Rotor strength analysis for highâ€speed segmented sur synchronous machines

IET Electric Power Applications 12, 979-990

DOI: 10.1049/iet-epa.2017.0686

Citation Report

#	Article	IF	CITATIONS
1	Rotor Stress Analysis for High-Speed Permanent Magnet Machines Considering Assembly Gap and Temperature Gradient. IEEE Transactions on Energy Conversion, 2019, 34, 2276-2285.	3.7	39
2	Magnetic Circuit Model and Finite Element Analyze of Stator Excitation Transverse Flux High Speed Permanent Magnet Synchronous Machine. , 2019, , .		1
3	ANALYSIS AND OPTIMIZATION OF DOUBLE-SIDE HYBRID EXCITATION FLUX-SWITCHING MOTOR. Progress in Electromagnetics Research C, 2020, 101, 219-232.	0.6	1
4	Investigation of rotor strength and rotor dynamics for highâ€speed highâ€power switched reluctance machines. IET Electric Power Applications, 2020, 14, 1624-1630.	1.1	5
5	Buried PM inner rotor magnetic gear evaluation. IOP Conference Series: Materials Science and Engineering, 2020, 917, 012002.	0.3	0
6	A NEW SPEED MULTIPLIER COAXIAL MAGNETIC GEAR. Progress in Electromagnetics Research M, 2020, 93, 145-154.	0.5	1
7	Design and optimization of outer-rotor permanent magnet flux switching motor using transverse segmental rotor shape for automotive applications. Ain Shams Engineering Journal, 2021, 12, 507-516.	3.5	11
8	Design of a Rig to Assess the Structural Performance of Rotors for High Speed Electric Machines. Lecture Notes in Mechanical Engineering, 2021, , 301-323.	0.3	0
9	Comparison of theoretical approaches to determine the stresses in surface mounted permanent magnet rotors for high speed electric machines. Journal of Strain Analysis for Engineering Design, 0, , 030932472110076.	1.0	5
10	Comprehensive design of high-speed and high-power motor rotor considering dynamic characteristics. , 2021, , .		2
11	A High Efficiency Hybrid Synchronous Motor for Electric Vehicle. , 2021, , .		5
12	Multiâ€øbjective optimisation of the HSPMM rotor based on the multiâ€øhysics surrogate model. IET Electric Power Applications, 0, , .	1.1	1
13	R3(Fe,T)29 intermetallic compounds - Magnetoelastic coupling in Sm3(CoxFe1-x)29-yCry. Journal of Magnetism and Magnetic Materials, 2021, 533, 168013.	1.0	0
14	Rotor electrical conductivity and eddy current loss analysis of highâ€speed permanent magnet machine with a novel composite rotor. IET Electric Power Applications, 2022, 16, 15-28.	1.1	2
15	Influence of sleeve conductivity on starting performance of highâ€speed permanent magnet synchronous starter generator for microâ€gas turbine. IET Electric Power Applications, 2020, 14, 2187-2192.	1.1	2
16	Study on the Rotor Strength of High-Speed Permanent Magnet Motor Considering the Influence of Assembly Pressing Force. Symmetry, 2021, 13, 2161.	1.1	2
17	Magnetic Properties Analysis of Novel Composite Magnetic Materials for HSPMSMs. IEEE Transactions on Magnetics, 2022, 58, 1-10.	1.2	3
18	Rotor Design, Analysis and Experimental Validation of a High-Speed Permanent Magnet Synchronous Motor for Electric Turbocharger. IEEE Access, 2022, 10, 21955-21969.	2.6	12

#	Article	IF	CITATIONS
19	Research on Stress Design and Manufacture of the Fiber-Reinforced Composite Sleeve for the Rotor of High-Speed Permanent Magnet Motor. Energies, 2022, 15, 2467.	1.6	3
20	Analytical model of mechanical properties of carbon fiber magnetic powder film-level magnetic materials for high-speed motors. Energy Reports, 2022, 8, 374-383.	2.5	0
21	A study on reducing eddy current loss of sleeve and improving torque density using ferrofluid of a surface permanent magnet synchronous motor. IET Electric Power Applications, 2022, 16, 463-471.	1.1	2
22	Rotor Strength Analysis of FeCo-Based Permanent Magnet High Speed Motor. Machines, 2022, 10, 462.	1.2	7
23	Comprehensive Comparison of a High-Speed Permanent Magnet Synchronous Motor Considering Rotor Length–Diameter Ratio. Energies, 2022, 15, 5256.	1.6	1
24	Optimal design of a rotor sleeve for a surface-mounted high-speed permanent-magnet motor with a multi-dimensional visualization strategy. Journal of Mechanical Science and Technology, 2022, 36, 5885-5894.	0.7	0
25	Rotor Stress Analysis of High-Speed Surface-Mounted Permanent Magnet Motors with Segmented Poles Considering Fillings. Journal of Electrical Engineering and Technology, 2023, 18, 2103-2113.	1.2	1
26	Design and Analysis of Basic Model of High-speed Surface-mounted Permanent Magnet Synchronous Motors Based on Subdomain Method. Journal of Electrical Engineering and Technology, 0, , .	1.2	0
28	Analysis of Tension Winding of High-Speed Permanent Magnet Motor Rotor with Magnetic Sleeve. , 2023, , .		0

CITATION REPORT