Looking Deeper into the Galaxy (Note 7)

Batteries

4, 3

DOI: 10.3390/batteries4010003

Citation Report

#	Article	IF	CITATIONS
1	Thermal Mapping of a Lithium Polymer Batteries Pack with FBGs Network. Batteries, 2018, 4, 67.	4.5	27
2	Materials for lithium-ion battery safety. Science Advances, 2018, 4, eaas9820.	10.3	958
3	Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries. Journal of Power Sources, 2018, 399, 264-273.	7.8	131
4	Flexible, Heat-Resistant, and Flame-Retardant Class Fiber Nonwoven/Glass Platelet Composite Separator for Lithium-Ion Batteries. Energies, 2018, 11, 999.	3.1	17
5	Characterization of behaviour and hazards of fire and deflagration for high-energy Li-ion cells by over-heating. Journal of Power Sources, 2018, 398, 55-66.	7.8	82
6	Batteries Safety: Recent Progress and Current Challenges. Frontiers in Energy Research, 2019, 7, .	2.3	93
7	Thermal and chemical characterization of the solid-electrolyte interphase in Li-ion batteries using a novel separator sampling method. Journal of Power Sources, 2019, 440, 227083.	7.8	26
8	Prolonged Cycle Life for Li ₄ Ti ₅ O ₁₂ //[Li ₃ V&l Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning. Electrochemistry, 2019. 87. 148-155.	t;sub>: 1.4	2&{t;/sub&g
9	Managing transport properties in composite electrodes/electrolytes for all-solid-state lithium-based batteries. Molecular Systems Design and Engineering, 2019, 4, 850-871.	3.4	38
10	Post-Mortem Analysis of Inhomogeneous Induced Pressure on Commercial Lithium-Ion Pouch Cells and Their Effects. Sustainability, 2019, 11, 6738.	3.2	28
11	Advancing knowledge of electrochemically generated lithium microstructure and performance decay of lithium ion battery by synchrotron X-ray tomography. Materials Today, 2019, 27, 21-32.	14.2	47
12	The Effect of Battery Separator Properties on Thermal Ramp, Overcharge and Short Circuiting of Rechargeable Li-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A125-A131.	2.9	27
13	Mechanical methods for state determination of Lithium-Ion secondary batteries: A review. Journal of Energy Storage, 2020, 32, 101859.	8.1	54
14	Determining the Limits and Effects of High-Rate Cycling on Lithium Iron Phosphate Cylindrical Cells. Batteries, 2020, 6, 57.	4.5	5
15	<scp>Conductivity–modulus–<i>T</i>_g</scp> relationships in solventâ€free, single lithium ion conducting network electrolytes. Journal of Polymer Science, 2020, 58, 2376-2388.	3.8	11
16	Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating. Journal of Energy Storage, 2020, 31, 101714.	8.1	46
17	Reliability of Cylindrical Li-ion Battery Safety Vents. IEEE Access, 2020, 8, 101859-101866.	4.2	17
18	Low-Temperature Lithium Plating/Corrosion Hazard in Lithium-Ion Batteries: Electrode Rippling, Variable States of Charge, and Thermal and Nonthermal Runaway. ACS Applied Energy Materials, 2020, 3, 3653-3664.	5.1	37

ITATION REDOD

CITATION REPORT

#	Article	IF	CITATIONS
19	The limited influence of transference number on the performance of nanoscale batteries. Journal of Chemical Physics, 2020, 152, 074702.	3.0	6
20	High-Precision Monitoring of Volume Change of Commercial Lithium-Ion Batteries by Using Strain Gauges. Sustainability, 2020, 12, 557.	3.2	66
21	Designing Aqueous Organic Electrolytes for Zinc–Air Batteries: Method, Simulation, and Validation. Advanced Energy Materials, 2020, 10, 1903470.	19.5	45
22	Study of the Role of LiNi1/3Mn1/3Co1/3O2/Graphite Li-Ion Pouch Cells Confinement, Electrolyte Composition and Separator Coating on Thermal Runaway and Off-Gas Toxicity. Journal of the Electrochemical Society, 2020, 167, 090513.	2.9	11
23	Understanding Li-Ion Cell Internal Short Circuit and Thermal Runaway through Small, Slow and In Situ Sensing Nail Penetration. Journal of the Electrochemical Society, 2020, 167, 090526.	2.9	28
24	IBE in engineering science - the case of malfunction explanation. European Journal for Philosophy of Science, 2021, 11, 1.	1.1	2
25	Solid Electrolytes for Highâ€Temperature Stable Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2002869.	19.5	64
26	Robust, flexible, freestanding and high surface area activated carbon and multi-walled carbon nanotubes composite material with outstanding electrode properties for aqueous-based supercapacitors. Materials Advances, 2021, 2, 4264-4276.	5.4	18
27	A Comprehensive Review of Available Battery Datasets, RUL Prediction Approaches, and Advanced Battery Management. IEEE Access, 2021, 9, 86166-86193.	4.2	95
28	Binder-Free, Thin-Film Ceramic-Coated Separators for Improved Safety of Lithium-Ion Batteries. ACS Omega, 2021, 6, 4204-4211.	3.5	26
29	A review of safety considerations for batteries in aircraft with electric propulsion. MRS Bulletin, 2021, 46, 435-442.	3.5	46
30	An overview of safety for laboratory testing of lithium-ion batteries. Energy Reports, 2021, 7, 2-8.	5.1	7
31	Uncovering LiH Triggered Thermal Runaway Mechanism of a Highâ€Energy LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ /Graphite Pouch Cell. Advanced Science, 2021, 8, e2100676.	11.2	48
32	Inhomogeneities and Cell-to-Cell Variations in Lithium-Ion Batteries, a Review. Energies, 2021, 14, 3276.	3.1	50
33	Lithium-ion battery explosion aerosols: Morphology and elemental composition. Aerosol Science and Technology, 2021, 55, 1183-1201.	3.1	8
35	Thermalâ€Responsive and Fireâ€Resistant Materials for Highâ€Safety Lithiumâ€Ion Batteries. Small, 2021, 17, e2103679.	10.0	35
37	Application of compact laser-driven accelerator X-ray sources for industrial imaging. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 983, 164369.	1.6	18
38	Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements. Journal of the Electrochemical Society, 2020, 167, 120530.	2.9	37

CITATION REPORT

#	Article	IF	CITATIONS
39	Stabilization of Solid Solution Behavior for Monoclinic Li ₃ V ₂ (PO ₄) ₃ <i>via.</i> Al ³⁺ Doping. Electrochemistry, 2019, 87, 341-347.	1.4	0
40	Requirement Engineering in the Age of System and Product Complexity – A Literature Review. , 2021, , .		1
41	A Glass Platelet Coating on Battery Electrodes and Its Use as a Separator for Lithium-Ion Batteries. Journal of Electrochemical Energy Conversion and Storage, 2020, 17, .	2.1	1
42	2D argyrodite LPSCI solid electrolyte for all-solid-state Li-ion battery using reduced graphene oxide template. Materials Today Energy, 2022, 23, 100913.	4.7	4
43	Simulation of spatial strain inhomogeneities in lithium-ion-cells due to electrode dilation dependent on internal and external cell structures. Journal of Energy Storage, 2022, 49, 104143.	8.1	3
44	Statistical and computational analysis for state-of-health and heat generation behavior of long-term cycled LiNi0.8Co0.15Al0.05O2/Graphite cylindrical lithium-ion cells for energy storage applications. Journal of Power Sources, 2022, 529, 231240.	7.8	1
45	Quantitative characterisation of the layered structure within lithium-ion batteries using ultrasonic resonance. Journal of Energy Storage, 2022, 50, 104585.	8.1	9
46	Bridging nano- and microscale X-ray tomography for battery research by leveraging artificial intelligence. Nature Nanotechnology, 2022, 17, 446-459.	31.5	66
47	Composite Cathodes for Solidâ€State Lithium Batteries: "Catholytes―the Underrated Giants. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	16
48	Rapid 3D nondestructive imaging technology for batteries: Photoacoustic microscopy. Journal of Materials Research, 2022, 37, 3283-3296.	2.6	1
49	Electrolytes with flame retardant pentafluoro(phenoxy)cyclotriphosphazene for nickel-rich layered oxide/graphite cells. Electrochimica Acta, 2022, 427, 140867.	5.2	2
50	Research progress on high-temperature resistant polymer separators for lithium-ion batteries. Energy Storage Materials, 2022, 51, 638-659.	18.0	28
51	The effect of the porous media on thermal management of lithium-ion battery pack; a comparative and numerical study. Thermal Science and Engineering Progress, 2022, 34, 101427.	2.7	3
52	X-Ray Computed Tomography for Failure Mechanism Characterisation within Layered Pouch Cells: Part I. Johnson Matthey Technology Review, 2023, 67, 36-46.	1.0	3
53	Electrochemical Change Induced by Spherical Indentation in Lithium-Ion Batteries. Batteries, 2022, 8, 268.	4.5	0
54	Review of the Li-Ion Battery, Thermal Management, and AI-Based Battery Management System for EV Application. Energies, 2023, 16, 185.	3.1	19
55	Experimental determination of metals generated during the thermal failure of lithium ion batteries. Energy Advances, 2023, 2, 170-179.	3.3	5
56	Electrothermal Characterization and Modeling of Lithium-Ion Pouch Cells in Thermal Runaway. Fire Technology, 2023, 59, 623-661.	3.0	1

	Charles		
#	Article	IF	CITATIONS
57	A review on battery technology for space application. Journal of Energy Storage, 2023, 61, 106792.	8.1	10
58	State of charge effects on active material elemental composition changes between pre-thermal-runaway and post-failure states for 8-1-1 nickel-manganese-cobalt 18650 cells. Journal of Energy Storage, 2023, 63, 106974.	8.1	2
59	Shape Evolution of Indium Sulfide Heterostructures via Carbon Nanotube Scrambling: Towards Reliable Sustainability and Mitigating Leakage Current in Supercapacitors. Applied Sciences (Switzerland), 2023, 13, 2958.	2.5	1
60	Investigating the Thermal Runaway Behaviour of Fresh and Aged Large Prismatic Lithium-Ion Cells in Overtemperature Experiments. Batteries, 2023, 9, 159.	4.5	1
61	Modeling and Evaluation of a Data Center Sovereignty with Software Failures. , 2022, , .		2
63	Challenges and Innovations of Lithium-Ion Battery Thermal Management Under Extreme Conditions: A Review. , 2023, 145, .		2
64	Early Detection of Mixed Volatile Organic Compounds to Circumvent Calamitous Li-Ion Battery Thermal Runaway. Journal of Physical Chemistry C, 2023, 127, 8373-8382.	3.1	1
65	Electrolyte ohmic heating during electrodeposition: The role of coupled kinetic-transport phenomena that lead to morphological and microstructural changes. Electrochimica Acta, 2023, 462, 142616.	5.2	1
66	Robust and High-Wettability Pristine Poly(ether ether ketone) Nanofiber Separator for Heat-Resistant and Safe Lithium-Ion Battery. Chinese Journal of Polymer Science (English Edition), 0, , .	3.8	0
67	A novel method for simultaneous triggering and <i>in situ</i> sensing of internal short circuit in lithium-ion cells. Energy Advances, 2023, 2, 2018-2028.	3.3	1
68	Built-in stimuli-responsive designs for safe and reliable electrochemical energy storage devices—A review. Energy Storage Materials, 2023, 63, 102945.	18.0	0
69	Lithiumâ€based batteries, history, current status, challenges, and future perspectives. , 2023, 2, .		4
70	A critical review of future aspects of digitalization next generation Li-ion batteries manufacturing process. Journal of Energy Storage, 2023, 74, 109209.	8.1	0
71	Lithium-Ion Battery Thermal Event and Protection: A Review. SAE International Journal of Electrified Vehicles, 0, 13, .	0.0	0
72	Availability modeling and evaluation of switches and data centers. , 2023, , .		0
73	Up in smoke: Considerations for lithium-ion batteries in disposable e-cigarettes. Joule, 2023, 7, 2749-2759.	24.0	1
74	Global thermal image of cylindrical 21700 Li-ion batteries with distributed optical fibre sensor. Journal of Power Sources, 2024, 592, 233980.	7.8	1
75	Characteristics of particle emissions from lithium-ion batteries during thermal runaway: A review. Journal of Energy Storage, 2024, 78, 109980.	8.1	0

#	Article	IF	CITATIONS
77	Lithium batteries - Secondary systems – Lithium battery safety Cell level—Safety related material and design engineering. , 2024, , .		0
78	Smart materials for safe lithium-ion batteries against thermal runaway. Journal of Energy Chemistry, 2024, 94, 360-392.	12.9	Ο