High efficiency planar-type perovskite solar cells with a EDTA-complexed SnO2

Nature Communications 9, 3239 DOI: 10.1038/s41467-018-05760-x

Citation Report

#	Article	IF	CITATIONS
1	Investigation of Microstructure Effect on NO ₂ Sensors Based on SnO ₂ Nanoparticles/Reduced Graphene Oxide Hybrids. ACS Applied Materials & Interfaces, 2018, 10, 41773-41783.	4.0	100
2	Thin-film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu(In,Ga)Se2-, and perovskite-based materials. Applied Physics Reviews, 2018, 5, .	5.5	175
3	Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. Materials, 2018, 11, 2592.	1.3	43
4	Effect of High Dipole Moment Cation on Layered 2D Organic–Inorganic Halide Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803024.	10.2	117
5	In Situ Grain Boundary Modification via Two-Dimensional Nanoplates to Remarkably Improve Stability and Efficiency of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 39802-39808.	4.0	24
6	SnO ₂ â€inâ€Polymer Matrix for Highâ€Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability. Advanced Materials, 2018, 30, e1805153.	11.1	185
7	Perovskite Solar Cells Employing Copper Phthalocyanine Hole-Transport Material with an Efficiency over 20% and Excellent Thermal Stability. ACS Energy Letters, 2018, 3, 2441-2448.	8.8	90
8	Efficiency Enhancement of Perovskite Solar Cells with Plasmonic Nanoparticles: A Simulation Study. Materials, 2018, 11, 1626.	1.3	27
9	Unveiling the structures and electronic properties of CH3NH3PbI3 interfaces with TiO2, ZnO, and SnO2: a first-principles study. Journal of Materials Science, 2019, 54, 13594-13608.	1.7	5
10	Low temperature combustion synthesized indium oxide electron transport layer for high performance and stable perovskite solar cells. Journal of Power Sources, 2019, 438, 226981.	4.0	22
11	Low-temperature preparation of HTM-free SnO2-based planar heterojunction perovskite solar cells with commercial carbon as counter electrode. Journal of Alloys and Compounds, 2019, 809, 151817.	2.8	23
12	Unravelling the mechanism of interface passivation engineering for achieving high-efficient ZnO-based planar perovskite solar cells. Journal of Power Sources, 2019, 438, 226957.	4.0	23
13	SnO ₂ ₆₀ Pyrrolidine Trisâ€Acid (CPTA) as the Electron Transport Layer for Highly Efficient and Stable Planar Snâ€Based Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1903621.	7.8	48
14	Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells. Advanced Materials, 2019, 31, e1902902.	11.1	366
15	Tailored electronic properties of Zr-doped SnO2 nanoparticles for efficient planar perovskite solar cells with marginal hysteresis. Nano Energy, 2019, 65, 104014.	8.2	74
16	Low-Temperature Solution-Processed Thin SnO ₂ /Al ₂ O ₃ Double Electron Transport Layers Toward 20% Efficient Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1309-1315.	1.5	21
17	Fully-ambient-air and antisolvent-free-processed stable perovskite solar cells with perovskite-based composites and interface engineering. Nano Energy, 2019, 64, 103964.	8.2	35
18	Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules. ACS Energy Letters, 2019, 4, 2147-2167.	8.8	161

#	Article	IF	CITATIONS
19	High-quality NiO thin film by low-temperature spray combustion method for perovskite solar cells. Journal of Alloys and Compounds, 2019, 810, 151970.	2.8	36
20	Fullerene Derivative-Modified SnO ₂ Electron Transport Layer for Highly Efficient Perovskite Solar Cells with Efficiency over 21%. ACS Applied Materials & Interfaces, 2019, 11, 33825-33834.	4.0	73
21	Defect passivation by alcohol-soluble small molecules for efficient p–i–n planar perovskite solar cells with high open-circuit voltage. Journal of Materials Chemistry A, 2019, 7, 21140-21148.	5.2	58
22	Pseudohalide induced tunable electronic and excitonic properties in two-dimensional single-layer perovskite for photovoltaics and photoelectronic applications. Journal of Energy Chemistry, 2019, 36, 106-113.	7.1	10
23	Pyridine-Terminated Conjugated Organic Molecules as an Interfacial Hole Transfer Bridge for NiO _{<i>x</i>} -Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 28960-28967.	4.0	49
24	Quantum-Dot-Induced Cesium-Rich Surface Imparts Enhanced Stability to Formamidinium Lead Iodide Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 1970-1975.	8.8	82
25	Postâ€Treatment of CH ₃ NH ₃ PbI ₃ /PbI ₂ Composite Films with Methylamine to Realize Highâ€Performance Photoconductor Devices. Chemistry - an Asian Journal, 2019, 14, 2861-2868.	1.7	7
26	A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18898-18905.	5.2	36
27	A review on the crystalline silicon bottom cell for monolithic perovskite/silicon tandem solar cells. Materials Today Nano, 2019, 7, 100045.	2.3	46
28	Substrateâ€Dependent Spin–Orbit Coupling in Hybrid Perovskite Thin Films. Advanced Functional Materials, 2019, 29, 1904046.	7.8	23
29	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	16.0	95
30	A new polytriarylamine derivative for dopant-free high-efficiency perovskite solar cells. Sustainable Energy and Fuels, 2019, 3, 2627-2632.	2.5	32
31	Two-dimensional inverted planar perovskite solar cells with efficiency over 15% <i>via</i> solvent and interface engineering. Journal of Materials Chemistry A, 2019, 7, 18980-18986.	5.2	41
32	A High Mobility Conjugated Polymer Enables Air and Thermally Stable CsPbI ₂ Br Perovskite Solar Cells with an Efficiency Exceeding 15%. Advanced Materials Technologies, 2019, 4, 1900311.	3.0	59
33	Recent Progress in Highâ€efficiency Planarâ€structure Perovskite Solar Cells. Energy and Environmental Materials, 2019, 2, 93-106.	7.3	45
34	Adduct phases induced controlled crystallization for mixed-cation perovskite solar cells with efficiency over 21%. Nano Energy, 2019, 63, 103867.	8.2	48
35	Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells. Joule, 2019, 3, 1963-1976.	11.7	222
36	Interfacial modification using ultrasonic atomized graphene quantum dots for efficient perovskite solar cells. Organic Electronics, 2019, 75, 105415.	1.4	16

#	Article	IF	CITATIONS
37	Simulation of perovskite solar cell temperature under reverse and forward bias conditions. Journal of Applied Physics, 2019, 126, .	1.1	14
38	Highâ€Performance Flexible Perovskite Solar Cells via Precise Control of Electron Transport Layer. Advanced Energy Materials, 2019, 9, 1901419.	10.2	167
39	Enhanced Lifetime and Photostability with Lowâ€ī emperature Mesoporous ZnTiO ₃ /Compact SnO ₂ Electrodes in Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 18460-18465.	7.2	33
40	Hysteresis-Free Planar Perovskite Solar Cells with a Breakthrough Efficiency of 22% and Superior Operational Stability over 2000 h. ACS Applied Materials & Interfaces, 2019, 11, 39998-40005.	4.0	86
41	Morphology control of organic halide perovskites by adding BiFeO3 nanostructures for efficient solar cell. Scientific Reports, 2019, 9, 15441.	1.6	13
42	Insights into Fullerene Passivation of SnO ₂ Electron Transport Layers in Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905883.	7.8	124
43	Zwitterion Nondetergent Sulfobetaine-Modified SnO ₂ as an Efficient Electron Transport Layer for Inverted Organic Solar Cells. ACS Omega, 2019, 4, 19225-19237.	1.6	14
44	Semi-Transparent Perovskite Solar Cells with ITO Directly Sputtered on Spiro-OMeTAD for Tandem Applications. ACS Applied Materials & Interfaces, 2019, 11, 45796-45804.	4.0	63
45	Enhanced Lifetime and Photostability with Lowâ€Temperature Mesoporous ZnTiO ₃ /Compact SnO ₂ Electrodes in Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 18631-18636.	1.6	13
46	Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Science Bulletin, 2019, 64, 1743-1746.	4.3	51
47	Improved crystallinity of perovskite via molecularly tailored surface modification of SnO2. Journal of Power Sources, 2019, 441, 227161.	4.0	20
48	Improved Interface Charge Extraction by Double Electron Transport Layers for Highâ€Efficient Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900314.	3.1	18
49	Targeted Therapy for Interfacial Engineering Toward Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2019, 31, e1903691.	11.1	125
50	Optical Simulation and Investigation of the Effect of Hysteresis on the Perovskite Solar Cells. Nano, 2019, 14, 1950127.	0.5	15
51	Large area, high efficiency and stable perovskite solar cells enabled by fine control of intermediate phase. Solar Energy Materials and Solar Cells, 2019, 201, 110113.	3.0	9
52	Spontaneous Interface Ion Exchange: Passivating Surface Defects of Perovskite Solar Cells with Enhanced Photovoltage. Advanced Energy Materials, 2019, 9, 1902142.	10.2	63
53	Eliminating Charge Accumulation via Interfacial Dipole for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 34964-34972.	4.0	48
54	ZnO-Modified Anode for High-Performance SnO ₂ -Based Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 7062-7069.	2.5	21

#	Article	IF	CITATIONS
55	Poly(vinylpyrrolidone)-doped SnO ₂ as an electron transport layer for perovskite solar cells with improved performance. Journal of Materials Chemistry C, 2019, 7, 12204-12210.	2.7	28
56	Flexible Perovskite Solar Cells. Joule, 2019, 3, 1850-1880.	11.7	242
57	Interfacial Engineering at the 2D/3D Heterojunction for High-Performance Perovskite Solar Cells. Nano Letters, 2019, 19, 7181-7190.	4.5	163
58	PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping. Nanoscale Advances, 2019, 1, 4109-4118.	2.2	32
59	Highly efficient planar perovskite solar cells <i>via</i> acid-assisted surface passivation. Journal of Materials Chemistry A, 2019, 7, 22323-22331.	5.2	34
60	Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications. Journal of Materials Chemistry A, 2019, 7, 24661-24690.	5.2	27
61	Influence of Interfacial Traps on the Operating Temperature of Perovskite Solar Cells. Materials, 2019, 12, 2727.	1.3	12
62	Enhanced Performance and Stability in DNA-Perovskite Heterostructure-Based Solar Cells. ACS Energy Letters, 2019, 4, 2646-2655.	8.8	45
63	Green low-temperature-solution-processed in situ HI modified TiO2/SnO2 bilayer for efficient and stable planar perovskite solar cells build at ambient air conditions. Electrochimica Acta, 2019, 326, 134924.	2.6	19
64	Multifaceted Role of a Dibutylhydroxytoluene Processing Additive in Enhancing the Efficiency and Stability of Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 38828-38837.	4.0	10
65	Facile RbBr interface modification improves perovskite solar cell efficiency. Materials Today Chemistry, 2019, 14, 100179.	1.7	18
66	Low temperature ZnO/TiOx electron-transport layer processed from aqueous solution for highly efficient and stable planar perovskite solar cells. Materials Today Energy, 2019, 14, 100351.	2.5	14
67	Improvement of Csâ€(FAPbI ₃) _{0.85} (MAPbBr ₃) _{0.15} Quality Via DMSOâ€Moleculeâ€Control to Increase the Efficiency and Boost the Longâ€Term Stability of 1 cm ² Sized Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800338.	3.1	21
68	Novel Molecular Doping Mechanism for nâ€Đoping of SnO ₂ via Triphenylphosphine Oxide and Its Effect on Perovskite Solar Cells. Advanced Materials, 2019, 31, e1805944.	11.1	152
69	Flexible quintuple cation perovskite solar cells with high efficiency. Journal of Materials Chemistry A, 2019, 7, 4960-4970.	5.2	93
70	Introduction of carbon nanodots into SnO ₂ electron transport layer for efficient and UV stable planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5353-5362.	5.2	67
71	Fluorite Phase Transition in SnO ₂ under Uniaxial Compression and at 500 K. Journal of Physical Chemistry C, 2019, 123, 5603-5607.	1.5	1
72	Two-dimensional (PEA) ₂ PbBr ₄ perovskite single crystals for a high performance UV-detector. Journal of Materials Chemistry C, 2019, 7, 1584-1591.	2.7	138

ARTICLE IF CITATIONS Bismuth oxysulfide modified ZnO nanorod arrays as an efficient electron transport layer for inverted 73 5.2 63 polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 14776-14789. Nitrogenâ€Doped Nickel Oxide as Hole Transport Layer for Highâ€Efficiency Inverted Planar Perovskite 74 3.1 29 Solar Cells. Solar Rrl, 2019, 3, 1900164. Inverted MAPbI 3 Perovskite Solar Cells with Graphdiyne Derivativeâ€Incorporated Electron Transport 75 3.128 Layers Exceeding 20% Efficiency. Solar Rrl, 2019, 3, 1900241. FAPbI₃ Flexible Solar Cells with a Record Efficiency of 19.38% Fabricated in Air via Ligand and Additive Synergetic Process. Advanced Functional Materials, 2019, 29, 1902974. First-Principles Study of Enhanced Out-of-Plane Transport Properties and Stability in Dion–Jacobson Two-Dimensional Perovskite Semiconductors for High-Performance Solar Cell Applications. Journal 77 2.1 42 of Physical Chemistry Letters, 2019, 10, 3670-3675. High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis Using 2,2,2-Trifluoroethanol-Incorporated SnO2. IScience, 2019, 16, 433-441. Facile synthesis of triphenylamine-based hole-transporting materials for planar perovskite solar cells. 79 4.0 12 Journal of Power Sources, 2019, 435, 226767. Chemical Bath Deposition of Coâ€Doped TiO₂ Electron Transport Layer for 3.1 36 Hysteresisâ€Suppressed Highâ€Efficiency Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900176. Influence of a Hole-Transport Layer on Light-Induced Degradation of Mixed Organic–Inorganic Halide 81 2.5 34 Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 5039-5049. Analysis of the UV–Ozoneâ€Treated SnO₂ Electron Transporting Layer in Planar Perovskite 3.1 Solar Cells for High Performance and Reduced Hysteresis. Solar Rrl, 2019, 3, 1900191. Highâ€Performance Inverted Perovskite Solar Cells by Reducing Electron Capture Region for Electron 83 3.16 Transport Layers. Solar Rrl, 2019, 3, 1900207. One-Dimensional Behavior of Imidazolium Lead Iodide. Journal of Physical Chemistry C, 2019, 123, 84 1.5 16449-16455. Achieving High Open-Circuit Voltage on Planar Perovskite Solar Cells via Chlorine-Doped Tin Oxide 85 4.0 89 Electron Transport Layers. ACS Applied Materials & amp; Interfaces, 2019, 11, 23152-23159. Improved SnO₂ Electron Transport Layers Solutionâ€Deposited at Near Room Temperature for Rigid or Flexible Perovskite Solar Cells with High Efficiencies. Advanced Energy Materials, 2019, 9, 10.2 1900834. Structural, Electronic, and Optical Characterizations of the Interface between CH₃NH₃PbI₃ and BaSnO₃ Perovskite: A First-Principles 87 10 1.5 Study. Journal of Physical Chemistry C, 2019, 123, 16075-16082. Coagulated SnO₂ Colloids for Highâ€Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability. Angewandte Chemie - International Edition, 2019, 58, 159 11497-11504. Coagulated SnO₂ Colloids for Highâ€Performance Planar Perovskite Solar Cells with 89 1.6 52 Negligible Hysteresis and Improved Stability. Angewandte Chemie, 2019, 131, 11621-11628. Metal Oxide Charge Transport Layers for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900455.

#	Article	IF	CITATIONS
91	Reactive-Sputtered Prepared Tin Oxide Thin Film as an Electron Transport Layer for Planar Perovskite Solar Cells. Coatings, 2019, 9, 320.	1.2	5
92	Solventâ€Assisted Lowâ€Temperature Crystallization of SnO ₂ Electronâ€Transfer Layer for Highâ€Efficiency Planar Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900557.	7.8	59
93	Flash infrared annealing as a cost-effective and low environmental impact processing method for planar perovskite solar cells. Materials Today, 2019, 31, 39-46.	8.3	65
94	Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6387-6411.	3.2	82
95	Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-driven parameter tuning. Electrochimica Acta, 2019, 313, 570-583.	2.6	68
96	Surface-Tension-Controlled Crystallization for High-Quality 2D Perovskite Single Crystals for Ultrahigh Photodetection. Matter, 2019, 1, 465-480.	5.0	202
97	Efficient perovskite solar cells with negligible hysteresis achieved by sol–gel-driven spinel nickel cobalt oxide thin films as the hole transport layer. Journal of Materials Chemistry C, 2019, 7, 7288-7298.	2.7	22
98	Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy, 2019, 61, 141-147.	8.2	152
99	Efficient light harvesting with a nanostructured organic electron-transporting layer in perovskite solar cells. Nanoscale, 2019, 11, 9281-9286.	2.8	9
100	Hydrothermally Treated SnO ₂ as the Electron Transport Layer in Highâ€Efficiency Flexible Perovskite Solar Cells with a Certificated Efficiency of 17.3%. Advanced Functional Materials, 2019, 29, 1807604.	7.8	72
101	Simple, Robust, and Going More Efficient: Recent Advance on Electron Transport Layerâ€Free Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900248.	10.2	62
102	Colloidal synthesis of Y-doped SnO2 nanocrystals for efficient and slight hysteresis planar perovskite solar cells. Solar Energy, 2019, 185, 508-515.	2.9	47
103	Corrosive Behavior of Silver Electrode in Inverted Perovskite Solar Cells Based on Cu:NiO _x . IEEE Journal of Photovoltaics, 2019, 9, 1081-1085.	1.5	17
104	Prediction of the Role of Bismuth Dopants in Organic–Inorganic Lead Halide Perovskites on Photoelectric Properties and Photovoltaic Performance. Journal of Physical Chemistry C, 2019, 123, 12684-12693.	1.5	24
105	A Rutile TiO 2 Electron Transport Layer for the Enhancement of Charge Collection for Efficient Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 9514-9518.	1.6	10
106	A Rutile TiO ₂ Electron Transport Layer for the Enhancement of Charge Collection for Efficient Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 9414-9418.	7.2	124
107	Non-hydrolytic sol-gel route to synthesize TiO2 nanoparticles under ambient condition for highly efficient and stable perovskite solar cells. Solar Energy, 2019, 185, 307-314.	2.9	25
108	Origin of enhanced stability in thiocyanate substituted α-FAPbI3 analogues. Science China Chemistry, 2019, 62, 866-874.	4.2	12

#	Article	IF	CITATIONS
109	Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers. Nano Letters, 2019, 19, 3313-3320.	4.5	181
110	Origins of Efficient Perovskite Solar Cells with Low-Temperature Processed SnO ₂ Electron Transport Layer. ACS Applied Energy Materials, 2019, 2, 3554-3560.	2.5	73
111	Defect engineering of oxygen vacancies in SnOx electron transporting layer for perovskite solar cells. Materials Today Energy, 2019, 12, 389-397.	2.5	21
112	Importance of terminated groups in 9,9-bis(4-methoxyphenyl)-substituted fluorene-based hole transport materials for highly efficient organic–inorganic hybrid and all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 10319-10324.	5.2	38
113	High performance perovskite sub-module with sputtered SnO2 electron transport layer. Solar Energy, 2019, 183, 306-314.	2.9	46
114	Guanidinium induced phase separated perovskite layer for efficient and highly stable solar cells. Journal of Materials Chemistry A, 2019, 7, 9486-9496.	5.2	85
115	Point defect-reduced colloidal SnO2 electron transport layers for stable and almost hysteresis-free perovskite solar cells. RSC Advances, 2019, 9, 7334-7337.	1.7	10
116	Highly efficient flexible MAPbI ₃ solar cells with a fullerene derivative-modified SnO ₂ layer as the electron transport layer. Journal of Materials Chemistry A, 2019, 7, 6659-6664.	5.2	77
117	Binary organic spacer-based quasi-two-dimensional perovskites with preferable vertical orientation and efficient charge transport for high-performance planar solar cells. Journal of Materials Chemistry A, 2019, 7, 9542-9549.	5.2	50
118	Efficient Inverted Planar Perovskite Solar Cells Using Ultraviolet/Ozoneâ€Treated NiO _x as the Hole Transport Layer. Solar Rrl, 2019, 3, 1900045.	3.1	81
119	Nanoimprinted Gratingâ€Embedded Perovskite Solar Cells with Improved Light Management. Advanced Functional Materials, 2019, 29, 1900830.	7.8	77
120	Vapor Exchange Deposition of an Air-Stable Lead Iodide Adduct on 19% Efficient 1.8 cm ² Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 2506-2514.	2.5	19
121	Mechanism of Water Effect on Enhancing the Photovoltaic Performance of Triple-Cation Hybrid Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 12699-12708.	4.0	33
122	Recent Challenges in Perovskite Solar Cells Toward Enhanced Stability, Less Toxicity, and Largeâ€Area Mass Production. Advanced Materials Interfaces, 2019, 6, 1801758.	1.9	52
123	Solutionâ€Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Advanced Functional Materials, 2019, 29, 1807661.	7.8	149
124	Multi-dimensional anatase TiO2 materials: Synthesis and their application as efficient charge transporter in perovskite solar cells. Solar Energy, 2019, 184, 323-330.	2.9	35
125	Interface modification by a multifunctional ammonium salt for high performance and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 11867-11876.	5.2	45
126	Solutionâ€Processed 2D Nb ₂ O ₅ (001) Nanosheets for Inverted CsPbI ₂ Br Perovskite Solar Cells: Interfacial and Diffusion Engineering. Solar Rrl, 2019, 3, 1900091.	3.1	42

		CITATION REPORT		
#	Article	I	F	CITATIONS
127	Research activities on perovskite solar cells in China. Science China Chemistry, 2019, 62, 822-8	28. 2	4.2	22
128	Stable perovskite solar cells using tin acetylacetonate based electron transporting layers. Energ Environmental Science, 2019, 12, 1910-1917.	y and	15.6	57
129	La-doped SnO2 as ETL for efficient planar-structure hybrid perovskite solar cells. Organic Electronics, 2019, 73, 62-68.	I	1.4	53
130	A facile room temperature solution synthesis of SnO ₂ quantum dots for perovskite cells. Journal of Materials Chemistry A, 2019, 7, 10636-10643.	solar	5.2	52
131	ZnO:Ga-graded ITO electrodes to control interface between PCBM and ITO in planar perovskite cells. Science and Technology of Advanced Materials, 2019, 20, 389-400.	solar 2	2.8	24
132	Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Advanced Ene Materials, 2019, 9, 1803017.	irgy 1	10.2	224
133	Lowâ€Temperature In Situ Amino Functionalization of TiO ₂ Nanoparticles Sharper Electron Management Achieving over 21% Efficient Planar Perovskite Solar Cells. Advanced Mat 2019, 31, e1806095.	ıs :erials, 1	11.1	194
134	Fabrication and characterization of La doped PbI2 nanostructured thin films for opto-electronic applications. Solid State Sciences, 2019, 90, 95-101.		L.5	49
135	Ultracompact, Well-Packed Perovskite Flat Crystals: Preparation and Application in Planar Solar with High Efficiency and Humidity Tolerance. ACS Applied Materials & Interfaces, 2019, 11 11283-11291.		4.0	12
136	Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite sol modules with a designated area of 91.8 cm ² approaching 10% efficiency. Journal of Materials Chemistry A, 2019, 7, 6920-6929.		5.2	112
137	Kelvin probe force microscopy for perovskite solar cells. Science China Materials, 2019, 62, 776	-789. :	3.5	93
138	Surface modification <i>via</i> self-assembling large cations for improved performance and modulated hysteresis of perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 6793-	5800. ⁸	5.2	48
139	Study on the Movements of Organometallic Halide Perovskite Crystals on their Films. ChemistrySelect, 2019, 4, 13904-13907.	(D .7	0
140	A sandwich-like electron transport layer to assist highly efficient planar perovskite solar cells. Nanoscale, 2019, 11, 21917-21926.	2	2.8	31
141	Tetrahedral amorphous carbon prepared filter cathodic vacuum arc for hole transport layers in perovskite solar cells and quantum dots LEDs. Science and Technology of Advanced Materials, 2 20, 1118-1130.	2019, 2	2.8	5
142	Perovskite solar cell-hybrid devices: thermoelectrically, electrochemically, and piezoelectrically connected power packs. Journal of Materials Chemistry A, 2019, 7, 26661-26692.	1	5.2	24
143	Highly Efficient Sn/Pb Binary Perovskite Solar Cell via Precursor Engineering: A Two‧tep Fabri Process. Advanced Functional Materials, 2019, 29, 1807024.	cation 7	7.8	122
144	Reduced Graphene Oxide/CZTS _x Se _{1â€x} Composites as a Novel Holeá Functional Layer in Perovskite Solar Cells. ChemElectroChem, 2019, 6, 1500-1507.	€Transport	L.7	9

.

	CITATION REL	PORT	
#	Article	IF	CITATIONS
145	Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. Journal of Materials Science and Technology, 2019, 35, 987-993.	5.6	123
146	Efficient and Holeâ€Transportingâ€Layerâ€Free CsPbI ₂ Br Planar Heterojunction Perovskite Solar Cells through Rubidium Passivation. ChemSusChem, 2019, 12, 983-989.	3.6	79
147	SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. Journal of Energy Chemistry, 2019, 35, 144-167.	7.1	129
148	SnO ₂ â€Based Perovskite Solar Cells: Configuration Design and Performance Improvement. Solar Rrl, 2019, 3, 1800292.	3.1	80
149	Using SnO ₂ QDs and CsMBr ₃ (M = Sn, Bi, Cu) QDs as Chargeâ€Transporting Materials for 10.6%â€Efficiency Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells with an Ultrahigh Openâ€Circuit Voltage of 1.610 V. Solar Rrl, 2019, 3, 1800284.	3.1	84
150	Mechanism for the Extremely Efficient Sensitization of Yb ³⁺ Luminescence in CsPbCl ₃ Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 487-492.	2.1	55
151	A new carbon phase with direct bandgap and high carrier mobility as electron transport material for perovskite solar cells. Npj Computational Materials, 2019, 5, .	3.5	67
152	Flexible Perowskitâ€Solarzellen: Herstellung und Anwendungen. Angewandte Chemie, 2019, 131, 4512-4530.	1.6	27
153	Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications. Angewandte Chemie - International Edition, 2019, 58, 4466-4483.	7.2	290
154	Anti-solvent engineering for efficient semitransparent CH3NH3PbBr3 perovskite solar cells for greenhouse applications. Journal of Energy Chemistry, 2019, 34, 12-19.	7.1	50
155	From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy and Environmental Science, 2019, 12, 518-549.	15.6	269
156	Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO ₂ Electron Transport Layer. Advanced Functional Materials, 2019, 29, 1806779.	7.8	118
157	Efficiency Enhancement and Hysteresis Mitigation by Manipulation of Grain Growth Conditions in Hybrid Evaporated–Spin-coated Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 722-729.	4.0	16
158	A comparative study of planar and mesoporous perovskite solar cells with printable carbon electrodes. Journal of Power Sources, 2019, 412, 118-124.	4.0	41
159	Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3. Nano Energy, 2020, 67, 104186.	8.2	84
160	A Review on Additives for Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902492.	10.2	240
161	Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902650.	10.2	516
162	Progress of Surface Science Studies on ABX ₃ â€Based Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902726.	10.2	87

#	Article	IF	CITATIONS
163	Interfacial Bridge Using a <i>cis</i> â€Fulleropyrrolidine for Efficient Planar Perovskite Solar Cells with Enhanced Stability. Small Methods, 2020, 4, 1900476.	4.6	65
164	NH ₄ Clâ€Modified ZnO for Highâ€Performance CsPblBr ₂ Perovskite Solar Cells via Lowâ€Temperature Process. Solar Rrl, 2020, 4, 1900363.	3.1	186
165	SnO ₂ –Carbon Nanotubes Hybrid Electron Transport Layer for Efficient and Hysteresisâ€Free Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900415.	3.1	61
166	Ammonium Fluoride Interface Modification for Highâ€Performance and Longâ€Term Stable Perovskite Solar Cells. Energy Technology, 2020, 8, 1901017.	1.8	12
167	Improve the quality of HC(NH2)2PblxBr3â^'x through iodine vacancy filling for stable mixed perovskite solar cells. Chemical Engineering Journal, 2020, 384, 123273.	6.6	25
168	Interface engineering by using TiO2 nanocubic modifier in planar heterojunction perovskite solar cells. Organic Electronics, 2020, 77, 105490.	1.4	1
169	Characterization of halide perovskite/titania interfaces as a function of the interlayer composition: A theoretical study. Journal of Physics and Chemistry of Solids, 2020, 138, 109243.	1.9	2
170	To Be Higher and Stronger—Metal Oxide Electron Transport Materials for Perovskite Solar Cells. Small, 2020, 16, e1902579.	5.2	80
171	Lowâ€Temperature Electron Beam Deposition of Zn‣nO _{<i>x</i>} for Stable and Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900266.	3.1	27
172	Ethyl acetate green antisolvent process for high-performance planar low-temperature SnO2-based perovskite solar cells made in ambient air. Chemical Engineering Journal, 2020, 379, 122298.	6.6	95
173	Energy‣evel Modulation in Diboronâ€Modified SnO ₂ for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900217.	3.1	28
174	Interconnected SnO ₂ Nanocrystals Electron Transport Layer for Highly Efficient Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900229.	3.1	31
175	Solutionâ€Processed Ternary Oxides as Carrier Transport/Injection Layers in Optoelectronics. Advanced Energy Materials, 2020, 10, 1900903.	10.2	44
176	Regulation of Interfacial Charge Transfer and Recombination for Efficient Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900198.	3.1	46
177	Perovskite solar cells. , 2020, , 163-228.		8
178	Organic and perovskite photovoltaics for indoor applications. , 2020, , 355-388.		1
179	Additive Engineering for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902579.	10.2	477
180	Twoâ€ŧerminal Perovskite silicon tandem solar cells with a highâ€₿andgap Perovskite absorber enabling voltages over 1.8ÂV. Progress in Photovoltaics: Research and Applications, 2020, 28, 99-110.	4.4	63

#	Article	IF	CITATIONS
181	27%â€Efficiency Fourâ€Terminal Perovskite/Silicon Tandem Solar Cells by Sandwiched Gold Nanomesh. Advanced Functional Materials, 2020, 30, 1908298.	7.8	91
182	Electron Transporting Bilayer of SnO ₂ and TiO ₂ Nanocolloid Enables Highly Efficient Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900331.	3.1	46
183	Impact of Temperatureâ€Dependent Hydration Water on Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900370.	3.1	9
184	Electron Transporting Bilayer of SnO ₂ and TiO ₂ Nanocolloid Enables Highly Efficient Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 2070014.	3.1	3
185	Constructing "hillocks―like random-textured absorber for efficient planar perovskite solar cells. Chemical Engineering Journal, 2020, 387, 124091.	6.6	12
186	TEMPOL-promoted oxygen doping of a polytriarylamine hole-transport layer for efficient and stable lead halide perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 2419-2424.	2.7	5
187	Lowâ€Temperatureâ€Processed WO _{<i>x</i>} as Electron Transfer Layer for Planar Perovskite Solar Cells Exceeding 20% Efficiency. Solar Rrl, 2020, 4, 1900499.	3.1	36
188	Preparation of Ordered MAPbI ₃ Perovskite Needle-Like Crystal Films by Electric Field and Microdroplet Jetting 3D Printing. Crystal Growth and Design, 2020, 20, 1405-1414.	1.4	7
189	Graphitic carbon nitride doped SnO ₂ enabling efficient perovskite solar cells with PCEs exceeding 22%. Journal of Materials Chemistry A, 2020, 8, 2644-2653.	5.2	98
190	Recent Advances of Device Components toward Efficient Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900485.	3.1	29
191	Phenyl-C ₆₁ -butyric Acid as an Interface Passivation Layer for Highly Efficient and Stable Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 1872-1877.	1.5	32
192	Perovskite Ink with an Ultrawide Processing Window for Efficient and Scalable Perovskite Solar Cells in Ambient Air. ACS Applied Materials & Interfaces, 2020, 12, 3531-3538.	4.0	52
193	Synergistic Coassembly of Highly Wettable and Uniform Holeâ€Extraction Monolayers for Scalingâ€up Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1909509.	7.8	41
194	New Strategies for Defect Passivation in Highâ€Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903090.	10.2	237
195	Chemical Approaches for Stabilizing Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903249.	10.2	132
196	Novel inorganic electron transport layers for planar perovskite solar cells: Progress and prospective. Nano Energy, 2020, 68, 104289.	8.2	83
197	Low-temperature solution-combustion-processed Zn-Doped Nb2O5 as an electron transport layer for efficient and stable perovskite solar cells. Journal of Power Sources, 2020, 448, 227419.	4.0	19
198	Chlorineâ€modified SnO ₂ electron transport layer for highâ€efficiency perovskite solar cells. InformaÄnÃ-Materiály, 2020, 2, 401-408.	8.5	48

#	Article	IF	CITATIONS
199	Electrical Methods to Elucidate Charge Transport in Hybrid Perovskites Thin Films and Devices. Chemical Record, 2020, 20, 452-465.	2.9	28
200	High efficiency perovskite solar cells with tailorable surface wettability by surfactant. Journal of Power Sources, 2020, 448, 227584.	4.0	36
201	Room-temperature synthesis of ZrSnO4 nanoparticles for electron transport layer in efficient planar hetrojunction perovskite solar cells. Journal of Materials Science and Technology, 2020, 42, 38-45.	5.6	15
202	Luminescent europium-doped titania for efficiency and UV-stability enhancement of planar perovskite solar cells. Nano Energy, 2020, 69, 104392.	8.2	47
203	TiO ₂ /WO ₃ Bilayer as Electron Transport Layer for Efficient Planar Perovskite Solar Cell with Efficiency Exceeding 20%. Advanced Materials Interfaces, 2020, 7, 1901406.	1.9	69
204	Reconfiguration of Interfacial and Bulk Energy Band Structure for Highâ€Performance Organic and Thermal–Stability Enhanced Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900482.	3.1	16
205	Roadmap on halide perovskite and related devices. Nanotechnology, 2020, 31, 152001.	1.3	24
206	Redâ€Carbonâ€Quantumâ€Dotâ€Doped SnO ₂ Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1906374.	11.1	230
207	SrTiO ₃ /Al ₂ O ₃ â€Graphene Electron Transport Layer for Highly Stable and Efficient Compositesâ€Based Perovskite Solar Cells with 20.6% Efficiency. Advanced Energy Materials, 2020, 10, 1903369.	10.2	53
208	Interlayer Engineering for Flexible Large-Area Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 777-784.	2.5	13
209	Cs0.15FA0.85PbI3/CsxFA1-xPbI3 Core/Shell Heterostructure for Highly Stable and Efficient Perovskite Solar Cells. Cell Reports Physical Science, 2020, 1, 100224.	2.8	35
210	Highâ€Pressure Nitrogenâ€Extraction and Effective Passivation to Attain Highest Largeâ€Area Perovskite Solar Module Efficiency. Advanced Materials, 2020, 32, e2004979.	11.1	145
211	Flexible semitransparent perovskite solar cells with gradient energy levels enable efficient tandems with Cu(In,Ga)Se2. Nano Energy, 2020, 78, 105378.	8.2	28
212	A data review on certified perovskite solar cells efficiency and I-V metrics: Insights into materials selection and process scaling up. Solar Energy, 2020, 209, 21-29.	2.9	5
213	Alkali Metal Ion-Regulated Lead-free, All-Inorganic Double Perovskites for HTM-free, Carbon-Based Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 47408-47415.	4.0	54
214	Rapid hybrid chemical vapor deposition for efficient and hysteresis-free perovskite solar modules with an operation lifetime exceeding 800 hours. Journal of Materials Chemistry A, 2020, 8, 23404-23412.	5.2	34
215	Single Source, Surfactantâ€Free, and Oneâ€Step Solvothermal Route Synthesized TiO ₂ Microspheres for Highly Efficient Mesoscopic Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000519.	3.1	7
216	Toward mixed-halide perovskites: insight into photo-induced anion phase segregation. Journal of Materials Chemistry C, 2020, 8, 14626-14644.	2.7	11

#	Article	IF	CITATIONS
217	Two-dimensional perovskite solar cells with high luminescence and ultra-low open-circuit voltage deficit. Journal of Materials Chemistry A, 2020, 8, 22175-22180.	5.2	9
218	A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nature Energy, 2020, 5, 596-604.	19.8	274
219	Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy, 2020, 207, 1146-1157.	2.9	106
220	Effect of functional groups of self assembled monolayer molecules on the performance of inverted perovskite solar cell. Materials Chemistry and Physics, 2020, 254, 123435.	2.0	16
221	A Ladderâ€like Dopantâ€free Holeâ€Transporting Polymer for Hysteresisâ€less Highâ€Efficiency Perovskite Solar Cells with High Ambient Stability. ChemSusChem, 2020, 13, 5058-5066.	3.6	12
222	Molecular Interaction Regulates the Performance and Longevity of Defect Passivation for Metal Halide Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 20071-20079.	6.6	145
223	In Situ-Formed and Low-Temperature-Deposited Nb:TiO2 Compact-Mesoporous Layer for Hysteresis-Less Perovskite Solar Cells with High Performance. Nanoscale Research Letters, 2020, 15, 135.	3.1	1
224	Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues. Energies, 2020, 13, 6335.	1.6	7
225	Self-Elimination of Intrinsic Defects Improves the Low-Temperature Performance of Perovskite Photovoltaics. Joule, 2020, 4, 1961-1976.	11.7	152
226	Carbon-Based All-Inorganic CsPbI ₂ Br Perovskite Solar Cells Using TiO ₂ Nanorod Arrays: Interface Modification and the Enhanced Photovoltaic Performance. Energy & Fuels, 2020, 34, 11670-11678.	2.5	11
227	Anatase TiO2 nanorod arrays as high-performance electron transport layers for perovskite solar cells. Journal of Alloys and Compounds, 2020, 849, 156629.	2.8	25
228	Space-charge-limited electron and hole currents in hybrid organic-inorganic perovskites. Nature Communications, 2020, 11, 4023.	5.8	136
229	Molecular Ferroelectricsâ€Ðriven Highâ€Performance Perovskite Solar Cells. Angewandte Chemie, 2020, 132, 20149-20157.	1.6	16
230	Molecular Ferroelectricsâ€Driven Highâ€Performance Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 19974-19982.	7.2	71
231	Artemisinin (ART)-Induced "perovskite/perovskite―bilayer structured photovoltaics. Nano Energy, 2020, 78, 105133.	8.2	30
232	High-Efficiency Perovskite Solar Cells. Chemical Reviews, 2020, 120, 7867-7918.	23.0	1,480
233	Hole Transfer Layer Engineering for CdTe Nanocrystal Photovoltaics with Improved Efficiency. Nanomaterials, 2020, 10, 1348.	1.9	7
234	Enhanced moisture stability of mixed cation perovskite solar cells enabled by a room-temperature solution-processed organic-inorganic bilayer hole transport layer. Journal of Alloys and Compounds, 2020, 847, 156512.	2.8	16

#	Article	IF	CITATIONS
235	Perylenetetracarboxylic dianhydride as organic electron transport layer for n-i-p perovskite solar cells. Synthetic Metals, 2020, 268, 116497.	2.1	8
236	Engineered surface properties of MAPI using different antisolvents for hole transport layer-free perovskite solar cell (HTL-free PSC). Journal of Sol-Gel Science and Technology, 2020, 96, 659-668.	1.1	38
237	Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells. Nano Energy, 2020, 78, 105249.	8.2	45
238	Bifunctional Surface Engineering on SnO ₂ Reduces Energy Loss in Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2796-2801.	8.8	239
239	Largeâ€Grained Perovskite Films Enabled by Oneâ€Step Meniscusâ€Assisted Solution Printing of Crossâ€Aligned Conductive Nanowires for Biodegradable Flexible Solar Cells. Advanced Energy Materials, 2020, 10, 2001185.	10.2	31
240	Sn–N/Sn–O interaction improving electron collection in non-fullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 12218-12223.	2.7	21
241	9.05% HTM free perovskite solar cell with negligible hysteresis by introducing silver nanoparticles encapsulated with P4VP polymer. SN Applied Sciences, 2020, 2, 1.	1.5	8
242	Efficient energy storage and uvioresistant perovskite solar cells through insulating Y2O2S-based long-lasting phosphor layer. Journal of Power Sources, 2020, 477, 228757.	4.0	10
243	The <i>J</i> – <i>V</i> Hysteresis Behavior and Solutions in Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000586.	3.1	27
244	van der Waals Mixed Valence Tin Oxides for Perovskite Solar Cells as UV-Stable Electron Transport Materials. Nano Letters, 2020, 20, 8178-8184.	4.5	26
245	Interfacial Strain Release from the WS ₂ /CsPbBr ₃ van der Waals Heterostructure for 1.7â€V Voltage Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie, 2020, 132, 22181-22185.	1.6	47
246	Recent progress in porphyrin- and phthalocyanine-containing perovskite solar cells. RSC Advances, 2020, 10, 32678-32689.	1.7	51
247	Efficiency Enhancement of CIGS Solar Cells via Recombination Passivation. ACS Applied Energy Materials, 2020, 3, 9459-9467.	2.5	13
248	Multifunctional Polymerâ€Regulated SnO ₂ Nanocrystals Enhance Interface Contact for Efficient and Stable Planar Perovskite Solar Cells. Advanced Materials, 2020, 32, e2003990.	11.1	208
249	Achieving Highâ€Performance Perovskite Photovoltaic by Morphology Engineering of Lowâ€Temperature Processed Znâ€Doped TiO 2 Electron Transport Layer. Small, 2020, 16, 2002201.	5.2	13
250	Molecular Engineering of Organic Spacer Cations for Efficient and Stable Formamidinium Perovskite Solar Cell. Advanced Energy Materials, 2020, 10, 2001759.	10.2	48
251	Polymer Modification on the NiO _{<i>x</i>} Hole Transport Layer Boosts Open-Circuit Voltage to 1.19 V for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 46340-46347.	4.0	67
252	Naphthalene diimide based polymer as electron transport layer in inverted perovskite solar cells. Organic Electronics, 2020, 87, 105959.	1.4	12

#	Article	IF	CITATIONS
253	Triple Interface Passivation Strategyâ€Enabled Efficient and Stable Inverted Perovskite Solar Cells. Small Methods, 2020, 4, 2000478.	4.6	44
254	Cd-Doped Triple-Cation Perovskite Thin Films with a 20 \hat{I} /4s Carrier Lifetime. Journal of Physical Chemistry C, 2020, 124, 22011-22018.	1.5	10
255	Current Density Mismatch in Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2886-2888.	8.8	146
256	Interfacial Strain Release from the WS ₂ /CsPbBr ₃ van der Waals Heterostructure for 1.7â€V Voltage Allâ€inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 21997-22001.	7.2	149
257	SnS Quantum Dot–CsPbBr 3 Perovskite Bulk Heterojunction for Enhanced Photoelectrical Conversion Efficiency. Solar Rrl, 2020, 4, 2000417.	3.1	8
258	Grapheneâ€Based Materials in Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000502.	3.1	36
259	Metal oxide alternatives for efficient electron transport in perovskite solar cells: beyond TiO ₂ and SnO ₂ . Journal of Materials Chemistry A, 2020, 8, 19768-19787.	5.2	60
260	Enhanced Efficiency and Stability of Planar Perovskite Solar Cells Using a Dual Electron Transport Layer of Gold Nanoparticles Embedded in Anatase TiO ₂ Films. ACS Applied Energy Materials, 2020, 3, 9568-9575.	2.5	28
261	Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy and Environmental Science, 2020, 13, 4017-4056.	15.6	235
262	Modification Engineering in SnO ₂ Electron Transport Layer toward Perovskite Solar Cells: Efficiency and Stability. Advanced Functional Materials, 2020, 30, 2004209.	7.8	98
263	Novel Electron Transport Layer Material for Perovskite Solar Cells with Over 22% Efficiency and Longâ€Term Stability. Advanced Functional Materials, 2020, 30, 2004933.	7.8	55
264	Towards commercialization: the operational stability of perovskite solar cells. Chemical Society Reviews, 2020, 49, 8235-8286.	18.7	371
265	Improving the Fill Factor of Perovskite Solar Cells by Employing an Amine-tethered Diketopyrrolopyrrole-Based Polymer as the Dopant-free Hole Transport Layer. ACS Applied Energy Materials, 2020, 3, 9600-9609.	2.5	26
266	Facile Physical Modifications of Polymer Hole Transporting Layers for Efficient and Reproducible Perovskite Solar Cells with Fill Factor Exceeding 80%. Solar Rrl, 2020, 4, 2000365.	3.1	13
267	Dual Passivation of CsPbI ₃ Perovskite Nanocrystals with Amino Acid Ligands for Efficient Quantum Dot Solar Cells. Small, 2020, 16, e2001772.	5.2	127
268	Structured Perovskite Light Absorbers for Efficient and Stable Photovoltaics. Advanced Materials, 2020, 32, e1903937.	11.1	69
269	Printable SnO2 cathode interlayer with up to 500 nm thickness-tolerance for high-performance and large-area organic solar cells. Science China Chemistry, 2020, 63, 957-965.	4.2	38
270	Effect of Interfacial Layers on the Device Lifetime of Perovskite Solar Cells. Small Methods, 2020, 4, 2000065.	4.6	22

			2
#	ARTICLE	IF	CITATIONS
271	Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nature Communications, 2020, 11, 2304.	5.8	286
272	Metal Oxide Compact Electron Transport Layer Modification for Efficient and Stable Perovskite Solar Cells. Materials, 2020, 13, 2207.	1.3	42
273	Highly Stable and Efficient Perovskite Solar Cells with 22.0% Efficiency Based on Inorganic–Organic Dopantâ€Free Double Hole Transporting Layers. Advanced Functional Materials, 2020, 30, 1908462.	7.8	59
274	Dual Interfacial Modification Engineering with 2D MXene Quantum Dots and Copper Sulphide Nanocrystals Enabled Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2003295.	7.8	100
275	PEG Modified CsPbIBr ₂ Perovskite Film for Efficient and Stable Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000537.	1.9	60
276	Unraveling the roles of mesoporous TiO2 framework in CH3NH3PbI3 perovskite solar cells. Science China Materials, 2020, 63, 1151-1162.	3.5	24
277	Formamidinium-Based Perovskite Solar Cells with Enhanced Moisture Stability and Performance via Confined Pressure Annealing. Journal of Physical Chemistry C, 2020, 124, 12249-12258.	1.5	23
278	Solution-Processable PEDOT:PSS:α-In ₂ Se ₃ with Enhanced Conductivity as a Hole Transport Layer for High-Performance Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 26543-26554.	4.0	43
279	Allâ€Inorganic CsPbI ₂ Br Perovskite Solar Cell with Openâ€Circuit Voltage over 1.3 V by Balancing Electron and Hole Transport. Solar Rrl, 2020, 4, 2000016.	3.1	30
280	Solution-processed perovskite solar cells. Journal of Central South University, 2020, 27, 1104-1133.	1.2	34
281	Hybrid interfacial ETL engineering using PCBM-SnS2 for High-Performance p-i-n structured planar perovskite solar cells. Chemical Engineering Journal, 2020, 397, 125504.	6.6	37
282	Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation. EnergyChem, 2020, 2, 100032.	10.1	22
283	Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy, 2020, 75, 104917.	8.2	44
284	Strong performance enhancement in lead-halide perovskite solar cells through rapid, atmospheric deposition of n-type buffer layer oxides. Nano Energy, 2020, 75, 104946.	8.2	20
285	Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17%. Nano Research, 2020, 13, 2203-2208.	5.8	32
286	Fabrication of high efficiency, low-temperature planar perovskite solar cells via scalable double-step crystal engineering deposition method fully out of glove box. Solar Energy, 2020, 206, 181-187.	2.9	9
287	Challenges and strategies relating to device function layers and their integration toward high-performance inorganic perovskite solar cells. Nanoscale, 2020, 12, 14369-14404.	2.8	99
288	Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nature Communications, 2020, 11, 3016.	5.8	173

#	Article	IF	CITATIONS
289	Enhanced performance of perovskite solar cells using DNA-doped mesoporous-TiO2 as electron transporting layer. Solar Energy, 2020, 206, 855-863.	2.9	16
290	Recent Advances in Perovskiteâ€Based Buildingâ€Integrated Photovoltaics. Advanced Materials, 2020, 32, e2000631.	11.1	80
291	Synthesis of crumpled SnO2/rGO nanocomposites with 2D-in-3D structure and high performance. Materials Chemistry and Physics, 2020, 253, 123298.	2.0	10
292	Influence of Hole Transport Layers/Perovskite Interfaces on the Hysteresis Behavior of Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 6391-6399.	2.5	9
293	Tetrahydrofuran as Solvent for P3HT/F4-TCNQ Hole-Transporting Layer to Increase the Efficiency and Stability of FAPbI3-Based Perovskite Solar Cell. Journal of Physical Chemistry C, 2020, 124, 14099-14104.	1.5	12
294	Improved stability and efficiency of polymer-based selenium solar cells through the usage of tin(<scp>iv</scp>) oxide in the electron transport layers and the analysis of aging dynamics. Physical Chemistry Chemical Physics, 2020, 22, 14838-14845.	1.3	7
295	Mitigation of Vacuum and Illumination-Induced Degradation in Perovskite Solar Cells by Structure Engineering. Joule, 2020, 4, 1087-1103.	11.7	69
296	Achieving over 21% efficiency in inverted perovskite solar cells by fluorinating a dopant-free hole transporting material. Journal of Materials Chemistry A, 2020, 8, 6517-6523.	5.2	63
297	Low-temperature processed highly efficient hole transport layer free carbon-based planar perovskite solar cells with SnO2 quantum dot electron transport layer. Materials Today Physics, 2020, 13, 100204.	2.9	35
298	Lowâ€Temperatureâ€Processed Zr/F Coâ€Doped SnO ₂ Electron Transport Layer for Highâ€Efficiency Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000090.	3.1	42
299	Energy Level-Graded Al-Doped ZnO Protection Layers for Copper Nanowire-Based Window Electrodes for Efficient Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 13824-13835.	4.0	31
300	Advances in stable and flexible perovskite solar cells. Current Applied Physics, 2020, 20, 720-737.	1.1	20
301	Enhancing performance of perovskite solar cells with efficiency exceeding 21% via a graded-index mesoporous aluminum oxide antireflection coating. Nanotechnology, 2020, 31, 275407.	1.3	6
302	Material Properties Influencing the Charge Decay of Electret Filters and their Impact on Filtration Performance. Polymers, 2020, 12, 721.	2.0	50
303	Thermal conductivity and diffusivity of triple-cation perovskite halide materials for solar cells. Journal of Applied Physics, 2020, 127, .	1.1	3
304	Efficient perovskite solar cells <i>via</i> surface passivation by a multifunctional small organic ionic compound. Journal of Materials Chemistry A, 2020, 8, 8313-8322.	5.2	68
305	Choline Chloride-Modified SnO ₂ Achieving High Output Voltage in MAPbI ₃ Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 3504-3511.	2.5	57
306	Interfacial Chemical Bridge Constructed by Zwitterionic Sulfamic Acid for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 3186-3192.	2.5	37

#	Article	IF	CITATIONS
307	Synergistic Reinforcement of Builtâ€In Electric Fields for Highly Efficient and Stable Perovskite Photovoltaics. Advanced Functional Materials, 2020, 30, 1909755.	7.8	47
308	Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells. Journal of Materials Science and Technology, 2020, 59, 195-202.	5.6	28
309	Improving the Stability of Ambient Processed, SnO ₂ â€Based, Perovskite Solar Cells by the UVâ€Treatment of Subâ€Cells. Solar Rrl, 2020, 4, 2000262.	3.1	21
310	High-efficiency perovskite solar cells with poly(vinylpyrrolidone)-doped SnO ₂ as an electron transport layer. Materials Advances, 2020, 1, 617-624.	2.6	30
311	Architecturing Lattice-Matched Bismuthene–SnO ₂ Heterojunction for Effective Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	8
312	Exploring Electron Transporting Layer in Combination with a Polyelectrolyte for nâ€iâ€p Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000412.	1.9	13
313	Tunable electronic properties of TiO2 nanocrystals by in situ dopamine functionalization for planar perovskite solar cells. Electrochimica Acta, 2020, 354, 136720.	2.6	12
314	Efficient and stable planar perovskite solar cells using co-doped tin oxide as the electron transport layer. Journal of Power Sources, 2020, 471, 228443.	4.0	14
315	Improving electron extraction ability and suppressing recombination of planar perovskite solar cells with the triple cascade electron transporting layer. Solar Energy Materials and Solar Cells, 2020, 208, 110419.	3.0	5
316	A Nonionic and Low-Entropic MA(MMA)nPbI3-Ink for Fast Crystallization of Perovskite Thin Films. Joule, 2020, 4, 615-630.	11.7	46
317	Reducing Anomalous Hysteresis in Perovskite Solar Cells by Suppressing the Interfacial Ferroelectric Order. ACS Applied Materials & Interfaces, 2020, 12, 12275-12284.	4.0	13
318	Over 1Âμm electron-hole diffusion lengths in CsPbI2Br for high efficient solar cells. Journal of Power Sources, 2020, 454, 227913.	4.0	31
319	Organicâ^'inorganic hybrid perovskites: Game-changing candidates for solar fuel production. Nano Energy, 2020, 71, 104647.	8.2	41
320	Modifying Mesoporous TiO2 by Ammonium Sulfonate Boosts Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 12696-12705.	4.0	32
321	Passivation effect of halogenated benzylammonium as a second spacer cation for improved photovoltaic performance of quasi-2D perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5900-5906.	5.2	26
322	Sol-Gel Processed Yttrium-Doped SnO2 Thin Film Transistors. Electronics (Switzerland), 2020, 9, 254.	1.8	29
323	Surface Engineering of Low-Temperature Processed Mesoporous TiO ₂ via Oxygen Plasma for Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 12648-12655.	4.0	33
324	Effect of Sr substitution on the air-stability of perovskite solar cells. Ceramics International, 2020, 46, 14038-14047.	2.3	8

#	Article	IF	CITATIONS
325	Lattice Dynamics and Electron–Phonon Coupling in Lead-Free Cs ₂ AgIn _{1–<i>x</i>} Bi _{<i>x</i>} Cl ₆ Double Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 2113-2120.	2.1	69
326	Highâ€Performance CsPbl <i>_x</i> Br _{3â€} <i>_x</i> Allâ€Inorganic Perovskite Solar Cells with Efficiency over 18% via Spontaneous Interfacial Manipulation. Advanced Functional Materials, 2020, 30, 2000457.	7.8	118
327	Tetraethylenepent-MAPbI _{3–<i>x</i>} Cl _{<i>x</i>} Unsymmetrical Structure-Enhanced Stability and Power Conversion Efficiency in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 11224-11231.	4.0	16
328	Realizing Stable Artificial Photon Energy Harvesting Based on Perovskite Solar Cells for Diverse Applications. Small, 2020, 16, e1906681.	5.2	29
329	Introduction of LiCl into SnO2 electron transport layer for efficient planar perovskite solar cells. Chemical Physics Letters, 2020, 745, 137220.	1.2	20
330	Correlating Hysteresis and Stability with Organic Cation Composition in the Two-Step Solution-Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 10588-10596.	4.0	27
331	Tailoring Perovskite Adjacent Interfaces by Conjugated Polyelectrolyte for Stable and Efficient Solar Cells. Solar Rrl, 2020, 4, 2000060.	3.1	23
332	How far are we from attaining 10-year lifetime for metal halide perovskite solar cells?. Materials Science and Engineering Reports, 2020, 140, 100545.	14.8	67
333	Multifunctional nanostructured materials for next generation photovoltaics. Nano Energy, 2020, 70, 104480.	8.2	52
334	Highly conductive n-type CH ₃ NH ₃ PbI ₃ single crystals doped with bismuth donors. Journal of Materials Chemistry C, 2020, 8, 3694-3704.	2.7	27
335	Crystallization tailoring of cesium/formamidinium double-cation perovskite for efficient and highly stable solar cells. Journal of Energy Chemistry, 2020, 48, 217-225.	7.1	45
336	Synergistic Interface Energy Band Alignment Optimization and Defect Passivation toward Efficient and Simple‣tructured Perovskite Solar Cell. Advanced Science, 2020, 7, 1902656.	5.6	76
337	Highâ€Efficiency Lowâ€Temperatureâ€Processed Mesoscopic Perovskite Solar Cells from SnO ₂ Nanorod Selfâ€Assembled Microspheres. Solar Rrl, 2020, 4, 1900558.	3.1	21
338	Surface Modification of TiO2 for Perovskite Solar Cells. Trends in Chemistry, 2020, 2, 148-162.	4.4	91
339	Superior Textured Film and Process Tolerance Enabled by Intermediateâ€State Engineering for Highâ€Efficiency Perovskite Solar Cells. Advanced Science, 2020, 7, 1903009.	5.6	22
340	Enhancing the stability of perovskites by constructing heterojunctions of graphene/MASnl ₃ . Physical Chemistry Chemical Physics, 2020, 22, 3724-3733.	1.3	6
341	Grain Boundary and Interface Passivation with Core–Shell Au@CdS Nanospheres for Highâ€Efficiency Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1908408.	7.8	78
342	Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy, 2020, 74, 104858.	8.2	347

	CHATION	REPORT	
#	Article	IF	CITATIONS
343	Pressure-Assisted Fabrication of Perovskite Solar Cells. Scientific Reports, 2020, 10, 7183.	1.6	34
344	<i>V</i> _{OC} Over 1.4 V for Amorphous Tin-Oxide-Based Dopant-Free CsPbI ₂ Br Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 9725-9734.	6.6	162
345	Graphdiyne: Bridging SnO ₂ and Perovskite in Planar Solar Cells. Angewandte Chemie, 2020, 132, 11670-11679.	1.6	17
346	Graphdiyne: Bridging SnO ₂ and Perovskite in Planar Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 11573-11582.	7.2	171
347	Low-Temperature Aging Provides 22% Efficient Bromine-Free and Passivation Layer-Free Planar Perovskite Solar Cells. Nano-Micro Letters, 2020, 12, 84.	14.4	33
348	Fully Doctor-bladed efficient perovskite solar cells in ambient condition via composition engineering. Organic Electronics, 2020, 83, 105736.	1.4	18
349	Photoactivated transition metal dichalcogenides to boost electron extraction for all-inorganic tri-brominated planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 7784-7791.	5.2	31
350	The growth of methylammonium lead iodide perovskites by close space vapor transport. RSC Advances, 2020, 10, 16125-16131.	1.7	11
351	Dual Function of Surface Alkali-Gas Erosion on SnO ₂ for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 5039-5049.	2.5	19
352	Atomic layer deposition of metal oxides for efficient perovskite single-junction and perovskite/silicon tandem solar cells. RSC Advances, 2020, 10, 14856-14866.	1.7	18
353	Enhancing the stability of perovskite solar cells through functionalisation of metal oxide transport layers with self-assembled monolayers. Solar Energy, 2020, 203, 157-163.	2.9	12
354	China's progress of perovskite solar cells in 2019. Science Bulletin, 2020, 65, 1306-1315.	4.3	12
355	Chlorinated Fullerene Dimers for Interfacial Engineering Toward Stable Planar Perovskite Solar Cells with 22.3% Efficiency. Advanced Energy Materials, 2020, 10, 2000615.	10.2	76
356	Efficient planar heterojunction perovskite solar cells with enhanced FTO/SnO2 interface electronic coupling. Journal of Alloys and Compounds, 2020, 831, 154717.	2.8	28
357	Dealing with Climate Parameters in the Fabrication of Perovskite Solar Cells under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 7132-7138.	3.2	11
358	Effects of alkali and transition metal-doped TiO ₂ hole blocking layers on the perovskite solar cells obtained by a two-step sequential deposition method in air and under vacuum. RSC Advances, 2020, 10, 13139-13148.	1.7	15
359	All-self-metered solution-coating process in ambient air for the fabrication of efficient, large-area, and semitransparent perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 3115-3128.	2.5	10
360	Evaluating the role of phenethylamine iodide as a novel anti-solvent for enhancing performance of inverted planar perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 7143-7148.	2.7	10

ARTICLE IF CITATIONS Record Photocurrent Density over 26 mA cm â^{~2} in Planar Perovskite Solar Cells Enabled by 361 3.1 17 Antireflective Cascaded Electron Transport Layer. Solar Rrl, 2020, 4, 2000169. Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite 11.1 Solar Cells. Advanced Materials, 2021, 33, e1905245. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification. Journal of 363 5.6 15 Materials Science and Technology, 2021, 61, 213-220. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: 364 Mechanistic insights. Journal of Energy Chemistry, 2021, 54, 822-829. Effect of temperature on the performance of perovskite solar cells. Journal of Materials Science: 365 1.1 44 Materials in Electronics, 2021, 32, 12784-12792. Highâ€Efficiency Perovskite Solar Cells with Imidazoliumâ€Based Ionic Liquid for Surface Passivation and 221 Charge Transport. Angewandte Chemie - International Edition, 2021, 60, 4238-4244. Crystallization Kinetics Modulation of FASnI₃ Films with Preâ€nucleation Clusters for 367 Efficient Leadâ€Free Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 7.2 80 3693-3698. Influence of end groups variation of self assembled monolayers on performance of planar perovskite 368 1.9 14 solar cells by interface regulation. Materials Science in Semiconductor Processing, 2021, 123, 105514. Selfâ€Powered Red/UV Narrowband Photodetector by Unbalanced Charge Carrier Transport Strategy. 369 7.8 44 Advanced Functional Materials, 2021, 31, 2007016. Hydrogen peroxide-modified SnO2 as electron transport layer for perovskite solar cells with 370 efficiency exceeding 22%. Journal of Power Sources, 2021, 481, 229160. A universal method for hysteresis-free and stable perovskite solar cells using water pre-treatment. 371 12 6.6 Chemical Engineering Journal, 2021, 403, 126435. Minimizing Voltage Losses in Perovskite Solar Cells. Small Structures, 2021, 2, 2000050. 6.9 Efficient and stable flexible perovskite solar cells based on graphene-AgNWs substrate and carbon 373 4.0 49 electrode without hole transport materials. Journal of Power Sources, 2021, 482, 228953. A low temperature processable tin oxide interlayer via amine-modification for efficient and stable organic solar cells. Journal of Energy Chemistry, 2021, 56, 496-503. 374 7.1 Structural, optical and excitonic properties of urea grading doped CH3NH3PbI3 thin films and their 375 2.8 12 application in inverted-type perovskite solar cells. Journal of Alloys and Compounds, 2021, 858, 157660. Donorâ€‴i€â€"Acceptor Type Porphyrin Derivatives Assisted Defect Passivation for Efficient Hybrid 106 Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2007762. Progress in Materials Development for Flexible Perovskite Solar Cells and Future Prospects. 377 3.6 38 ChemSusChem, 2021, 14, 512-538. High-performance and stable inverted perovskite solar cells using low-temperature 378 solution-processed CuNbOx hole transport layer. Journal of Power Sources, 2021, 483, 229194.

#	Article	IF	CITATIONS
379	Toward Efficient and Stable Perovskite Solar Cells by 2D Interface Energy Band Alignment. Advanced Materials Interfaces, 2021, 8, .	1.9	19
380	Crystallization Kinetics Modulation of FASnI ₃ Films with Preâ€nucleation Clusters for Efficient Leadâ€Free Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 3737-3742.	1.6	20
381	Device Performance of Emerging Photovoltaic Materials (Version 1). Advanced Energy Materials, 2021, 11, 2002774.	10.2	93
382	Hollow 3D TiO2 sub-microspheres as an electron transporting layer for highly efficient perovskite solar cells. Materials Today Energy, 2021, 19, 100614.	2.5	12
383	Inorganic Electron Transport Materials in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2008300.	7.8	105
384	Roles of MACl in Sequentially Deposited Bromineâ€Free Perovskite Absorbers for Efficient Solar Cells. Advanced Materials, 2021, 33, e2007126.	11.1	112
385	Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2002326.	10.2	118
386	Mechanism of improving the performance of perovskite solar cells through alkali metal bis(trifluoromethanesulfonyl)imide modifying mesoporous titania electron transport layer. Journal of Power Sources, 2021, 484, 229275.	4.0	6
387	Temperature and Light Modulated Openâ€Circuit Voltage in Nonfullerene Organic Solar Cells with Different Effective Bandgaps. Advanced Energy Materials, 2021, 11, 2003091.	10.2	23
388	Efficient perovskite solar cells enabled by large dimensional structured hole transporting materials. Journal of Materials Chemistry A, 2021, 9, 1663-1668.	5.2	14
389	Synergistically Enhanced Amplified Spontaneous Emission by Cd Doping and Clâ€Assisted Crystallization. Advanced Optical Materials, 2021, 9, 2001825.	3.6	2
390	Effects of ion migration and improvement strategies for the operational stability of perovskite solar cells. Physical Chemistry Chemical Physics, 2021, 23, 94-106.	1.3	68
391	Doping in Semiconductor Oxidesâ€Based Electron Transport Materials for Perovskite Solar Cells Application. Solar Rrl, 2021, 5, 2000605.	3.1	19
392	Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 67-76.	2.7	171
393	Highâ€Efficiency Perovskite Solar Cells with Imidazoliumâ€Based Ionic Liquid for Surface Passivation and Charge Transport. Angewandte Chemie, 2021, 133, 4284-4290.	1.6	14
394	Nanoconfined Crystallization for Highâ€Efficiency Inorganic Perovskite Solar Cells. Small Science, 2021, 1, 2000054.	5.8	19
395	Defect mitigation using <scp>d</scp> -penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability. Chemical Science, 2021, 12, 2050-2059.	3.7	88
396	A synchronous defect passivation strategy for constructing high-performance and stable planar perovskite solar cells. Chemical Engineering Journal, 2021, 413, 127387.	6.6	40

#	Article	IF	CITATIONS
397	Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review. Journal of Materials Chemistry A, 2021, 9, 16621-16684.	5.2	146
398	Preparation and Properties of Films of Organic-Inorganic Perovskites MAPbX3 (MA = CH3NH3; X = Cl,) Tj ETQq1 1	0,784314	4 ဋ္ဌBT /Ove
399	Elemental Pb initiated in situ Cl doping for improved photovoltaic performances of perovskite. Journal of Renewable and Sustainable Energy, 2021, 13, 013503.	0.8	3
400	Boosted charge extraction of NbO _{<i>x</i>} -enveloped SnO ₂ nanocrystals enables 24% efficient planar perovskite solar cells. Energy and Environmental Science, 2021, 14, 5074-5083.	15.6	98
401	Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 028402.	0.2	1
402	Facile Synthesis of Spherical TiO2 Hollow Nanospheres with a Diameter of 150 nm for High-Performance Mesoporous Perovskite Solar Cells. Materials, 2021, 14, 629.	1.3	8
403	Strategies of perovskite mechanical stability for flexible photovoltaics. Materials Chemistry Frontiers, 2021, 5, 7467-7478.	3.2	9
404	Boosting the performance of MA-free inverted perovskite solar cells <i>via</i> multifunctional ion liquid. Journal of Materials Chemistry A, 2021, 9, 12746-12754.	5.2	44
405	Effect of SnO ₂ Annealing Temperature on the Performance of Perovskite Solar Cells. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 168.	0.6	4
406	A facile and broadly applicable CdBr ₂ -passivating strategy for halide migration-inhibiting perovskite films and high-performance solar cells. Journal of Materials Chemistry A, 2021, 9, 14758-14767.	5.2	9
407	High-efficiency quantum dot light-emitting diodes based on Li-doped TiO2 nanoparticles as an alternative electron transport layer. Nanoscale, 2021, 13, 2838-2842.	2.8	11
408	Manipulation of Perovskite Crystallization Kinetics via Lewis Base Additives. Advanced Functional Materials, 2021, 31, 2009425.	7.8	61
409	D-A-Ï€-A-D-type Dopant-free Hole Transport Material for Low-Cost, Efficient, and Stable Perovskite Solar Cells. Joule, 2021, 5, 249-269.	11.7	203
410	Tris(4-(1-phenyl-1 <i>H</i> -benzo[<i>d</i>]imidazole)phenyl)phosphine oxide for enhanced mobility and restricted traps in photovoltaic interlayers. Journal of Materials Chemistry C, 2021, 9, 3642-3651.	2.7	2
411	Toward Efficient and Stable Perovskite Photovoltaics with Fluorinated Phosphonate Salt Surface Passivation. ACS Applied Energy Materials, 2021, 4, 2716-2723.	2.5	8
412	Rubidium Fluoride Modified SnO ₂ for Planar nâ€iâ€p Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2010385.	7.8	170
413	Europium ions doped WOx nanorods for dual interfacial modification facilitating high efficiency and stability of perovskite solar cells. Nano Energy, 2021, 80, 105564.	8.2	26
414	The influence of a dielectric spacer layer on the morphological, optical and electrical properties of self-dewetted silver nanoparticles. Phase Transitions, 2021, 94, 98-109.	0.6	0

#	Article	IF	CITATIONS
415	Band Engineering via Gradient Molecular Dopants for CsFA Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2010572.	7.8	12
416	Pentadiamond: A Highly Efficient Electron Transport Layer for Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 5372-5379.	1.5	18
417	Rapid Microwave-Assisted Synthesis of SnO ₂ Quantum Dots for Efficient Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1887-1893.	2.5	37
418	Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO*. Chinese Physics B, 2021, 30, 038801.	0.7	6
419	Intermediateâ€Adductâ€Assisted Growth of Stable CsPbI ₂ Br Inorganic Perovskite Films for Highâ€Efficiency Semitransparent Solar Cells. Advanced Materials, 2021, 33, e2006745.	11.1	47
420	Ambient-Air-Stable Lead-Free CsSnl ₃ Solar Cells with Greater than 7.5% Efficiency. Journal of the American Chemical Society, 2021, 143, 4319-4328.	6.6	105
421	Manipulating SnO ₂ Growth for Efficient Electron Transport in Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100128.	1.9	33
422	Doubleâ€layered SnO ₂ /NH ₄ Clâ€&nO ₂ for efficient planar perovskite solar cells with improved operational stability. Nano Select, 2021, 2, 1779-1787.	1.9	17
423	In Situ Surface Fluorination of TiO ₂ Nanocrystals Reinforces Interface Binding of Perovskite Layer for Highly Efficient Solar Cells with Dramatically Enhanced Ultraviolet‣ight Stability. Advanced Science, 2021, 8, 2004662.	5.6	61
424	Effect of wettability of substrate on metal halide perovskite growth. Applied Surface Science, 2021, 541, 148559.	3.1	18
425	A Facile Surface Passivation Enables Thermally Stable and Efficient Planar Perovskite Solar Cells Using a Novel IDTTâ€Based Small Molecule Additive. Advanced Energy Materials, 2021, 11, 2003829.	10.2	72
426	Enhanced Selective Charge Collection with Metal–Insulator–Semiconductor Junction in Electron Transport Layerâ€Free Perovskite Solar Cells. Advanced Electronic Materials, 2021, 7, 2100006.	2.6	5
427	Solvent Engineering of the Precursor Solution toward Largeâ€Area Production of Perovskite Solar Cells. Advanced Materials, 2021, 33, e2005410.	11.1	182
428	Perovskite with inhomogeneous composition: Presence of the Cl-rich layer improves the device performance. Chemical Physics Letters, 2021, 767, 138362.	1.2	3
429	Multifunctional potassium hexafluorophosphate passivate interface defects for high efficiency perovskite solar cells. Journal of Power Sources, 2021, 488, 229451.	4.0	39
430	Suppression of ion migration through cross-linked PDMS doping to enhance the operational stability of perovskite solar cells. Solar Energy, 2021, 217, 105-112.	2.9	10
431	Volatile solution: the way toward scalable fabrication of perovskite solar cells?. Matter, 2021, 4, 775-793.	5.0	53
432	Efficient p–n Heterojunction Perovskite Solar Cell without a Redundant Electron Transport Layer and Interface Engineering. Journal of Physical Chemistry Letters, 2021, 12, 2266-2272.	2.1	11

#	Article	IF	CITATIONS
433	Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells. Joule, 2021, 5, 659-672.	11.7	127
434	Tin Oxide Electronâ€5elective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells. Advanced Materials, 2021, 33, e2005504.	11.1	196
435	Efficient application of carbon-based nanomaterials for high-performance perovskite solar cells. Rare Metals, 2021, 40, 2747-2762.	3.6	6
436	Film Formation Control for High Performance Dion–Jacobson 2D Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2002733.	10.2	62
437	Diluted-CdS Quantum Dot-Assisted SnO ₂ Electron Transport Layer with Excellent Conductivity and Suitable Band Alignment for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 16326-16335.	4.0	27
438	Bi-Directional functionalization of urea-complexed SnO2 for efficient planar perovskite solar cells. Applied Surface Science, 2021, 546, 148711.	3.1	21
439	Highly Enhanced Efficiency of Planar Perovskite Solar Cells by an Electron Transport Layer Using Phytic Acid–Complexed SnO ₂ Colloids. Solar Rrl, 2021, 5, 2100067.	3.1	16
441	Interfacial Engineering via Selfâ€Assembled Thiol Silane for High Efficiency and Stability Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100128.	3.1	24
442	Optical, electrical, and structural properties of Ta-doped SnO2 films against substrate temperature using direct current magnetron sputtering. Surfaces and Interfaces, 2021, 23, 100943.	1.5	5
443	Tailoring the Interface in FAPbI ₃ Planar Perovskite Solar Cells by Imidazoleâ€Grapheneâ€Quantumâ€Dots. Advanced Functional Materials, 2021, 31, 2101438.	7.8	51
444	Molecular weight effect of poly-TPD hole-transporting layer on the performance of inverted perovskite solar cells. Solar Energy, 2021, 218, 368-374.	2.9	9
445	Simultaneous dual-interface and bulk defect passivation for high-efficiency and stable CsPbI2Br perovskite solar cells. Journal of Power Sources, 2021, 492, 229580.	4.0	13
446	cPCN-Regulated SnO2 Composites Enables Perovskite Solar Cell with Efficiency Beyond 23%. Nano-Micro Letters, 2021, 13, 101.	14.4	31
447	Lowâ€Temperature and Rapid Deposition of an SnO ₂ Layer from a Colloidal Nanoparticle Dispersion for Use in Planar Perovskite Solar Cells. Energy Technology, 2021, 9, 2001076.	1.8	7
448	Cobalt Chloride Hexahydrate Assisted in Reducing Energy Loss in Perovskite Solar Cells with Record Open-Circuit Voltage of 1.20 V. ACS Energy Letters, 2021, 6, 2121-2128.	8.8	117
449	The Role of Pioneering Hole Transporting Materials in New Generation Perovskite Solar Cells. European Journal of Inorganic Chemistry, 2021, 2021, 4251-4264.	1.0	5
450	Interfacial stabilization for inverted perovskite solar cells with long-term stability. Science Bulletin, 2021, 66, 991-1002.	4.3	45
451	Synergistic Defect Passivation for Highly Efficient and Stable Perovskite Solar Cells Using Sodium Dodecyl Benzene Sulfonate. ACS Applied Energy Materials, 2021, 4, 4910-4918.	2.5	14

ARTICLE IF CITATIONS # Effective carrier transport tuning of CuOx quantum dots hole interfacial layer for high-performance 452 3.1 19 inverted perovskite solar cell. Applied Surface Science, 2021, 547, 149117. Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide 11.7 perovskite solar cells. Joule, 2021, 5, 1246-1266. Defect Passivation by a D–A–D Type Hole-Transporting Interfacial Layer for Efficient and Stable 454 8.8 50 Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 2030-2037. Molecularly Engineered Interfaces in Metal Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 4882-4901. N-doped anatase TiO2 as an efficient electron-transporting layer for mesoporous perovskite solar 456 1.1 3 cells. Applied Physics Express, 0, , . Effect of SnO2 Colloidal Dispersion Solution Concentration on the Quality of Perovskite Layer of 1.2 Solar Cells. Coatings, 2021, 11, 591. Antisolvent―and Annealingâ€Free Deposition for Highly Stable Efficient Perovskite Solar Cells via 458 5.6 47 Modified ZnO. Advanced Science, 2021, 8, 2002860. The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics. 6.6 70 Chemical Engineering Journal, 2021, 411, 128461. Tris(pentafluorophenyl)boraneâ€Modified P3CTâ€K as an Efficient Holeâ€Transport Layer for Inverted Planar 460 2.7 11 MAPbI 3 Perovskite Solar Cells. Advanced Sustainable Systems, 2021, 5, 2100107. Device Architecture Engineering: Progress toward Next Generation Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2103121. Tailoring Ordered Mesoporous Titania Films via Introducing Germanium Nanocrystals for Enhanced Electron Transfer Photoanodes for Photovoltaic Applications. Advanced Functional Materials, 2021, 462 7.8 9 31, 2102105. Bifunctional SnO₂ Colloid Offers No Annealing Effect Compact Layer and Mesoporous Scaffold for Efficient Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2103949. Semitransparent Flexible Perovskite Solar Cells for Potential Greenhouse Applications. Solar Rrl, 464 3.1 15 2021, 5, 2100264. Interface engineering of high performance all-inorganic perovskite solar cells via low-temperature processed TiO2 nanopillar arrays. Nano Research, 2021, 14, 3431-3438. 5.8 Indoor Organic Photovoltaics for Selfâ€Sustaining IoT Devices: Progress, Challenges and 466 3.6 41 Practicalization. ChemSusChem, 2021, 14, 3449-3474. Copolymerâ€Templated Nickel Oxide for Highâ€Efficiency Mesoscopic Perovskite Solar Cells in Inverted Architécture. Advanced Functional Materials, 2021, 31, 2102237. Deepâ€Level Transient Spectroscopy for Effective Passivator Selection in Perovskite Solar Cells to 468 3.6 24 Attain High Efficiency over 23%. ChemSusChem, 2021, 14, 3182-3189. Managing Defects Density and Interfacial Strain via Underlayer Engineering for Inverted 469 5.2 CsPbl₂Br Perovskite Solar Cells with Allâ€Layer Dopantâ€Free. Small, 2021, 17, e2101902.

#	Article	IF	CITATIONS
470	Recent Progress on Formamidiniumâ€Dominated Perovskite Photovoltaics. Advanced Energy Materials, 2022, 12, 2100690.	10.2	45
471	Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 2021, 5, 1587-1601.	11.7	120
472	Current Development toward Commercialization of Metalâ€Halide Perovskite Photovoltaics. Advanced Optical Materials, 2021, 9, 2100390.	3.6	15
473	Importance of methylammonium iodide partial pressure and evaporation onset for the growth of co-evaporated methylammonium lead iodide absorbers. Scientific Reports, 2021, 11, 15299.	1.6	15
474	Hydrophilic Surface-Driven Crystalline Grain Growth of Perovskites on Metal Oxides. ACS Applied Energy Materials, 2021, 4, 6923-6932.	2.5	17
475	Up-Scalable Fabrication of SnO2 with Multifunctional Interface for High Performance Perovskite Solar Modules. Nano-Micro Letters, 2021, 13, 155.	14.4	40
476	Mesoporous Au@Cu _{2â^'<i>x</i>} S Core–Shell Nanoparticles with Double Localized Surface Plasmon Resonance and Ligand Modulation for Hole‣elective Passivation in Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100358.	3.1	13
477	Perovskitoidâ€Templated Formation of a 1D@3D Perovskite Structure toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101018.	10.2	85
478	Dopantâ€Free Polymer HTMâ€Based CsPbl ₂ Br Solar Cells with Efficiency Over 17% in Sunlight and 34% in Indoor Light. Advanced Functional Materials, 2021, 31, 2103614.	7.8	60
479	Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science, 2021, 373, 561-567.	6.0	227
480	Elucidation of the Crystal Growth Characteristics of SnO2 Nanoaggregates Formed by Sequential Low-Temperature Sol-Gel Reaction and Freeze Drying. Nanomaterials, 2021, 11, 1738.	1.9	4
481	Room-temperature sputtered-SnO2 modified anode toward efficient TiO2-based planar perovskite solar cells. Science China Technological Sciences, 2021, 64, 1995-2002.	2.0	6
482	A Study on the Stability of TiO2 Nanoparticles as an Electron Transport Layer in Quantum Dot Light-Emitting Diodes. Journal of Korean Institute of Metals and Materials, 2021, 59, 476-480.	0.4	2
483	Bottom Interfacial Engineering for Methylammoniumâ€Free Regularâ€Structure Planar Perovskite Solar Cells over 21%. Solar Rrl, 2021, 5, 2100285.	3.1	11
484	Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. Nano Research, 2022, 15, 1069-1078.	5.8	52
485	Expanded Phase Distribution in Low Average Layerâ€Number 2D Perovskite Films: Toward Efficient Semitransparent Solar Cells. Advanced Functional Materials, 2021, 31, 2104868.	7.8	17
486	Surface Stabilization of a Formamidinium Perovskite Solar Cell Using Quaternary Ammonium Salt. ACS Applied Materials & Interfaces, 2021, 13, 37052-37062.	4.0	23
487	Grain Size and Interface Modification via Cesium Carbonate Post-Treatment for Efficient SnO ₂ -Based Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7002-7011.	2.5	32

#	Article	IF	CITATIONS
488	Reducing the Energy Loss to Achieve High Openâ€circuit Voltage and Efficiency by Coordinating Energyâ€Level Matching in Sn–Pb Binary Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100287.	3.1	19
489	Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies. Frontiers in Electronics, 2021, 2, .	2.0	75
490	A mini review: Constructing perovskite p-n homojunction solar cells. Chinese Chemical Letters, 2022, 33, 1772-1778.	4.8	13
491	Highly Crystallized Tin Dioxide Microwires toward Ultraviolet Photodetector and Humidity Sensor with High Performances. Advanced Electronic Materials, 2021, 7, 2100706.	2.6	16
492	Superior photo-carrier diffusion dynamics in organic-inorganic hybrid perovskites revealed by spatiotemporal conductivity imaging. Nature Communications, 2021, 12, 5009.	5.8	10
493	Electronic and Optical Properties of van der Waals Heterostructures Based on Two-Dimensional Perovskite (PEA) ₂ Pbl ₄ and Black Phosphorus. ACS Omega, 2021, 6, 20877-20886.	1.6	9
494	Colloidal SnO ₂ â€Assisted CdS Electron Transport Layer Enables Efficient Electron Extraction for Planar Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100494.	3.1	20
495	Photo-assisted Cl doping of SnO2 electron transport layer for hysteresis-less perovskite solar cells with enhanced efficiency. Rare Metals, 2022, 41, 361-367.	3.6	10
496	Reducing the interfacial energy loss via oxide/perovskite heterojunction engineering for high efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 417, 129184.	6.6	27
497	MA Cation-Induced Diffusional Growth of Low-Bandgap FA-Cs Perovskites Driven by Natural Gradient Annealing. Research, 2021, 2021, 9765106.	2.8	8
498	Progress of Pbâ€ S n Mixed Perovskites for Photovoltaics: AÂReview. Energy and Environmental Materials, 2022, 5, 370-400.	7.3	20
499	Additive Engineering for Efficient and Stable MAPbI ₃ -Perovskite Solar Cells with an Efficiency of over 21%. ACS Applied Materials & Interfaces, 2021, 13, 44451-44459.	4.0	18
500	Efficient and Stable FAPbBr ₃ Perovskite Solar Cells via Interface Modification by a Low-Dimensional Perovskite Layer. ACS Applied Energy Materials, 2021, 4, 9276-9282.	2.5	19
501	Carboxyl functional group-assisted defects passivation strategy for efficient air-processed perovskite solar cells with excellent ambient stability. Solar Energy Materials and Solar Cells, 2021, 230, 111242.	3.0	23
502	Toward highly efficient luminescence in graphene quantum dots for optoelectronic applications. Chemical Physics Reviews, 2021, 2, .	2.6	27
503	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100401.	3.1	33
504	Mechanism of bifunctional p-amino benzenesulfonic acid modified interface in perovskite solar cells. Chemical Engineering Journal, 2021, 420, 129579.	6.6	44
505	Solutionâ€Processed Compact Sb ₂ S ₃ Thin Films by a Facile One‣tep Deposition Method for Efficient Solar Cells. Solar Rrl, 2021, 5, 2100666.	3.1	16

#	Article	IF	CITATIONS
506	Boosting interfacial charge transfer by constructing rare earth–doped WOx nanorods/SnO2 hybrid electron transport layer for efficient perovskite solar cells. Materials Today Energy, 2021, 21, 100724.	2.5	8
507	Additive engineering for stable halide perovskite solar cells. Journal of Energy Chemistry, 2021, 60, 599-634.	7.1	59
508	Air fabrication of SnO2 based planar perovskite solar cells with an efficiency approaching 20%: Synergistic passivation of multi-defects by choline chloride. Ceramics International, 2022, 48, 212-223.	2.3	6
509	Bifunctional Graphene Oxide Hole-Transporting and Barrier Layers for Transparent Bifacial Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 8824-8831.	2.5	8
510	Role of defects in organic–inorganic metal halide perovskite: detection and remediation for solar cell applications. Emergent Materials, 2022, 5, 987-1020.	3.2	10
511	Multiple-Function Surface Engineering of SnO ₂ Nanoparticles to Achieve Efficient Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 9142-9148.	2.1	19
512	Highly efficient flexible perovskite solar cells with vacuum-assisted low-temperature annealed SnO2 electron transport layer. Journal of Energy Chemistry, 2022, 67, 1-7.	7.1	33
513	ZnFe ₂ O ₄ Dendrite/SnO ₂ Helix 3D Heteroâ€6tructure Photoanodes for Enhanced Photoelectrochemical Water Splitting: Triple Functions of SnO ₂ Nanohelix. Small, 2021, 17, e2103861.	5.2	14
514	Functionalized SnO2 films by using EDTA-2ÂM for high efficiency perovskite solar cells with efficiency over 23%. Chemical Engineering Journal, 2022, 430, 132683.	6.6	38
515	Binary Additive Engineering Enables Efficient Perovskite Solar Cells via Spray-Coating in Air. ACS Applied Energy Materials, 2021, 4, 11496-11504.	2.5	8
516	Outstanding performance of electron-transport-layer-free perovskite solar cells using a novel small-molecule interlayer modified FTO substrate. Chemical Engineering Journal, 2021, 422, 130001.	6.6	22
517	Metal grid technologies for flexible transparent conductors in large-area optoelectronics. Current Applied Physics, 2021, 31, 105-121.	1.1	15
518	Smoothing and coverage improvement of SnO2 electron transporting layer by NH4F treatment: Enhanced fill factor and efficiency of perovskite solar cells. Solar Energy, 2021, 228, 253-262.	2.9	21
519	Interface modification by ethanolamine interfacial layer for efficient planar structure perovskite solar cells. Journal of Power Sources, 2021, 513, 230549.	4.0	11
520	Nb2C MXenes modified SnO2 as high quality electron transfer layer for efficient and stability perovskite solar cells. Nano Energy, 2021, 89, 106455.	8.2	40
521	Binary antisolvent bathing enabled highly efficient and uniform large-area perovskite solar cells. Chemical Engineering Journal, 2021, 423, 130078.	6.6	8
522	Hybrid photovoltaic-triboelectric nanogenerators for simultaneously harvesting solar and mechanical energies. Nano Energy, 2021, 89, 106376.	8.2	31
523	Ligand exchange of SnO2 effectively improving the efficiency of flexible perovskite solar cells. Journal of Alloys and Compounds, 2021, 883, 160827.	2.8	14

#	Article	IF	CITATIONS
524	Batch chemical bath deposition of large-area SnO2 film with mercaptosuccinic acid decoration for homogenized and efficient perovskite solar cells. Chemical Engineering Journal, 2021, 425, 131444.	6.6	29
525	Carbon-mediated electron transfer channel between SnO2 QDs and g-C3N4 for enhanced photocatalytic H2 production. Chemical Engineering Journal, 2021, 425, 131512.	6.6	18
526	Methylammonium- and bromide-free perovskites enable efficient and stable photovoltaics. Journal of Energy Chemistry, 2021, 63, 12-24.	7.1	1
527	Highly stable inverted non-fullerene OSCs by surface modification of SnO2 with an easy-accessible material. Chemical Engineering Journal, 2021, 426, 131583.	6.6	8
528	High-effective SnO2-based perovskite solar cells by multifunctional molecular additive engineering. Journal of Alloys and Compounds, 2021, 886, 161352.	2.8	25
529	Manipulating the morphology of CdS/Sb2S3 heterojunction using a Mg-doped tin oxide buffer layer for highly efficient solar cells. Journal of Energy Chemistry, 2022, 66, 374-381.	7.1	30
530	Synergy of mesoporous SnO2 and RbF modification for high-efficiency and stable perovskite solar cells. Journal of Energy Chemistry, 2022, 66, 250-259.	7.1	29
531	High-performance perovskite solar cells based on dopant-free hole-transporting material fabricated by a thermal-assisted blade-coating method with efficiency exceeding 21%. Chemical Engineering Journal, 2022, 427, 131609.	6.6	37
532	Tuning crystal orientation and charge transport of quasi-2D perovskites via halogen-substituted benzylammonium for efficient solar cells. Journal of Energy Chemistry, 2022, 66, 205-209.	7.1	10
533	Highly stable perovskite solar cells with a novel Ni-based metal organic complex as dopant-free hole-transporting material. Journal of Energy Chemistry, 2022, 65, 312-318.	7.1	11
534	Alkali chloride doped SnO ₂ electron-transporting layers for boosting charge transfer and passivating defects in all-inorganic CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 15003-15011.	5.2	30
535	Formamide iodide: a new cation additive for inhibiting δ-phase formation of formamidinium lead iodide perovskite. Materials Advances, 2021, 2, 2272-2277.	2.6	2
536	Synergetic effects of electrochemical oxidation of Spiro-OMeTAD and Li ⁺ ion migration for improving the performance of n–i–p type perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 7575-7585.	5.2	50
537	Dual Passivation of Perovskite and SnO ₂ for Highâ€Efficiency MAPbI ₃ Perovskite Solar Cells. Advanced Science, 2021, 8, 2001466.	5.6	72
538	Amorphous inorganic semiconductors for the development of solar cell, photoelectrocatalytic and photocatalytic applications. Chemical Society Reviews, 2021, 50, 6914-6949.	18.7	91
539	Homogeneous doping of entire perovskite solar cells <i>via</i> alkali cation diffusion from the hole transport layer. Journal of Materials Chemistry A, 2021, 9, 9266-9271.	5.2	8
540	Multifunctional organic ammonium salt-modified SnO ₂ nanoparticles toward efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 3940-3951.	5.2	146
541	A synergistic Cs ₂ CO ₃ ETL treatment to incorporate Cs cation into perovskite solar cells <i>via</i> two-step scalable fabrication. Journal of Materials Chemistry C, 2021, 9, 4367-4377.	2.7	17

		CITATION REPORT		
#	Article		IF	CITATIONS
542	Improving the hole transport performance of perovskite solar cells through adjusting t the as-synthesized conjugated polymer. Journal of Materials Chemistry C, 2021, 9, 342	1e mobility of 1-3428.	2.7	12
543	Photoelectrical Dynamics Uplift in Perovskite Solar Cells by Atoms Thick 2D TiS _{2 Passivation of TiO₂ Nanograss Electron Transport Layer. ACS Applied Mat Interfaces, 2021, 13, 3051-3061.}	Layer erials &	4.0	21
544	Precursor Engineering of the Electron Transport Layer for Application in Highâ€Perform Perovskite Solar Cells. Advanced Science, 2021, 8, e2102845.	ance	5.6	62
545	Highly Efficient Perovskite Solar Cells Enabled by Multiple Ligand Passivation. Advanced Materials, 2020, 10, 1903696.	l Energy	10.2	205
546	Effect of Oxygen Vacancies in Electron Transport Layer for Perovskite Solar Cells. , 202	0, , 283-305.		3
547	Low-Temperature Growing Anatase TiO2/SnO2 Multi-dimensional Heterojunctions at N Conductive Network for High-Efficient Perovskite Solar Cells. Nano-Micro Letters, 2020	1Xene), 12, 44.	14.4	76
548	Suppression of the interface-dependent nonradiative recombination by using 2-methyl interlayer for highly efficient and stable perovskite solar cells. Nano Energy, 2020, 76, 2		8.2	76
549	HI-assisted fabrication of Sn-doping TiO2 electron transfer layer for air-processed perov cells with high efficiency and stability. Solar Energy Materials and Solar Cells, 2020, 21	skite solar 5, 110594.	3.0	17
550	Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer. Com Materials, 2020, 1, .	nunications	2.9	91
551	Modifying perovskite solar cells with l(+)-cysteine at the interface between mesoporou perovskite. Sustainable Energy and Fuels, 2020, 4, 878-883.	s TiO2 and	2.5	8
552	Advances in design engineering and merits of electron transporting layers in perovskite Materials Horizons, 2020, 7, 2276-2291.	9 solar cells.	6.4	66
553	Effect of guanidinium chloride in eliminating O ₂ ^{â⁻'} electron barrier on a SnO ₂ surface to enhance the efficiency of perovskite solar ce Advances, 2020, 10, 19513-19520.		1.7	14
554	Organic-inorganic hybrid lead halides as absorbers in perovskite solar cells: a debate or ferroelectricity. Journal Physics D: Applied Physics, 2020, 53, 493002.	1	1.3	26
555	Interface modification of SnO ₂ layer using p–n junction double layer fo enhancement of perovskite solar cell. Journal Physics D: Applied Physics, 2020, 53, 505	r efficiency 103.	1.3	8
556	Metal oxide charge transport layers in perovskite solar cells—optimising low tempera and improving the interfaces towards low temperature processed, efficient and stable Energy, 2021, 3, 012004.	ture processing devices. JPhys	2.3	11
557	Impact of the trap-assisted recombination in the perovskite solar cells. , 2020, , .			1
558	Review on methods for improving the thermal and ambient stability of perovskite solar of Photonics for Energy, 2019, 9, 1.	cells. Journal	0.8	32
559	Vapor-assisted deposition of highly efficient, stable black-phase FAPbI ₃ p cells. Science, 2020, 370, .	erovskite solar	6.0	530

#	Article	IF	CITATIONS
560	Origin of High Efficiency and Long-Term Stability in Ionic Liquid Perovskite Photovoltaic. Research, 2020, 2016345.	2.8	59
561	Antimony trifluoride-incorporated SnO ₂ for high-efficiency planar perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 15428-15434.	2.7	11
562	Research Progress of Hole Transport Materials Based on Spiro Aromatic-Skeleton in Perovskite Solar Cells. Acta Chimica Sinica, 2021, 79, 1181.	0.5	5
563	Lead-lean and MA-free perovskite solar cells with an efficiency over 20%. Joule, 2021, 5, 2904-2914.	11.7	39
564	Multifunctional Polymer Framework Modified SnO ₂ Enabling a Photostable α-FAPbI ₃ Perovskite Solar Cell with Efficiency Exceeding 23%. ACS Energy Letters, 2021, 6, 3824-3830.	8.8	93
565	Flexible smart photovoltaic foil for energy generation and conservation in buildings. Nano Energy, 2022, 91, 106632.	8.2	18
566	Alkali Metal Fluoride-Modified Tin Oxide for n–i–p Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 50083-50092.	4.0	12
567	ITO/SnO ₂ Interface Defect Passivation via Atomic Layer Deposited Al ₂ O ₃ for Highâ€Efficiency Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100406.	0.8	3
568	Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges. Advanced Energy Materials, 2021, 11, .	10.2	40
569	Tailoring the Energy Band Structure and Interfacial Morphology of the ETL via Controllable Nanocluster Size Achieves High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 48555-48568.	4.0	8
570	Zirconium-Doped Zinc Oxide Nanoparticles as Cathode Interfacial Layers for Efficiently Rigid and Flexible Organic Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 10616-10621.	2.1	11
571	Allâ€Inorganic CsPbI ₂ Br Perovskite Solar Cells: Recent Developments and Challenges. Energy Technology, 2021, 9, 2100691.	1.8	11
572	Processing and Preparation Method for High-Quality Opto-Electronic Perovskite Film. Frontiers in Materials, 2021, 8, .	1.2	10
573	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	11.1	89
574	Super Flexible Transparent Conducting Oxideâ€Free Organic–Inorganic Hybrid Perovskite Solar Cells with 19.01% Efficiency (Active Area = 1 cm ²). Solar Rrl, 2021, 5, 2100733.	3.1	10
575	Flexible perovskite solar cells: Materials and devices. Journal of Semiconductors, 2021, 42, 101606.	2.0	12
576	Li-Doped Chemical Bath Deposited SnO ₂ Enables Efficient Perovskite Photovoltaics. ACS Applied Energy Materials, 2022, 5, 5340-5347.	2.5	9
577	A Biomimetic Selfâ€6hield Interface for Flexible Perovskite Solar Cells with Negligible Lead Leakage. Advanced Functional Materials, 2021, 31, 2106460.	7.8	54

#	Article	IF	CITATIONS
578	Interfacial modification of perovskite solar cells via Cs2CO3: Computational and experimental approach. Solar Energy, 2021, 228, 700-705.	2.9	4
579	Inorganic charge transport materials for high reliable perovskite solar cells. Ceramist, 2020, 23, 145-165.	0.0	1
580	Performance Improvement of Perovskite Solar Cells by Using Ionic Liquid BMIMPF ₆ as an Interface Modifier. ACS Applied Energy Materials, 2021, 4, 12421-12428.	2.5	16
581	In Situ Electron Transport Layers by a Carboxyl Ionic Liquid-Assisted Microwave Technique for a 20.1% Perovskite Solar Cell. ACS Applied Energy Materials, 0, , .	2.5	5
582	Universal Multienergy Harvester Architecture. ACS Applied Materials & amp; Interfaces, 2021, 13, 324-331.	4.0	2
583	Optimization of SnO ₂ electron transport layer for efficient planar perovskite solar cells with very low hysteresis. Materials Advances, 2022, 3, 456-466.	2.6	20
584	Few-layer fluorine-functionalized graphene hole-selective contacts for efficient inverted perovskite solar cells. Chemical Engineering Journal, 2022, 430, 132831.	6.6	13
585	LOW-COST AND HIGH-SPEED ATMOSPHERIC PLASMA PROCESSING OF PEROVSKITE THIN FILMS. , 2020, , .		0
586	Optimization of a SnO ₂ -Based Electron Transport Layer Using Zirconium Acetylacetonate for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 54579-54588.	4.0	11
587	Growth and Degradation Kinetics of Organic–Inorganic Hybrid Perovskite Films Determined by In Situ Grazingâ€Incidence Xâ€Ray Scattering Techniques. Small Methods, 2021, 5, e2100829.	4.6	8
588	Facile tuning of PbI2 porosity via additive engineering for humid air processable perovskite solar cells. Electrochimica Acta, 2022, 402, 139530.	2.6	5
589	Er@C ₈₂ as a Bifunctional Additive to the Spiroâ€OMeTAD Hole Transport Layer for Improving Performance and Stability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100463.	3.1	9
590	Rear Interface Engineering to Suppress Migration of Iodide Ions for Efficient Perovskite Solar Cells with Minimized Hysteresis. Advanced Functional Materials, 2022, 32, 2107823.	7.8	57
592	Heterojunction Engineering and Ideal Factor Optimization Toward Efficient MINP Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2102724.	10.2	29
593	High efficiency planar perovskite solar cell by surface disorder removal on mesoporous tin oxide. Surfaces and Interfaces, 2022, 28, 101584.	1.5	2
594	Enhanced photovoltaic performance of SnO2 based flexible perovskite solar cells via introducing interfacial dipolar layer and defect passivation. Journal of Power Sources, 2022, 519, 230814.	4.0	8
595	T-carbon: Experiments, properties, potential applications and derivatives. Nano Today, 2022, 42, 101346.	6.2	23
596	Coordinating light management and advance metal nitride interlayer enables MAPbI3 solar cells with >21.8% efficiency. Nano Energy, 2022, 92, 106765.	8.2	13

#	Article	IF	CITATIONS
597	Updated Progresses in Perovskite Solar Cells. Chinese Physics Letters, 2021, 38, 107801.	1.3	11
598	High-efficiency planar heterojunction perovskite solar cell produced by using 4-morpholine ethane sulfonic acid sodium salt doped SnO2. Journal of Colloid and Interface Science, 2022, 609, 547-556.	5.0	13
599	β-Alanine-Anchored SnO ₂ Inducing Facet Orientation for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 57163-57170.	4.0	18
600	Device Performance of Emerging Photovoltaic Materials (Version 2). Advanced Energy Materials, 2021, 11, .	10.2	66
601	Quantum Dot Interface-Mediated CsPbIBr ₂ Film Growth and Passivation for Efficient Carbon-Based Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 55349-55357.	4.0	17
602	Hydrothermally fabricated TiO2 heterostructure boosts efficiency of MAPbI3 perovskite solar cells. Journal of Industrial and Engineering Chemistry, 2021, 106, 382-382.	2.9	10
603	Simultaneous Interfacial Modification and Crystallization Control by Biguanide Hydrochloride for Stable Perovskite Solar Cells with PCE of 24.4%. Advanced Materials, 2022, 34, e2106118.	11.1	211
604	Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high VOC. Light: Science and Applications, 2021, 10, 239.	7.7	40
605	Acetic Acidâ€Assisted Synergistic Modulation of Crystallization Kinetics and Inhibition of Sn ²⁺ Oxidation in Tinâ€Based Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, 2109631.	7.8	95
606	Unraveling Passivation Mechanism of Imidazolium-Based Ionic Liquids on Inorganic Perovskite to Achieve Near-Record-Efficiency CsPbI2Br Solar Cells. Nano-Micro Letters, 2022, 14, 7.	14.4	58
607	Photoinduced quasi-2D to 3D phase transformation in hybrid halide perovskite nanoplatelets. Physical Chemistry Chemical Physics, 2021, 23, 27355-27364.	1.3	7
608	A Compact Electron Transport Layer Using a Heated Tinâ€Oxide Colloidal Solution for Efficient Perovskite Solar Cells. Solar Rrl, 0, , 2100794.	3.1	2
609	Multistrategy Toward Highly Efficient and Stable CsPbI ₂ Br Perovskite Solar Cells Based on Dopantâ€Free Poly(3â€Hexylthiophene). Solar Rrl, 2022, 6, .	3.1	16
610	Interface modification by formamidine acetate for efficient perovskite solar cells. Solar Energy, 2022, 232, 304-311.	2.9	9
611	Toward highâ€efficiency stable 2D/3D perovskite solar cells by incorporating multifunctional CNT:TiO ₂ additives into 3D perovskite layer. EcoMat, 2022, 4, e12166.	6.8	31
612	Neutron irradiated perovskite films and solar cells on PET substrates. Nano Energy, 2022, 93, 106879.	8.2	15
613	Chemical etching induced surface modification and gentle gradient bandgap for highly efficient Sb2(S,Se)3 solar cell. Applied Surface Science, 2022, 579, 152193.	3.1	15
614	Annealing free tin oxide electron transport layers for flexible perovskite solar cells. Nano Energy, 2022, 94, 106919.	8.2	29

#	Article	IF	CITATIONS
615	Progress and Challenges of SnO ₂ Electron Transport Layer for Perovskite Solar Cells: A Critical Review. Solar Rrl, 2022, 6, .	3.1	44
616	Improved performance and stability of perovskite solar modules by interface modulating with graphene oxide crosslinked CsPbBr ₃ quantum dots. Energy and Environmental Science, 2022, 15, 244-253.	15.6	33
617	Hot-Air Treatment-Regulated Diffusion of LiTFSI to Accelerate the Aging-Induced Efficiency Rising of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 4378-4388.	4.0	9
618	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. Science China Materials, 2022, 65, 855-875.	3.5	9
619	Stability Improvement of Perovskite Solar Cells by the Moisture-Resistant PMMA:Spiro-OMeTAD Hole Transport Layer. Polymers, 2022, 14, 343.	2.0	14
620	Conformal quantum dot–SnO ₂ layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375, 302-306.	6.0	872
621	A comprehensive analysis of PV cell parameters with varying halides stoichiometry in mixed halide perovskite solar cells. Optical Materials, 2022, 123, 111905.	1.7	6
622	2D Perovsktie Substrate-Assisted CsPbI ₃ Film Growth for High-Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 7417-7427.	4.0	10
623	Bifunctional Interfacial Regulation with 4â€(Trifluoromethyl) Benzoic Acid to Reduce the Photovoltage Deficit of MAPbI ₃ â€Based Perovskite Solar Cells. ChemNanoMat, 2022, 8, .	1.5	2
624	Effects of potassium treatment on SnO2 electron transport layers for improvements of perovskite solar cells. Solar Energy, 2022, 233, 353-362.	2.9	18
625	Polarity regulation for stable 2D-perovskite-encapsulated high-efficiency 3D-perovskite solar cells. Nano Energy, 2022, 95, 106965.	8.2	27
626	Low-temperature solution-processed SnO ₂ electron transport layer modified by oxygen plasma for planar perovskite solar cells. RSC Advances, 2022, 12, 4883-4890.	1.7	13
627	Molecularly Tailored SnO ₂ /Perovskite Interface Enabling Efficient and Stable FAPbI ₃ Solar Cells. ACS Energy Letters, 2022, 7, 929-938.	8.8	52
628	Flexible Perovskite Solar Cells with Enhanced Performance Based on a Void-Free Imbedded Interface via a Thin Layer of Mesoporous TiO ₂ . ACS Applied Energy Materials, 2022, 5, 2242-2251.	2.5	8
629	Enhanced Efficiency and Stability of Carbonâ€Based Perovskite Solar Cells by Eva Interface Engineering. Advanced Materials Interfaces, 2022, 9, .	1.9	4
630	Collaborative strengthening by multi-functional molecule 3-thiophenboric acid for efficient and stable planar perovskite solar cells. Chemical Engineering Journal, 2022, 436, 135134.	6.6	13
631	Roles of Longâ€Chain Alkylamine Ligands in Tripleâ€Halide Perovskites for Efficient NiO _{<i>x</i>} â€Based Inverted Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	14
632	Deep level defects passivated by small molecules for the enhanced efficiency and stability of inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 5922-5928.	2.7	14

#	Article	IF	CITATIONS
633	Durable polymer solar cells produced by the encapsulation of a WSe ₂ hole-transport layer and β-carotene as an active layer additive. Inorganic Chemistry Frontiers, 2022, 9, 1785-1793.	3.0	4
635	Exploring EDTA/SnO ₂ Double-Layer Composite Electron Transport Layer for Perovskite Solar Cells. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
636	Study of black phosphorus quantum dot modified SnO2-based perovskite solar cells. Applied Physics Letters, 2022, 120, .	1.5	3
637	Alkali Additives Enable Efficient Large Area (>55 cm ²) Slotâ€Die Coated Perovskite Solar Modules. Advanced Functional Materials, 2022, 32, .	7.8	39
638	Passivating the interface between halide perovskite and SnO2 by capsaicin to accelerate charge transfer and retard recombination. Applied Physics Letters, 2022, 120, .	1.5	4
639	Lowâ€Temperatureâ€Processed Stable Perovskite Solar Cells and Modules: A Comprehensive Review. Advanced Energy Materials, 2022, 12, .	10.2	38
640	FAPbI ₃ Perovskite Solar Cells: From Film Morphology Regulation to Device Optimization. Solar Rrl, 2022, 6, .	3.1	19
641	Chlorobenzenesulfonic Potassium Salts as the Efficient Multifunctional Passivator for the Buried Interface in Regular Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	119
642	Protonâ€transferâ€induced in situ defect passivation for highly efficient wideâ€bandgap inverted perovskite solar cells. InformaÄnÃ-Materiály, 2022, 4, .	8.5	27
643	Multifunctional <i>Ï€</i> â€Conjugated Additives for Halide Perovskite. Advanced Science, 2022, 9, e2105307.	5.6	33
644	Nitrogenâ€doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23%. , 2022, 1, 309-315.		47
645	Laser-Assisted Ultrafast Fabrication of Crystalline Ta-Doped TiO ₂ for High-Humidity-Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 15141-15153.	4.0	11
646	Ion diffusion-induced double layer doping toward stable and efficient perovskite solar cells. Nano Research, 2022, 15, 5114-5122.	5.8	47
647	Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications. ACS Energy Letters, 2022, 7, 1412-1445.	8.8	54
648	Interfacial Defect Passivation Effect of <i>N</i> -Methyl- <i>N</i> -(thien-2-ylmethyl)amine for Highly Effective Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 4270-4278.	2.5	2
649	Self-Enhancement of Efficiency and Self-Attenuation of Hysteretic Behavior of Perovskite Solar Cells with Aging. Journal of Physical Chemistry Letters, 2022, 13, 2792-2799.	2.1	16
650	Advances in SnO ₂ for Efficient and Stable n–i–p Perovskite Solar Cells. Advanced Materials, 2022, 34, e2110438.	11.1	186
651	Asymmetric organic diammonium salt buried in SnO2 layer enables fast carrier transfer and interfacial defects passivation for efficient perovskite solar cells. Chemical Engineering Journal, 2022, 442, 136291.	6.6	37

#	Article	IF	CITATIONS
652	Preâ€Buried Additive for Cross‣ayer Modification in Flexible Perovskite Solar Cells with Efficiency Exceeding 22%. Advanced Materials, 2022, 34, e2109879.	11.1	128
653	Attributes of High-Performance Electron Transport Layers for Perovskite Solar Cells on Flexible PET versus on Glass. ACS Applied Energy Materials, 2022, 5, 4096-4107.	2.5	22
654	Lead-Free Alloyed Double Perovskites: An Emerging Class of Materials for Optoelectronic Applications. Journal of Physical Chemistry C, 2022, 126, 6753-6760.	1.5	5
655	High pressure synthesized ferroelectric MnSnO3 with high carrier mobility and the effects of ion implantation on structural and magnetic properties. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 437, 128089.	0.9	1
656	Passivating buried interface with multifunctional novel ionic liquid containing simultaneously fluorinated anion and cation yielding stable perovskite solar cells over 23% efficiency. Journal of Energy Chemistry, 2022, 69, 659-666.	7.1	52
657	Highly improved efficiency and stability of planar perovskite solar cells via bifunctional phytic acid dipotassium anchored SnO2 electron transport layer. Applied Surface Science, 2022, 588, 152943.	3.1	14
658	Para-halogenated triphenyltriazine induced surface passivation toward efficient and stable perovskite solar cells. Applied Surface Science, 2022, 590, 153051.	3.1	6
659	Low-cost and easily prepared interface layer towards efficient and negligible hysteresis perovskite solar cells. Journal of Colloid and Interface Science, 2022, 617, 745-751.	5.0	11
660	Hydrophobic PbS QDs layer decorated ZnO electron transport layer to boost photovoltaic performance of perovskite solar cells. Chemical Engineering Journal, 2022, 439, 135701.	6.6	21
661	Modification of SnO2 electron transport Layer: Brilliant strategies to make perovskite solar cells stronger. Chemical Engineering Journal, 2022, 439, 135687.	6.6	40
662	Solution-processed Fe2-xMgxO3 ternary oxides for interface passivation in efficient perovskite solar cells. Chemical Engineering Journal, 2022, 441, 136118.	6.6	14
663	Modification of SnO ₂ with Phosphorusâ€Containing Lewis Acid for Highâ€Performance Planar Perovskite Solar Cells with Negligible Hysteresis. Solar Rrl, 2022, 6, .	3.1	17
664	SnO ₂ Passivation and Enhanced Perovskite Charge Extraction with a Benzylamine Hydrochloric Interlayer. ACS Applied Materials & Interfaces, 2022, 14, 34198-34207.	4.0	11
665	Recent Progress of Critical Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	78
666	A comprehensive optimization strategy: potassium phytate-doped SnO ₂ as the electron-transport layer for high-efficiency perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 7641-7650.	2.7	2
667	Strain-free hybrid perovskite films based on a molecular buffer interface for efficient solar cells. Journal of Materials Chemistry A, 2022, 10, 10865-10871.	5.2	12
668	Recordâ€Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation. Advanced Materials, 2022, 34, e2201681.	11.1	186
669	Homogenization of Optical Field in Nanocrystal-Embedded Perovskite Composites. ACS Energy Letters, 2022, 7, 1657-1671.	8.8	4

#	Article	IF	CITATIONS
670	Effective Passivation with Selfâ€Organized Molecules for Perovskite Photovoltaics. Advanced Materials, 2022, 34, e2202100.	11.1	67
671	Enhanced hydrothermal heterogeneous deposition with surfactant additives for efficient Sb2S3 solar cells. Chemical Engineering Journal, 2022, 446, 136474.	6.6	18
672	Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective. Advanced Energy Materials, 2022, 12, .	10.2	87
673	Managing interfacial properties of planar perovskite solar cells using Y3N@C80 endohedral metallofullerene. Science China Materials, 2022, 65, 2325-2334.	3.5	5
674	Improved Stability and Efficiency of Inverted Perovskite Solar Cell by Employing Nickel Oxide Hole Transporting Material Containing Ammonium Salt Stabilizer. Advanced Functional Materials, 2022, 32, .	7.8	16
675	Sputtered SnO ₂ as an interlayer for efficient semitransparent perovskite solar cells. Chinese Physics B, 2022, 31, 118801.	0.7	3
676	A high-responsivity CsPbBr ₃ nanowire photodetector induced by CdS@Cd _{<i>x</i>} Zn _{1â^'<i>x</i>} S gradient-alloyed quantum dots. Nanoscale Horizons, 2022, 7, 644-654.	4.1	6
677	Electron transport layer assisted by nickel chloride hexahydrate for open-circuit voltage improvement in MAPbl ₃ perovskite solar cells. RSC Advances, 2022, 12, 13820-13825.	1.7	0
678	A facile strategy to adjust SnO ₂ /perovskite interfacial properties for high-efficiency perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 8414-8421.	2.7	11
679	Recent review on electron transport layers in perovskite solar cells. International Journal of Energy Research, 2022, 46, 21441-21451.	2.2	24
680	Tailoring the Interface in High Performance Planar Perovskite Solar Cell by ZnOS Thin Film. ACS Applied Energy Materials, 2022, 5, 5680-5690.	2.5	9
681	Simulation of the photovoltaic performance of a perovskite solar cell based on methylammonium lead iodide. Optical and Quantum Electronics, 2022, 54, .	1.5	6
682	Stress and Defect Effects on Electron Transport Properties at SnO ₂ /Perovskite Interfaces: A First-Principles Insight. ACS Omega, 2022, 7, 16187-16196.	1.6	4
683	Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells. Nano-Micro Letters, 2022, 14, 117.	14.4	68
684	SnO ₂ –TiO ₂ Hybrid Electron Transport Layer for Efficient and Flexible Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1864-1870.	8.8	32
685	Organic–Inorganic Hybrid Electron Transport Layer for Rigid or Flexible Perovskite Solar Cells under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10, 6826-6834.	3.2	5
686	Strategies for highâ€performance perovskite solar cells from materials, film engineering to carrier dynamics and photon management. InformaÄnÃ-Materiály, 2022, 4, .	8.5	27
687	Crosslinkable and Chelatable Organic Ligand Enables Interfaces and Grains Collaborative Passivation for Efficient and Stable Perovskite Solar Cells. Small, 2022, 18, e2201820.	5.2	15

#	Article	IF	Citations
688	Complexation Engineering of Electron Transport Layers for Highâ€Performance Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	6
689	Simultaneous bottom-up double-layer synergistic optimization by multifunctional fused-ring acceptor with electron-deficient core for stable planar perovskite solar cells with approaching 24% efficiency. Nano Energy, 2022, 99, 107368.	8.2	10
690	Flexible perovskite solar cells: Material selection and structure design. Applied Physics Reviews, 2022, 9, .	5.5	19
691	Improvement of nanopore structure SnO2 electron-transport layer for carbon-based CsPbIBr2 perovskite solar cells. Materials Science in Semiconductor Processing, 2022, 148, 106787.	1.9	5
692	Defective MWCNT Enabled Dual Interface Coupling for Carbonâ€Based Perovskite Solar Cells with Efficiency Exceeding 22%. Advanced Functional Materials, 2022, 32, .	7.8	35
693	Embedding SnO ₂ Thin Shell Protected Ag Nanowires in SnO ₂ ETL to Enhance the Performance of Perovskite Solar Cells. Langmuir, 2022, 38, 6752-6760.	1.6	8
694	Downconversion Materials for Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	18
695	Simple Ballâ€Milled Molybdenum Sulfide Nanosheets for Effective Interface Passivation with Selfâ€Repairing Function to Attain Highâ€Performance Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	7
696	Managing Lead Leakage in Efficient Perovskite Solar Cells with Phosphate Interlayers. Advanced Materials Interfaces, 0, , 2200570.	1.9	9
697	Efficient molecular ferroelectric photovoltaic device with high photocurrent via lewis acid–base adduct approach. Nanotechnology, 2022, 33, 405402.	1.3	1
698	Functionalized-MXene-nanosheet-doped tin oxide enhances the electrical properties in perovskite solar cells. Cell Reports Physical Science, 2022, 3, 100905.	2.8	17
699	Multifunctional Thiophene-Based Interfacial Passivating Layer for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6823-6832.	2.5	6
700	Organic ammonium chloride salt incorporated SnO ₂ electron transport layers for improving the performance of perovskite solar cells. Sustainable Energy and Fuels, 0, , .	2.5	2
701	Dual Effect of Superhalogen Ionic Liquids Ensures Efficient Carrier Transport for Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 28826-28833.	4.0	9
702	Non-Aqueous One-Pot SnO ₂ Nanoparticle Inks and Their Use in Printable Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 5535-5545.	3.2	7
703	In-situ photoisomerization of azobenzene to inhibit ion-migration for stable high-efficiency perovskite solar cells. Journal of Energy Chemistry, 2022, 73, 556-564.	7.1	7
706	Highly-efficient perovskite solar cells based on controllable oxygen defects in tin oxide electron transport layers. Ceramics International, 2022, , .	2.3	2
707	Synthesis and characterization of ambient-processed FTO/ZnO/CsPbBr2Cl/C perovskite solar cell deposited by SILAR method. Optical Materials, 2022, 130, 112575.	1.7	4

		Report	
#	Article	IF	CITATIONS
708	In-situ peptization of WO3 in alkaline SnO2 colloid for stable perovskite solar cells with record fill-factor approaching the shockley–queisser limit. Nano Energy, 2022, 100, 107468.	8.2	29
709	Hydrazine Hydrateâ€Induced Surface Modification of CdS Electron Transport Layer Enables 10.30%â€Efficient Sb ₂ (S,Se) ₃ Planar Solar Cells. Advanced Science, 2022, 9, .	5.6	20
710	SnO2 modified mesoporous ZrO2 as efficient electron-transport layer for carbon-electrode based, low-temperature mesoscopic perovskite solar cells. Applied Physics Letters, 2022, 120, .	1.5	6
711	Dopant compensation in p-type doped MAPb _{1â^²} _{<i>x</i>} Cu _{<i>x</i>} I ₃ alloyed perovskite crystals. Applied Physics Letters, 2022, 121, 012102.	1.5	0
712	Monolithic bilayered In ₂ O ₃ as an efficient interfacial material for highâ€performance perovskite solar cells. , 2022, 1, 526-536.		17
713	Decoupling engineering of formamidinium–cesium perovskites for efficient photovoltaics. National Science Review, 2022, 9, .	4.6	22
714	Balanced-Strength Additive for High-Efficiency Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 8034-8041.	2.5	10
715	Modifying SnO ₂ with Polyacrylamide to Enhance the Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34143-34150.	4.0	27
716	Improvement from discrete to uniform wetting of organic perovskite on ferromagnetic metals through a heterointerface. Applied Surface Science, 2022, 601, 154180.	3.1	1
717	Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule, 2022, 6, 1931-1943.	11.7	64
718	Small Molecule-Induced Modulation of Grain Crystallization and Ion Migration Leads to High-Performance MAPbI ₃ Mini-Modules. ACS Applied Energy Materials, 2022, 5, 9471-9478.	2.5	3
719	High Moisture Stability for Enhanced Quality PSCs Induced by Front and Back Layer Synergistic Passivation of Perovskite. Solar Rrl, 0, , .	3.1	2
720	Efficient Perovskite Solar Cells Based on Tin Oxide Nanocrystals with Difunctional Modification. Small, 2022, 18, .	5.2	15
721	22% efficient Kusachiite solar cells of CuBi2O4 light harvester and ABO3 buffer layers: A theoretical analysis. Materials Today Communications, 2022, 32, 104061.	0.9	7
722	TiO ₂ /SnO ₂ electron transport double layers with ultrathin SnO ₂ for efficient planar perovskite solar cells. Chinese Physics B, 2022, 31, 118802.	0.7	2
723	24.8%-efficient planar perovskite solar cells via ligand-engineered TiO2 deposition. Joule, 2022, 6, 2186-2202.	11.7	44
724	Phenethylammonium lodide Passivation Layers for Flexible Planar Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	5
725	Alkali Metal Cations Modulate the Energy Level of SnO ₂ via Micro-agglomerating and Anchoring for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 36711-36720.	4.0	7

#	Article	IF	CITATIONS
726	Physics, Simulation, and Experiment of Perovskite Solar Cells with Addressing Hysteresis Effect. Solar Rrl, 2022, 6, .	3.1	2
727	Modification of SnO2 by acidic FAAc-HI solution for efficient and stable perovskite solar cells with a multifunctional interface. Journal of Materials Research, 0, , .	1.2	0
728	24.11% High Performance Perovskite Solar Cells by Dual Interfacial Carrier Mobility Enhancement and Charge arrier Transport Balance. Advanced Energy Materials, 2022, 12, .	10.2	21
729	Progress of Solution-Processed Metal Oxides as Charge Transport Layers towards Efficient and Stable Perovskite Solar Cells and Modules. Materials Today Nano, 2022, , 100252.	2.3	2
730	Solvent Engineering for High-Performance Two-Dimensional Ruddlesden–Popper CsPbl ₃ Solar Cells. ACS Applied Energy Materials, 0, , .	2.5	2
731	Revealing the interfacial properties of halide ions for efficient and stable flexible perovskite solar cells. Journal of Colloid and Interface Science, 2022, 628, 696-704.	5.0	13
732	Recent advances in two-dimensional graphdiyne for nanophotonic applications. Chemical Engineering Journal, 2022, 450, 138228.	6.6	35
733	Constructing 2D passivation layer on perovskites based on 3-chlorobenzylamine enables efficient and stable perovskite solar cells. Journal of Alloys and Compounds, 2022, 926, 166891.	2.8	10
734	A General Large-Scale Fabrication of Tin Oxide with Interfacial Engineering via Trichloropropylsilane for Hysteresis-Free MAPbI3 Perovskite Solar Cells Exceeding 20% PCE. Bulletin of the Chemical Society of Japan, 2022, 95, 1506-1514.	2.0	2
735	Effect of Fullerene Derivatives on the Lifetime Characteristics and the Stability of Inverted Perovskite Solar Cells. Materials Transactions, 2022, 63, 1484-1488.	0.4	0
736	Dual-site passivation of tin-related defects enabling efficient lead-free tin perovskite solar cells. Nano Energy, 2022, 103, 107818.	8.2	37
737	A full range of defect passivation strategy targeting efficient and stable planar perovskite solar cells. Chemical Engineering Journal, 2023, 451, 138800.	6.6	13
738	Hole transport free carbon-based high thermal stability CsPbI _{1.2} Br _{1.8} solar cells with an amorphous InGaZnO ₄ electron transport layer. Physical Chemistry Chemical Physics, 2022, 24, 18896-18904.	1.3	2
739	A thiourea resin polymer as a multifunctional modifier of the buried interface for efficient perovskite solar cells with reduced lead leakage. Materials Chemistry Frontiers, 0, , .	3.2	0
740	Advancement in Copper Indium Gallium Diselenide (CIGS)-Based Thin-Film Solar Cells. Advances in Sustainability Science and Technology, 2022, , 5-39.	0.4	3
741	Predicting a process window for the roll-to-roll deposition of solvent-engineered SnO ₂ in perovskite solar cells. Materials Advances, 2022, 3, 8588-8596.	2.6	5
742	Boosted charge extraction of SnO2 nanorod arrays via nanostructural and surface chemical engineering for efficient and stable perovskite solar cells. Applied Surface Science, 2023, 607, 154986.	3.1	8
743	Mitigating <i>V</i> _{oc} Loss in Tin Perovskite Solar Cells via Simultaneous Suppression of Bulk and Interface Nonradiative Recombination. ACS Applied Materials & Interfaces, 2022, 14, 41086-41094.	4.0	11

#	Article	IF	CITATIONS
744	Large improvement of photovoltaic performance of flexible perovskite solar cells using a multifunctional phospho-ethanolamine-modified SnO2 layer. Science China Materials, 2022, 65, 3392-3401.	3.5	9
745	Thermal Annealing-Free SnO ₂ for Fully Room-Temperature-Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 41037-41044.	4.0	5
746	Cl ₂ -Doped CuSCN Hole Transport Layer for Organic and Perovskite Solar Cells with Improved Stability. ACS Energy Letters, 2022, 7, 3139-3148.	8.8	20
747	Antisolvent Treatment on Wet Solutionâ€Processed CuSCN Hole Transport Layer Enables Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	6
748	Machineâ€Learning Modeling for Ultraâ€Stable Highâ€Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	23
749	Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. Advanced Materials, 2022, 34, .	11.1	67
750	MXeneâ€Regulated Perovskite Vertical Growth for Highâ€Performance Solar Cells. Angewandte Chemie, 0, , .	1.6	2
751	MXeneâ€Regulated Perovskite Vertical Growth for Highâ€Performance Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
752	Multi-functional Strategy: Ammonium Citrate-Modified SnO ₂ ETL for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 43975-43986.	4.0	13
753	Socio-economic impacts of solar energy technologies for sustainable green energy: a review. Environment, Development and Sustainability, 0, , .	2.7	4
754	Robust Nonspiroâ€Based Hole Conductors for Highâ€Efficiency Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	11
755	Solar Cell Efficiency Exceeding 25% through Rb-Based Perovskitoid Scaffold Stabilizing the Buried Perovskite Surface. ACS Energy Letters, 2022, 7, 3685-3694.	8.8	44
756	Laser Processing of KBrâ€Modified SnO ₂ for Efficient Rigid and Flexible Ambientâ€Processed Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	5
757	Defect passivation and electrical conductivity enhancement in perovskite solar cells using functionalized graphene quantum dots. Materials Futures, 2022, 1, 045101.	3.1	20
758	Formate as Antiâ€Oxidation Additives for Pbâ€Free FASnI ₃ Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	4
759	Organic-inorganic hybrid electron transport layer of PVP-doped SnO2 for high-efficiency stable perovskite solar cells. Solar Energy Materials and Solar Cells, 2022, 248, 112032.	3.0	6
760	Green-solvent-processed formamidinium-based perovskite solar cells with uniform grain growth and strengthened interfacial contact <i>via</i> a nanostructured tin oxide layer. Materials Horizons, 2023, 10, 122-135.	6.4	18
761	Multifunctional Histidine Cross-Linked Interface toward Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 47872-47881.	4.0	13

#	Article	IF	Citations
762	An Interface Co-modification Strategy for Improving the Efficiency and Stability of CsPbI ₃ Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 13419-13428.	2.5	4
763	A-site cation engineering enables oriented Ruddlesden-Popper perovskites towards efficient solar cells. Science China Chemistry, 2022, 65, 2468-2475.	4.2	11
764	Molecular Bridge Assisted Bifacial Defect Healing Enables Low Energy Loss for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	27
765	Understanding the Space-Charge Layer in SnO ₂ for Enhanced Electron Extraction in Hybrid Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 48229-48239.	4.0	1
766	Perovskite/Hole Transport Layer Interfacial Engineering with Substoichiometric Tungsten Oxide Rich in Oxygen Vacancies to Boost the Photovoltaic Performance of Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	1
767	Manipulating the Migration of lodine lons via Reverseâ€Biasing for Boosting Photovoltaic Performance of Perovskite Solar Cells. Advanced Science, 2022, 9, .	5.6	13
768	Spherical hydroxyapatite nanoparticle scaffolds for reduced lead release from damaged perovskite solar cells. Communications Materials, 2022, 3, .	2.9	3
769	Recent progress in improving strategies of inorganic electron transport layers for perovskite solar cells. Nano Energy, 2022, 104, 107918.	8.2	26
770	One-pot synthesis of tin oxide/reduced graphene oxide composite coated fabric for wearable ammonia sensor with fast response/recovery rate. Journal of Alloys and Compounds, 2023, 931, 167585.	2.8	10
771	Dual passivation of SnO2/Perovskite heterogeneous interfacial defects for efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2023, 250, 112088.	3.0	8
772	Stabilizing dynamic surface of highly luminescent perovskite quantum dots for light-emitting diodes. Chemical Engineering Journal, 2023, 453, 139909.	6.6	15
773	Balanced change in crystal unit cell volume and strain leads to stable halide perovskite with high guanidinium content. RSC Advances, 2022, 12, 32630-32639.	1.7	5
774	Improving carrier separation at the TiO ₂ /CsPbIBr ₂ interface by gradient Sn-doping. Physical Chemistry Chemical Physics, 2022, 24, 28429-28435.	1.3	1
775	Slot-die coated scalable hole transporting layers for efficient perovskite solar modules. Journal of Materials Chemistry A, 2022, 10, 25652-25660.	5.2	9
776	Recent progress in perovskite solar cells: from device to commercialization. Science China Chemistry, 2022, 65, 2369-2416.	4.2	53
777	Natural Amino Acid Enables Scalable Fabrication of Highâ€Performance Flexible Perovskite Solar Cells and Modules with Areas over 300 cm ² . Small Methods, 2022, 6, .	4.6	10
778	Modulation and Direct Mapping of the Interfacial Band Alignment of an Eco-Friendly Zinc-Tin-Oxide Buffer Layer in SnS Solar Cells. ACS Applied Energy Materials, 2022, 5, 14531-14540.	2.5	2
779	Surface metal-EDTA coordination layer activates NixFe3-xO4 spinel as an outstanding electrocatalyst for oxygen evolution reaction. Journal of Colloid and Interface Science, 2023, 632, 44-53.	5.0	6

#	Article	IF	CITATIONS
780	Dimethylammonium Cation-Induced 1D/3D Heterostructure for Efficient and Stable Perovskite Solar Cells. Molecules, 2022, 27, 7566.	1.7	1
781	Molecularly Functionalized SnO ₂ Films by Carboxylic Acids for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 52838-52848.	4.0	6
782	Amorphous antimony sulfide nanoparticles construct multi-contact electron transport layers for efficient carbon-based all-inorganic CsPbI2Br perovskite solar cells. Chemical Engineering Journal, 2023, 455, 140871.	6.6	1
783	Hypervalent potassium xanthate modified SnO2 for highly efficient perovskite solar modules. Chemical Engineering Journal, 2023, 456, 140894.	6.6	7
784	Improved mobility and photovoltaic performance of two-dimensional Ruddlesdenâ^'Popper (ThMA)2(MA)2M3I10 perovskites applied in perovskite solar cells. Journal of Alloys and Compounds, 2023, 937, 168464.	2.8	3
785	Interfacial Engineering for Improved Stability of Flexible Perovskite Solar Cells. Energy Material Advances, 2022, 2022, .	4.7	23
786	Buried Interface Regulation by Bioâ€Functional Molecules for Efficient and Stable Planar Perovskite Solar Cells. Chemistry - A European Journal, 2023, 29, .	1.7	4
787	Reconfiguration toward Selfâ€Assembled Monolayer Passivation for Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	13
788	Reduced Surface Hydroxyl and Released Interfacial Strain by Inserting CsF Anchor Interlayer for Highâ€Performance Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	7
789	Tailoring the Cs/Br Ratio for Efficient and Stable Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	0
790	Modulating Residual Lead Iodide via Functionalized Buried Interface for Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 666-676.	8.8	34
791	A Stable Aqueous SnO2 Nanoparticle Dispersion for Roll-to-Roll Fabrication of Flexible Perovskite Solar Cells. Coatings, 2022, 12, 1948.	1.2	2
792	Nucleation Regulation and Anchoring of Halide Ions in Allâ€Inorganic Perovskite Solar Cells Assisted by CuInSe ₂ Quantum Dots. Advanced Functional Materials, 2023, 33, .	7.8	4
793	Modification of SnO2 Electron Transport Layer in Perovskite Solar Cells. Nanomaterials, 2022, 12, 4326.	1.9	4
794	Natural Product Additive with Multifunctional Groups Enhancing the Efficiency and Stability of Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	1
795	Achieving High Responsivity of Photoelectrochemical Solarâ€Blind Ultraviolet Photodetectors via Oxygen Vacancy Engineering. Advanced Optical Materials, 2023, 11, .	3.6	13
796	Recent Advances on Nanocrystals Embedding for High Performance Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	6
797	Small Molecules Functionalized Zinc Oxide Interlayers for High Performance Lowâ€Temperature Carbonâ€Based CsPbI ₂ Br Perovskite Solar Cells. Small, 2023, 19, .	5.2	14

#	Article	IF	CITATIONS
798	Perovskite precursor concentration for enhanced recombination suppression in perovskite solar cells. , 2022, 1, 100006.		6
799	Surface Functionalization of Indium Tin Oxide Electrodes by Self-assembled Monolayers for Direct Assembly of Pre-synthesized SnO2 Nanocrystals as Electron Transport Layers. Electronic Materials Letters, 2023, 19, 267-277.	1.0	2
800	Acetylacetoneâ€īiO ₂ Promoted Large Area Compatible Cascade Electron Transport Bilayer for Efficient Perovskite Solar Cells. Energy and Environmental Materials, 2024, 7, .	7.3	5
801	Numerical Study on the Effect of Dual Electron Transport Layer in Improving the Performance of Perovskite–Perovskite Tandem Solar Cells. Advanced Theory and Simulations, 2023, 6, .	1.3	6
802	Highly efficient perovskite solar cells by building 2D/3D perovskite heterojuction in situ for interfacial passivation and energy level adjustment. Science China Chemistry, 2023, 66, 449-458.	4.2	9
803	Efficient Quantum-Dot Light-Emitting Diodes Based on Solvent-Annealed SnO ₂ Electron-Transport Layers. ACS Applied Electronic Materials, 2023, 5, 537-543.	2.0	3
804	Interfacial engineering between SnO ₂ /MAPbI ₃ by maleate pheniramine halides toward carbon counter electrode-based perovskite solar cells with 16.21% efficiency. Materials Chemistry Frontiers, 2023, 7, 964-974.	3.2	7
805	Heterocyclic amino acid molecule as a multifunctional interfacial bridge for improving the efficiency and stability of quadruple cation perovskite solar cells. Nano Energy, 2023, 107, 108154.	8.2	23
806	3D nanographene precursor suppress interfacial recombination in PEDOT: PSS based perovskite solar cells. Nano Energy, 2023, 107, 108136.	8.2	5
807	ĐĐ¾Đ·Đ¼Đ,Ñ,Ñ− Ñ€ĐµĐ»Đ°ĐºÑĐ°Ñ†Ñ−Đ¹Đ½Ñ− ÑĐ¿ĐµĐºÑ,Ñ€Đ, у ĐʹÑ−ĐµĐ»ĐµĐºÑ,Ñ€Đ,Ñ‡Đ½Đ,Ñ Đ¼Đ	° ð, ерÍ	Ĭ-€D°Đ»Đ°Ì
808	Humidityâ€Insensitive, Largeâ€Areaâ€Applicable, Hotâ€Airâ€Assisted Ambient Fabrication of 2D Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	5
809	Carbon Dots in Perovskite Solar Cells: Properties, Applications, and Perspectives. Energy & Fuels, 2023, 37, 876-901.	2.5	7
810	Atomic layer deposition of SnO ₂ using hydrogen peroxide improves the efficiency and stability of perovskite solar cells. Nanoscale, 2023, 15, 5044-5052.	2.8	14
811	Rational Design of Ferroelectric 2D Perovskite for Improving the Efficiency of Flexible Perovskite Solar Cells Over 23 %. Angewandte Chemie, 2023, 135, .	1.6	0
812	Thermalâ€Induced Ceriumâ€Doped Perovskite Solar Cells with a Fill Factor Exceeding 81%. Solar Rrl, 2023, 7, .	3.1	5
813	Rational Design of Ferroelectric 2D Perovskite for Improving the Efficiency of Flexible Perovskite Solar Cells Over 23 %. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
814	Enhanced carrier management via optimized SnO ₂ preparation and film coverage for improved device performance. Applied Physics Letters, 2023, 122, 043904.	1.5	3
815	Multiple Function Synchronous Optimization by PbS Quantum Dots for Highly Stable Planar Perovskite Solar Cells with Efficiency Exceeding 23%. Advanced Functional Materials, 2023, 33, .	7.8	6

#	Article	IF	CITATIONS
816	Synergistic Effects of Interfacial Energy Level Regulation and Stress Relaxation via a Buried Interface for Highly Efficient Perovskite Solar Cells. ACS Nano, 2023, 17, 2802-2812.	7.3	19
817	Novel dual-modification strategy using Ce-containing compounds toward high-performance flexible perovskite solar cells. Nano Energy, 2023, 109, 108241.	8.2	13
818	Synchronous amelioration of SnO2 surface aggregation and buried layer defects by sodium salts for high-efficiency and stable perovskite solar cells. Sustainable Energy and Fuels, 0, , .	2.5	1
819	24.96%â€Efficiency FACsPbI ₃ Perovskite Solar Cells Enabled by an Asymmetric 1,3â€Thiazoleâ€2,4â€Diammonium. Advanced Energy Materials, 2023, 13, .	10.2	17
820	Leadâ€Free Tinâ€Based Perovskite Solar Cells with over 1600 Hours Stability in N ₂ Achieved by Multifunctional Additive. Solar Rrl, 2023, 7, .	3.1	1
821	Passivating detrimental grain boundaries in perovskite films with strongly interacting polymer for achieving high-efficiency and stable perovskite solar cells. Applied Surface Science, 2023, 626, 157209.	3.1	6
822	Interface Regulation for Efficient and Stable Perovskite Solar Cells through Potassium Citrate Molecules. Chemistry - A European Journal, 2023, 29, .	1.7	1
823	Alkyl Chain Lengthâ€Dependent Amineâ€Induced Crystallization for Efficient Interface Passivation of Perovskite Solar Cells. Advanced Materials Interfaces, 2023, 10, .	1.9	3
824	Preâ€Buried ETL with Bottomâ€Up Strategy Toward Flexible Perovskite Solar Cells with Efficiency Over 23%. Advanced Functional Materials, 2023, 33, .	7.8	32
825	Enhanced efficiency and stability of perovskite solar cells achieved by incorporating potassium cation-18-crown ether-6 complexes. Organic Electronics, 2023, 116, 106766.	1.4	1
826	Modifying the photoelectric performance of SnO2 via D-arginine monohydrochloride for high-performance perovskite solar cells. Journal of Alloys and Compounds, 2023, 946, 169361.	2.8	4
827	Retina-inspired narrowband perovskite sensor array for panchromatic imaging. Science Advances, 2023, 9, .	4.7	3
828	Perylene Monoimide Phosphorus Salt Interfacial Modified Crystallization for Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 5556-5565.	4.0	1
829	Synergetic Excess Pbl ₂ and Reduced Pb Leakage Management Strategy for 24.28% Efficient, Stable and Ecoâ€Friendly Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	23
830	Interfacial defect passivation by using diethyl phosphate salts for high-efficiency and stable perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 6556-6564.	5.2	6
831	Manipulation of the Buried Interface for Robust Formamidiniumâ€based Snâ~'Pb Perovskite Solar Cells with NiO _x Holeâ€Transport Layers. Angewandte Chemie, 2023, 135, .	1.6	6
832	Manipulation of the Buried Interface for Robust Formamidiniumâ€based Snâ^'Pb Perovskite Solar Cells with NiO _x Holeâ€Transport Layers. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
833	Blurred Relaxation Spectra in Dielectric Materials. Radioelectronics and Communications Systems, 2022, 65, 221-234.	0.3	2

#	Article	IF	CITATIONS
834	Narrowband Near-Infrared Photodetectors Based on Dye-Doped Perovskites. ACS Applied Electronic Materials, 2023, 5, 1628-1635.	2.0	1
835	Orientation control of two-dimensional perovskite (CH ₃ (CH ₂) ₃ NH ₃) ₂ (CH ₃ NH _{3 nâ^{^1}1} Pb _n 1 _{3n+1} (n = 2) thin films by thermal annealing. Japanese Journal of Applied Physics. 2023. 62. SK1007.	3)<: 0.8	sup>
836	Oriented Attachment of Tin Halide Perovskites for Photovoltaic Applications. ACS Energy Letters, 2023, 8, 1590-1596.	8.8	6
837	Antisolventâ€Assisted In Situ Cation Exchange of Perovskite Quantum Dots for Efficient Solar Cells. Advanced Materials, 2023, 35, .	11.1	21
838	Multifunctional anthraquinone-sulfonic potassium salts passivate the buried interface for efficient and stable planar perovskite solar cells. Physical Chemistry Chemical Physics, 2023, 25, 8403-8411.	1.3	3
839	Concurrent Top and Buried Surface Optimization for Flexible Perovskite Solar Cells with High Efficiency and Stability. Advanced Functional Materials, 2023, 33, .	7.8	11
840	Stable Electron-Transport-Layer-Free Perovskite Solar Cells with over 22% Power Conversion Efficiency. Nano Letters, 2023, 23, 2195-2202.	4.5	9
841	Highly Improved Photocurrent Density and Efficiency of Perovskite Solar Cells via Inclined Fluorine Sputtering Process. Advanced Functional Materials, 2023, 33, .	7.8	2
842	Chloroformamidine hydrochloride as a molecular linker towards efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 2023, 11, 5039-5044.	2.7	3
843	Molecular exchange and passivation at interface afford high-performing perovskite solar cells with efficiency over 24%. Journal of Energy Chemistry, 2023, 82, 219-227.	7.1	7
844	Ambientâ€Airâ€Stable Inverted Perovskite Solar Cells by Carbazole Analog Tailored Perovskite Thin Films. Solar Rrl, 2023, 7, .	3.1	2
845	Buried Guanidinium Passivator with Favorable Binding Energy for Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 1848-1856.	8.8	16
846	A Topâ€Down Strategy for Reforming the Characteristics of NiO Hole Transport Layer in Inverted Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	2
847	Buried interface passivation strategies for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 8573-8598.	5.2	10
848	èf基ææ−™é'åŒ−钙钛çŸ;å¤é~³èf½ç"µæ±çš"ç"究进展. Scientia Sinica: Physica, Mechanica Et Astronomica	, @ @23,,.	0
849	Environmentally friendly anti-solvent engineering for high-efficiency tin-based perovskite solar cells. Energy and Environmental Science, 2023, 16, 2177-2186.	15.6	20
850	An ionic liquid as an interface modulator for highly efficient and stable perovskite solar cells. Sustainable Energy and Fuels, 2023, 7, 1992-2002.	2.5	0
851	CsPbBr ₃ Quantum Dotsâ€5ensitized Mesoporous TiO ₂ Electron Transport Layers for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	2

	CITATION RE	Citation Report	
#	Article	IF	CITATIONS
852	The effect of the effective electron mass on the hot electron collection. , 2023, 1, 100002.		1
853	An Interlayer of Ultrasmall N-Rich Carbon Dots for Optimization of SnO2/CsFAPbI3 Interface. Photonics, 2023, 10, 379.	0.9	1
854	Selfâ€Healing Perovskite Grain Boundaries in Efficient and Stable Solar Cells via Incorporation of 502 Adhesive. Solar Rrl, 2023, 7, .	3.1	2
855	Progress in Surface Modification of SnO ₂ Electron Transport Layers for Stable Perovskite Solar Cells. Small Science, 2023, 3, .	5.8	6
856	Lowâ€Cost Hydroxyacid Potassium Synergists as an Efficient In Situ Defect Passivator for High Performance Tinâ€Oxideâ€Based Perovskite Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
857	Lowâ€Cost Hydroxyacid Potassium Synergists as an Efficient In Situ Defect Passivator for High Performance Tinâ€Oxideâ€Based Perovskite Solar Cells. Angewandte Chemie, 0, , .	1.6	0
858	Surface modification of titanium dioxide. Journal of Materials Science, 2023, 58, 6887-6930.	1.7	5
859	Unraveling Optical and Electrical Gains of Perovskite Solar Cells with an Antireflective and Energetic Cascade Electron Transport Layer. ACS Applied Materials & Interfaces, 2023, 15, 21152-21161.	4.0	3
866	Direct Observation of Intragrain Defect Elimination in FAPbI ₃ Perovskite Solar Cells by Two-Dimensional PEA ₂ PbI ₄ . ACS Energy Letters, 2023, 8, 2620-2629.	8.8	5
872	钙钛çŸįåå±,头³ç"µæ±ä,电è•ä¼è¾"ææ−™çš"ç"ç©¶èį›å±•. Science China Materials, 2023, 66, 2107-2127.	3.5	1
880	Perovskite Solar Cells with an SbX ₃ (X = Cl, I) Interface Dipole Layer. , 2023, 5, 1962-1968.		1
925	Robust electron transport layers of SnO ₂ for efficient perovskite solar cells: recent advances and perspectives. Journal of Materials Chemistry C, 2023, 11, 13625-13646.	2.7	0
927	Can photoluminescence quenching be a predictor for perovskite solar cell efficiencies?. Physical Chemistry Chemical Physics, 2023, 25, 22607-22613.	1.3	3
991	The impact of moisture on the stability and degradation of perovskites in solar cells. Materials Advances, 2024, 5, 2200-2217.	2.6	0