IEEE Transactions on Vehicular Technology, 2022, 71, 1989-2001.	3.9	12
122	On the Coverage of UAV-Assisted SWIPT Networks With Nonlinear EH Model. IEEE Transactions on Wireless Communications, 2022, 21, 4464-4481.	6.1	11
123	On Tethered UAV-Assisted Heterogeneous Network. IEEE Transactions on Vehicular Technology, 2022, 71, 975-983.	3.9	8
124	MOSAIC: Multiobjective Optimization Strategy for Al-Aided Internet of Things Communications. IEEE Internet of Things Journal, 2022, 9, 15657-15673.	5.5	1
125	Secure UAV communication against cooperative adaptive eavesdroppers. Wireless Networks, 2022, 28, 1113.	2.0	1
126	Finite Point Processes in a Truncated Octahedron-Based 3D UAV Network. IEEE Transactions on Vehicular Technology, 2022, 71, 7230-7243.	3.9	4
127	UAV Trajectory and Beamforming Optimization for Integrated Periodic Sensing and Communication. IEEE Wireless Communications Letters, 2022, 11, 1211-1215.	3.2	39
128	An UAV-assisted mobile edge computing offloading strategy for minimizing energy consumption. Computer Networks, 2022, 207, 108857.	3.2	15
129	Disturbance Observer Based Trajectory Tracking Control for the Unmanned Aerial Vehicle. , 2021, , .		0

#	Article	IF	CITATIONS
130	Measurement-based Characterization of Human Body Impact on Ultra-low UAV-to-Ground Channels. , 2021, , .		2
131	Performance Evaluation of UAV-Based NOMA Networks with Hardware Impairment. Electronics (Switzerland), 2022, 11, 94.	1.8	6
132	Distributed multi-UAV cooperation for dynamic target tracking optimized by an SAQPSO algorithm. ISA Transactions, 2022, 129, 230-242.	3.1	17
133	A compendium of radio resource management in UAV-assisted next generation computing paradigms. Ad Hoc Networks, 2022, 131, 102844.	3.4	5
134	Spatial-temporal Correlations of U2V Channel Considering Fuselage Posture and Antenna Pattern. , 2022, , .		0
135	Analysis of NOMA based UAV assisted short-packet communication system and blocklength minimization for IoT applications. Wireless Networks, 0, , .	2.0	0
136	Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios. IEEE Transactions on Wireless Communications, 2022, 21, 10633-10647.	6.1	8
137	Throughput Maximization for UAV-enabled Integrated Periodic Sensing and Communication., 2022,,.		4
138	Derivative-Free Placement Optimization for Multi-UAV Wireless Networks with Channel Knowledge Map. , 2022, , .		1
139	Resource management in UAV-assisted MEC: state-of-the-art and open challenges. Wireless Networks, 2022, 28, 3305-3322.	2.0	19
140	Throughput Maximization for UAV-Enabled Integrated Periodic Sensing and Communication. IEEE Transactions on Wireless Communications, 2023, 22, 671-687.	6.1	24
141	Wireless Self-Energy Recycling for Unmanned Aerial Vehicle-based Terrestrial Broadcasting., 2022,,.		0
142	UAV-Enabled Cooperative Jamming for Covert Communications based on Geometric Method., 2022,,.		0
143	Unmanned Aerial Vehicle Communications for Civil Applications: A Review. IEEE Access, 2022, 10, 102492-102531.	2.6	22
144	UAV-Enabled Wireless Powered Communication Networks for Over-the-Air Computation., 2022,,.		0
145	Joint Channel Allocation and Data Delivery for UAV-Assisted Cooperative Transportation Communications in Post-Disaster Networks. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 16676-16689.	4.7	5
146	Joint Maneuver and Beamforming Design for UAV-Enabled Integrated Sensing and Communication. IEEE Transactions on Wireless Communications, 2023, 22, 2424-2440.	6.1	21
147	Adaptive Control for the UAV Trajectory Tracking under Unknown External Disturbance. , 2022, , .		0

#	Article	IF	CITATIONS
148	Unmanned-Aerial-Vehicle-Assisted Wireless Networks: Advancements, Challenges, and Solutions. IEEE Internet of Things Journal, 2023, 10, 4117-4147.	5.5	9
149	IRS Aided MEC Systems With Binary Offloading: A Unified Framework for Dynamic IRS Beamforming. IEEE Journal on Selected Areas in Communications, 2023, 41, 349-365.	9.7	15
150	Reinforcement learning based joint trajectory design and resource allocation for RIS-aided UAV multicast networks. Computer Networks, 2023, 227, 109697.	3.2	2
151	Joint resource scheduling and trajectory design for multi-UAV-assisted uplink NOMA networks. AEU - International Journal of Electronics and Communications, 2023, 164, 154619.	1.7	O
152	UAV-Aided Dual-User Wireless Power Transfer: 3D Trajectory Design and Energy Optimization. Sensors, 2023, 23, 2994.	2.1	1
153	UAV Placement for VR Reconstruction: A Tradeoff Between Resolution and Delay. IEEE Communications Letters, 2023, 27, 1382-1386.	2.5	0
154	Joint Transmit Power and Trajectory Design for UAV-Enabled Covert Communication., 2023,,.		0
159	ISAC withÂEmerging Communication Technologies. , 2023, , 589-619.		O
161	Deep Reinforcement Learning Optimization Algorithm Designed for IRS-Assisted Edge Computing. , 2023, , .		0
164	UAV-Assisted Hybrid Throughput Optimization Based on Deep Reinforcement Learning., 2023,,.		О