Comparison of deep convolutional neural networks and crack detection in concrete

Construction and Building Materials 186, 1031-1045

DOI: 10.1016/j.conbuildmat.2018.08.011

Citation Report

#	Article	IF	CITATIONS
1	SDNET2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks. Data in Brief, 2018, 21, 1664-1668.	1.0	163
2	Metaheuristic Optimized Edge Detection for Recognition of Concrete Wall Cracks: A Comparative Study on the Performances of Roberts, Prewitt, Canny, and Sobel Algorithms. Advances in Civil Engineering, 2018, 2018, 1-16.	0.7	35
3	Image Processing-Based Recognition of Wall Defects Using Machine Learning Approaches and Steerable Filters. Computational Intelligence and Neuroscience, 2018, 2018, 1-18.	1.7	36
4	Automatic Detection of Concrete Spalling Using Piecewise Linear Stochastic Gradient Descent Logistic Regression and Image Texture Analysis. Complexity, 2019, 2019, 1-14.	1.6	33
5	Image Processing-Based Detection of Pipe Corrosion Using Texture Analysis and Metaheuristic-Optimized Machine Learning Approach. Computational Intelligence and Neuroscience, 2019, 2019, 1-13.	1.7	46
6	Novel moiréâ€based crack monitoring system with smartphone interface and cloud processing. Structural Control and Health Monitoring, 2019, 26, e2420.	4.0	10
7	Analysis of micro-structural damage evolution of concrete through coupled X-ray computed tomography and gray-level co-occurrence matrices method. Construction and Building Materials, 2019, 224, 534-550.	7.2	28
8	An improved edge detection algorithm for X-Ray images based on the statistical range. Heliyon, 2019, 5, e02743.	3.2	26
9	Real-Time Road Crack Mapping Using an Optimized Convolutional Neural Network. Complexity, 2019, 2019, 1-17.	1.6	20
10	Damage Indexing Method for Shear Critical Tubular Reinforced Concrete Structures based on Crack Image Analysis. Sensors, 2019, 19, 4304.	3.8	5
11	Crack Junction Detection in Pavement Image Using Correlation Structure Analysis and Iterative Tensor Voting. IEEE Access, 2019, 7, 138094-138109.	4.2	6
12	Instance-level recognition and quantification for concrete surface bughole based on deep learning. Automation in Construction, 2019, 107, 102920.	9.8	72
13	Robust Pixel-Level Crack Detection Using Deep Fully Convolutional Neural Networks. Journal of Computing in Civil Engineering, 2019, 33, .	4.7	106
14	Automatic detection of asphalt pavement raveling using image texture based feature extraction and stochastic gradient descent logistic regression. Automation in Construction, 2019, 105, 102843.	9.8	61
15	Deep-Learning-Based Bughole Detection for Concrete Surface Image. Advances in Civil Engineering, 2019, 2019, 1-12.	0.7	27
16	Regularized Auto-Encoder-Based Separation of Defects from Backgrounds for Inspecting Display Devices. Electronics (Switzerland), 2019, 8, 533.	3.1	10
17	Benchmarking Image Processing Algorithms for Unmanned Aerial System-Assisted Crack Detection in Concrete Structures. Infrastructures, 2019, 4, 19.	2.8	41
18	Predictive equations for drift ratio and damage assessment of RC shear walls using surface crack patterns. Engineering Structures, 2019, 190, 410-421.	5.3	36

			2
#	ARTICLE	IF	CITATIONS
19	Fractal and Multifractal Analysis of Crack Patterns in Prestressed Concrete Girders. Journal of Bridge Engineering, 2019, 24, .	2.9	44
20	Evaluation of Classical Operators and Fuzzy Logic Algorithms for Edge Detection of Panels at Exterior Cladding of Buildings. Buildings, 2019, 9, 40.	3.1	18
21	Deep Discriminant Learning-based Asphalt Road Cracks Detection via Wireless Camera Network. , 2019, ,		4
22	Unmanned Aerial Vehicle Assisted Bridge Crack Severity Inspection Using Edge Detection Methods. , 2019, , .		5
23	Sample and Structure-Guided Network for Road Crack Detection. IEEE Access, 2019, 7, 130032-130043.	4.2	31
25	Improving the Efficiency of Encoder-Decoder Architecture for Pixel-Level Crack Detection. IEEE Access, 2019, 7, 186657-186670.	4.2	33
26	On the Application of Automated Machine Vision for Leather Defect Inspection and Grading: A Survey. IEEE Access, 2019, 7, 176065-176086.	4.2	26
27	On the application of domain adaptation in structural health monitoring. Mechanical Systems and Signal Processing, 2020, 138, 106550.	8.0	84
28	Estimation of crack width based on shapeâ€sensitive kernels and semantic segmentation. Structural Control and Health Monitoring, 2020, 27, e2504.	4.0	42
29	Image-based concrete crack detection in tunnels using deep fully convolutional networks. Construction and Building Materials, 2020, 234, 117367.	7.2	267
30	Vision-based defects detection for bridges using transfer learning and convolutional neural networks. Structure and Infrastructure Engineering, 2020, 16, 1037-1049.	3.7	42
31	Vision based pixel-level bridge structural damage detection using a link ASPP network. Automation in Construction, 2020, 110, 102973.	9.8	33
32	Comparison of crack segmentation using digital image correlation measurements and deep learning. Construction and Building Materials, 2020, 261, 120474.	7.2	55
33	Patch-based weakly supervised semantic segmentation network for crack detection. Construction and Building Materials, 2020, 258, 120291.	7.2	40
34	Assessment of Cracking Widths in a Concrete Wall Based on TIR Radiances of Cracking. Sensors, 2020, 20, 4980.	3.8	10
35	Classification and quantification of cracks in concrete structures using deep learning image-based techniques. Cement and Concrete Composites, 2020, 114, 103781.	10.7	82
36	Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 2020, 32, 101827.	3.4	165
37	Fast and robust pavement crack distress segmentation utilizing steerable filtering and local order energy. Construction and Building Materials, 2020, 262, 120084.	7.2	13

#	Article	IF	CITATIONS
38	PEER Hub ImageNet: A Large-Scale Multiattribute Benchmark Data Set of Structural Images. Journal of Structural Engineering, 2020, 146, .	3.4	45
39	Prediction of maximum thermal crack width of RC abutments utilizing actual construction data and study on influential parameters using neural networks. Construction and Building Materials, 2020, 260, 120477.	7.2	8
40	Next Generation NDE Sensor Systems as IIoT Elements of Industry 4.0. Research in Nondestructive Evaluation, 2020, 31, 340-369.	1.1	27
41	Pavement Crack Detection from Mobile Laser Scanning Point Clouds Using a Time Grid. Sensors, 2020, 20, 4198.	3.8	26
42	Artificial intelligence-empowered pipeline for image-based inspection of concrete structures. Automation in Construction, 2020, 120, 103372.	9.8	34
43	Identification of COVID-19 samples from chest X-Ray images using deep learning: A comparison of transfer learning approaches. Journal of X-Ray Science and Technology, 2020, 28, 821-839.	1.0	165
44	Computational intelligence for modeling of asphalt pavement surface distress. , 2020, , 79-116.		12
45	Digital modeling on the nonlinear mapping between multiâ€source monitoring data of inâ€service bridges. Structural Control and Health Monitoring, 2020, 27, e2618.	4.0	38
46	Deep learning models for bridge deck evaluation using impact echo. Construction and Building Materials, 2020, 263, 120109.	7.2	55
47	2D Digital Image Correlation and Region-Based Convolutional Neural Network in Monitoring and Evaluation of Surface Cracks in Concrete Structural Elements. Materials, 2020, 13, 3527.	2.9	27
48	Vision-based automated crack detection using convolutional neural networks for condition assessment of infrastructure. Structural Health Monitoring, 2021, 20, 2124-2142.	7.5	56
49	Image-based segmentation and quantification of weak interlayers in rock tunnel face via deep learning. Automation in Construction, 2020, 120, 103371.	9.8	30
50	Semantic segmentation model for crack images from concrete bridges for mobile devices. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2022, 236, 570-583.	0.7	7
51	Identification of Grout Sleeve Joint Defect in Prefabricated Structures Using Deep Learning. Frontiers in Materials, 2020, 7, .	2.4	10
52	A systematic evaluation and selection of UAS-enabled solutions for bridge inspection practices. , 2020, , .		3
53	Classification Accuracy Improvement for Small-Size Citrus Pests and Diseases Using Bridge Connections in Deep Neural Networks. Sensors, 2020, 20, 4992.	3.8	10
54	An Improved Nondestructive Semantic Segmentation Method for Concrete Dam Surface Crack Images with High Resolution. Mathematical Problems in Engineering, 2020, 2020, 1-14.	1.1	7
55	Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review. Sensors, 2020, 20, 2778.	3.8	299

#	Article	IF	CITATIONS
56	Applying deep convolutional neural network with 3D reality mesh model for water tank crack detection and evaluation. Urban Water Journal, 2020, 17, 682-695.	2.1	19
57	Using Hybrid Filter-Wrapper Feature Selection With Multi-Objective Improved-Salp Optimization for Crack Severity Recognition. IEEE Access, 2020, 8, 84290-84315.	4.2	21
58	A cost effective solution for pavement crack inspection using cameras and deep neural networks. Construction and Building Materials, 2020, 256, 119397.	7.2	134
59	Meso-damage evolution analysis of magnesium oxychloride cement concrete based on X-CT and grey-level co-occurrence matrix. Construction and Building Materials, 2020, 255, 119373.	7.2	30
60	A vision-based active learning convolutional neural network model for concrete surface crack detection. Advances in Structural Engineering, 2020, 23, 2952-2964.	2.4	18
61	Automated Defect Quantification in Concrete Bridges Using Robotics and Deep Learning. Journal of Computing in Civil Engineering, 2020, 34, .	4.7	41
62	An Automated Inspection Method for the Steel Box Girder Bottom of Long-Span Bridges Based on Deep Learning. IEEE Access, 2020, 8, 94010-94023.	4.2	17
63	Streamlined bridge inspection system utilizing unmanned aerial vehicles (UAVs) and machine learning. Measurement: Journal of the International Measurement Confederation, 2020, 164, 108048.	5.0	64
64	Fuzzy based image edge detection algorithm for blood vessel detection in retinal images. Applied Soft Computing Journal, 2020, 94, 106452.	7.2	122
65	Analysis of steel corrosionâ€induced surface damage evolution of magnesium oxychloride cement concrete through grayâ€level coâ€occurrence matrices. Structural Concrete, 2020, 21, 1905-1918.	3.1	4
66	CNN-Based Deep Architecture for Health Monitoring of Civil and Industrial Structures Using UAVs. Proceedings (mdpi), 2019, 42, .	0.2	1
67	Automatic crack recognition for concrete bridges using a fully convolutional neural network and naive Bayes data fusion based on a visual detection system. Measurement Science and Technology, 2020, 31, 075403.	2.6	45
68	Evaluation of bridge decks with overlays using impact echo, a deep learning approach. Automation in Construction, 2020, 113, 103133.	9.8	50
69	Increasing the robustness of material-specific deep learning models for crack detection across different materials. Engineering Structures, 2020, 206, 110157.	5.3	94
70	Bridge condition rating data modeling using deep learning algorithm. Structure and Infrastructure Engineering, 2020, 16, 1447-1460.	3.7	54
71	Pavement crack detection on geodesic shadow removal with local oriented filter on LOF and improved Level set. Construction and Building Materials, 2020, 237, 117750.	7.2	19
72	Anomaly detection of defects on concrete structures with the convolutional autoencoder. Advanced Engineering Informatics, 2020, 45, 101105.	8.0	161
73	Imaging techniques for defect detection of fiber reinforced polymerâ€bonded civil infrastructures. Structural Control and Health Monitoring, 2020, 27, e2555.	4.0	14

#	Article	IF	CITATIONS
74	Semi-Supervised Semantic Segmentation Using Adversarial Learning for Pavement Crack Detection. IEEE Access, 2020, 8, 51446-51459.	4.2	43
75	Crack Detection of Concrete Pavement With Cross-Entropy Loss Function and Improved VGG16 Network Model. IEEE Access, 2020, 8, 54564-54573.	4.2	96
76	Region-Based CNN Method with Deformable Modules for Visually Classifying Concrete Cracks. Applied Sciences (Switzerland), 2020, 10, 2528.	2.5	32
77	Estimating the primary crack spacing of reinforced concrete structures: Predictions by neural network versus the innovative strain compliance approach. Mechanics of Advanced Materials and Structures, 2022, 29, 53-69.	2.6	7
78	An integrated approach to automatic pixel-level crack detection and quantification of asphalt pavement. Automation in Construction, 2020, 114, 103176.	9.8	143
79	Deep learning based classification of rock structure of tunnel face. Geoscience Frontiers, 2021, 12, 395-404.	8.4	69
80	A review of computer vision–based structural health monitoring at local and global levels. Structural Health Monitoring, 2021, 20, 692-743.	7.5	296
81	State of the Art and a New Methodology Based on Multi-agent Fuzzy System for Concrete Crack Detection and Type Classification. Archives of Computational Methods in Engineering, 2021, 28, 2509-2542.	10.2	5
82	Machine Learning Algorithms in Civil Structural Health Monitoring: A Systematic Review. Archives of Computational Methods in Engineering, 2021, 28, 2621-2643.	10.2	185
83	Scene understanding in construction and buildings using image processing methods: A comprehensive review and a case study. Journal of Building Engineering, 2021, 33, 101672.	3.4	42
84	Foundations of population-based SHM, Part III: Heterogeneous populations – Mapping and transfer. Mechanical Systems and Signal Processing, 2021, 149, 107142.	8.0	69
85	Automatic recognition of surface cracks in bridges based on 2D-APES and mobile machine vision. Measurement: Journal of the International Measurement Confederation, 2021, 168, 108429.	5.0	26
86	An image-based system for pavement crack evaluation using transfer learning and wavelet transform. International Journal of Pavement Research and Technology, 2021, 14, 437-449.	2.6	28
87	A systematic review of convolutional neural network-based structural condition assessment techniques. Engineering Structures, 2021, 226, 111347.	5.3	183
88	Novel methodology for identifying the weight of moving vehicles on bridges using structural response pattern extraction and deep learning algorithms. Measurement: Journal of the International Measurement Confederation, 2021, 168, 108384.	5.0	23
89	Probabilistic Inference for Structural Health Monitoring: New Modes of Learning from Data. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2021, 7, 03120003.	1.7	5
90	Automated crack assessment and quantitative growth monitoring. Computer-Aided Civil and Infrastructure Engineering, 2021, 36, 656-674.	9.8	42
91	Asphalt pavement crack detection based on multi-scale full convolutional network. Journal of Intelligent and Fuzzy Systems, 2021, 40, 1495-1508.	1.4	7

#	Article	IF	CITATIONS
92	Review of image-based analysis and applications in construction. Automation in Construction, 2021, 122, 103516.	9.8	56
93	MobileCrack: Object Classification in Asphalt Pavements Using an Adaptive Lightweight Deep Learning. Journal of Transportation Engineering Part B: Pavements, 2021, 147, 04020092.	1.5	24
94	Bridge Inspection with Aerial Robots: Automating the Entire Pipeline of Visual Data Capture, 3D Mapping, Defect Detection, Analysis, and Reporting. Journal of Computing in Civil Engineering, 2021, 35,	4.7	44
95	In-situ concrete slump test incorporating deep learning and stereo vision. Automation in Construction, 2021, 121, 103432.	9.8	19
96	Arc Length method for extracting crack pattern characteristics. Structural Control and Health Monitoring, 2021, 28, .	4.0	14
97	Computer Vision-Based Bridge Damage Detection Using Deep Convolutional Networks with Expectation Maximum Attention Module. Sensors, 2021, 21, 824.	3.8	27
98	An Effective Hybrid Atrous Convolutional Network for Pixel-Level Crack Detection. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	4.7	16
99	Intelligent crack detection based on attention mechanism in convolution neural network. Advances in Structural Engineering, 0, , 136943322098663.	2.4	41
100	Design of English hierarchical online test system based on machine learning. Journal of Intelligent Systems, 2021, 30, 793-807.	1.6	7
101	Automatic Multiclass Instance Segmentation of Concrete Damage Using Deep Learning Model. IEEE Access, 2021, 9, 90330-90345.	4.2	21
102	Feature Engineering for Structural Health Monitoring (SHM). Advances in Data Mining and Database Management Book Series, 2021, , 138-163.	0.5	0
103	Applied Artificial Intelligence in NDE. , 2021, , 1-35.		2
104	An improved canny detection method for detecting human flexibility. , 2021, , 207-234.		0
105	Robust pixel-wise concrete crack segmentation and properties retrieval using image patches. Automation in Construction, 2021, 123, 103535.	9.8	20
106	Performance Evaluation of Deep CNN-Based Crack Detection and Localization Techniques for Concrete Structures. Sensors, 2021, 21, 1688.	3.8	114
107	Development of Deep Learning Model for the Recognition of Cracks on Concrete Surfaces. Applied Computational Intelligence and Soft Computing, 2021, 2021, 1-10.	2.3	19
108	Comparison of extreme learning machine and deep learning model in the estimation of the fresh properties of hybrid fiber-reinforced SCC. Neural Computing and Applications, 2021, 33, 11641-11659.	5.6	34
109	Attention-Based Convolutional Neural Network for Pavement Crack Detection. Advances in Materials Science and Engineering, 2021, 2021, 1-13.	1.8	19

ARTICLE IF CITATIONS Autonomous Road Pavement Inspection and Defect Analysis for Smart City Maintenance., 2021,,. 2 110 Application of Deep Learning and Unmanned Aerial Vehicle on Building Maintenance. Advances in Civil Engineering, 2021, 2021, 1-12. Deep Learning Object Detection Techniques for Thin Objects in Computer Vision: An Experimental 112 5 Investigation., 2021, , . Predicting single freestanding transmission tower time history response during complex wind input through a convolutional neural network based surrogate model. Engineering Structures, 2021, 233, 111859 Automated crack severity level detection and classification for ballastless track slab using deep 114 9.8 49 convolutional neural network. Automation in Construction, 2021, 124, 103484. Towards automated detection and quantification of concrete cracks using integrated images and lidar data from unmanned aerial vehicles. Structural Control and Health Monitoring, 2021, 28, e2757. 4.0 Imageâ€based road crack riskâ€informed assessment using a convolutional neural network and an 116 4.0 14 unmanned aerial vehicle. Structural Control and Health Monitoring, 2021, 28, e2749. Bag of visual words based machine learning framework for disbond characterisation in composite 3.5 sandwich structures using guided waves. Smart Materials and Structures, 2021, 30, 075016. An image-based system for asphalt pavement bleeding inspection. International Journal of Pavement 118 4.4 18 Engineering, 2022, 23, 4080-4096. Image-based surface scratch detection on architectural glass panels using deep learning approach. 24 Construction and Building Materials, 2021, 282, 122717 Research on crack detection of bridge deck based on computer vision. IOP Conference Series: Earth 120 4 0.3 and Environmental Science, 2021, 768, 012161. Automatic crack classification and segmentation on masonry surfaces using convolutional neural 9.8 networks and transfer learning. Automation in Construction, 2021, 125, 103606. The State-of-the-Art Review on Applications of Intrusive Sensing, Image Processing Techniques, and 122 6.7 120 Machine Learning Methods in Pavement Monitoring and Analysis. Engineering, 2021, 7, 845-856. Classification of cracking sources of different engineering media via machine learning. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2475-2488. 3.4 On the transfer of damage detectors between structures: An experimental case study. Journal of 124 3.9 28 Sound and Vibration, 2021, 501, 116072. Concrete Crack Detection Algorithm Based on Deep Residual Neural Networks. Scientific Programming, 2021, 2021, 1-7. Balanced semisupervised generative adversarial network for damage assessment from lowâ€data 126 9.8 55 imbalancedâ€class regime. Computer-Aided Civil and Infrastructure Engineering, 2021, 36, 1094-1113. Spatiotemporal deep learning approach on estimation of diaphragm wall deformation induced by excavation. Acta Geotechnica, 2021, 16, 3631-3645.

#	Article	IF	CITATIONS
128	Cost-effective system for detection and quantification of concrete surface cracks by combination of convolutional neural network and image processing techniques. Construction and Building Materials, 2021, 293, 123549.	7.2	30
129	The equipment detection and localization of large-scale construction jobsite by far-field construction surveillance video based on improving YOLOv3 and grey wolf optimizer improving extreme learning machine. Construction and Building Materials, 2021, 291, 123268.	7.2	15
130	New approach of estimating edge detection threshold and application of adaptive detector depending on image complexity. Optik, 2021, 238, 166476.	2.9	8
131	Damage detection using in-domain and cross-domain transfer learning. Neural Computing and Applications, 2021, 33, 16921-16936.	5.6	24
132	An Advanced Otsu Method Integrated with Edge Detection and Decision Tree for Crack Detection in Highway Transportation Infrastructure. Advances in Materials Science and Engineering, 2021, 2021, 1-12.	1.8	20
133	Characterization of particle orientation of kaolinite samples using the deep learning-based technique. Acta Geotechnica, 2022, 17, 1097-1110.	5.7	7
134	Workflow for Off-Site Bridge Inspection Using Automatic Damage Detection-Case Study of the Pahtajokk Bridge. Remote Sensing, 2021, 13, 2665.	4.0	14
135	Recognition and location of steel structure surface corrosion based on unmanned aerial vehicle images. Journal of Civil Structural Health Monitoring, 2021, 11, 1375-1392.	3.9	14
136	Digital Twin For Offshore Pipeline Corrosion Monitoring: A Deep Learning Approach. , 2021, , .		3
137	Textural analysis by means of a gray level co-occurrence matrix method. Case: Corrosion in steam piping systems. Materials Today: Proceedings, 2022, 49, 149-154.	1.8	3
138	Automated crack pattern recognition from images for condition assessment of concrete structures. Automation in Construction, 2021, 128, 103765.	9.8	29
139	Image processing-based automatic detection of asphalt pavement rutting using a novel metaheuristic optimized machine learning approach. Soft Computing, 2021, 25, 12839-12855.	3.6	23
140	Surrogate models for the prediction of damage in reinforced concrete tunnels under internal water pressure. Journal of Zhejiang University: Science A, 2021, 22, 632-656.	2.4	13
141	A deep learning approach for fast detection and classification of concrete damage. Automation in Construction, 2021, 128, 103785.	9.8	57
142	Surface Defect Detection Methods for Industrial Products: A Review. Applied Sciences (Switzerland), 2021, 11, 7657.	2.5	97
143	Automatic recognition of concrete spall using image processing and metaheuristic optimized LogitBoost classification tree. Advances in Engineering Software, 2021, 159, 103031.	3.8	21
144	Simulating the Leaf Area Index of Rice from Multispectral Images. Remote Sensing, 2021, 13, 3663.	4.0	14
145	A Real-Time Detection Method for Concrete Surface Cracks Based on Improved YOLOv4. Symmetry, 2021, 13, 1716.	2.2	18

#	Article	IF	CITATIONS
146	Automatic Pixel-Level Crack Detection for Civil Infrastructure Using Unet++ and Deep Transfer Learning. IEEE Sensors Journal, 2021, 21, 19165-19175.	4.7	21
147	Finicky transfer learning—A method of pruning convolutional neural networks for cracks classification on edge devices. Computer-Aided Civil and Infrastructure Engineering, 2022, 37, 500-515.	9.8	22
148	Automated subsurface defects' detection using point cloud reconstruction from infrared images. Automation in Construction, 2021, 129, 103829.	9.8	23
149	A deep learning augmented vision-based method for measuring dynamic displacements of structures in harsh environments. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 217, 104758.	3.9	9
150	Structural Crack Detection from Benchmark Data Sets Using Pruned Fully Convolutional Networks. Journal of Structural Engineering, 2021, 147, .	3.4	24
151	RoadID: A Dedicated Deep Convolutional Neural Network for Multipavement Distress Detection. Journal of Transportation Engineering Part B: Pavements, 2021, 147, .	1.5	7
152	Automated defect inspection of concrete structures. Automation in Construction, 2021, 132, 103959.	9.8	32
153	Feature Selection and Deep Learning for Deterioration Prediction of the Bridges. Journal of Performance of Constructed Facilities, 2021, 35, .	2.0	14
154	Machine vision-based surface crack analysis for transportation infrastructure. Automation in Construction, 2021, 132, 103973.	9.8	49
155	Deep Learning based Thermal Crack Detection on Structural Concrete Exposed to Elevated Temperature. Advances in Structural Engineering, 0, , 136943322098663.	2.4	19
157	Color-space analytics for damage detection in 3D point clouds. Structure and Infrastructure Engineering, 2022, 18, 775-788.	3.7	6
158	Real-Time Concrete Damage Detection Using Deep Learning for High Rise Structures. IEEE Access, 2021, 9, 112312-112331.	4.2	29
159	Quality Assessment Methods to Evaluate the Performance of Edge Detection Algorithms for Digital Image: A Systematic Literature Review. IEEE Access, 2021, 9, 87763-87776.	4.2	16
160	Augmented Ultrasonic Data for Machine Learning. Journal of Nondestructive Evaluation, 2021, 40, 1.	2.4	63
161	Deep convolution neural network-based transfer learning method for civil infrastructure crack detection. Automation in Construction, 2020, 116, 103199.	9.8	104
162	Microstructural crack segmentation of three-dimensional concrete images based on deep convolutional neural networks. Construction and Building Materials, 2020, 253, 119185.	7.2	45
163	Performance Analysis of Using Feature Fusion for Crack Detection in Images of Historical Buildings. , 2019, , .		4
164	Automatic Tunnel Crack Detection Based on U-Net and a Convolutional Neural Network with Alternately Updated Clique. Sensors, 2020, 20, 717.	3.8	59

#	Article	IF	CITATIONS
165	Transferring Damage Detectors Between Tailplane Experiments. Conference Proceedings of the Society for Experimental Mechanics, 2022, , 199-211.	0.5	0
166	On the Application of Heterogeneous Transfer Learning to Population-Based Structural Health Monitoring. Conference Proceedings of the Society for Experimental Mechanics, 2022, , 87-98.	0.5	Ο
167	Multi-modal robotic visual-tactile localisation and detection of surface cracks. , 2021, , .		3
168	A Video-Based Crack Detection in Concrete Surfaces. Conference Proceedings of the Society for Experimental Mechanics, 2022, , 245-252.	0.5	1
169	Pixel-level pavement crack detection using enhanced high-resolution semantic network. International Journal of Pavement Engineering, 2022, 23, 4943-4957.	4.4	8
170	A deepâ€learning approach for health monitoring of a steel frame structure with bolted connections. Structural Control and Health Monitoring, 2022, 29, .	4.0	17
171	Computer vision-based crack width identification using F-CNN model and pixel nonlinear calibration. Structure and Infrastructure Engineering, 2023, 19, 978-989.	3.7	11
172	Partially Supervised Learning for Data-Driven Structural Health Monitoring. Structural Integrity, 2022, , 389-411.	1.4	2
173	Pixel-level tunnel crack segmentation using a weakly supervised annotation approach. Computers in Industry, 2021, 133, 103545.	9.9	27
174	Automatic crack detection on concrete floor images. , 2019, , .		2
175	An Adaptive Structural Learning of Deep Belief Network for Image-based Crack Detection in Concrete Structures Using SDNET2018. , 2020, , .		4
176	A Survey on Crack Detection Algorithms for Concrete Structures. Advances in Intelligent Systems and Computing, 2021, , 639-654.	0.6	4
177	Wall Crack Detection Using Transfer Learning-based CNN Models. , 2020, , .		6
178	Structural crack detection using deep convolutional neural networks. Automation in Construction, 2022, 133, 103989.	9.8	119
179	Acoustic emission data based deep learning approach for classification and detection of damage-sources in a composite panel. Composites Part B: Engineering, 2022, 228, 109450.	12.0	57
180	Infrastructure BIM Platform for Lifecycle Management. Applied Sciences (Switzerland), 2021, 11, 10310.	2.5	12
181	Multivariate Analysis of Concrete Image Using Thermography and Edge Detection. Sensors, 2021, 21, 7396.	3.8	6
182	Crack recognition automation in concrete bridges using Deep Convolutional Neural Networks. MATEC Web of Conferences, 2021, 349, 03014.	0.2	5

#	Article	IF	CITATIONS
183	On the application of kernelised Bayesian transfer learning to population-based structural health monitoring. Mechanical Systems and Signal Processing, 2022, 167, 108519.	8.0	18
184	Appearance Detection of HPLC Communication Module Based on Res-DU-Net. , 2021, , .		1
185	Factors affecting the number of building defects and the approaches to reduce their negative impacts in Malaysian public universities' buildings. Journal of Facilities Management, 2022, 20, 145-171.	1.8	5
186	A Modified Fully Convolutional Network for Crack Damage Identification Compared with Conventional Methods. Modelling and Simulation in Engineering, 2021, 2021, 1-14.	0.7	4
187	Deep Transfer Learning Approach for Identifying Slope Surface Cracks. Applied Sciences (Switzerland), 2021, 11, 11193.	2.5	8
188	Detection Based on Crack Key Point and Deep Convolutional Neural Network. Applied Sciences (Switzerland), 2021, 11, 11321.	2.5	4
189	Lightweight Bridge Crack Detection Method Based on SegNet and Bottleneck Depth-Separable Convolution With Residuals. IEEE Access, 2021, 9, 161649-161668.	4.2	11
190	Screening of breast cancer from thermogram images by edge detection aided deep transfer learning model. Multimedia Tools and Applications, 2022, 81, 9331-9349.	3.9	26
191	Development of hybrid machine learning-based carbonation models with weighting function. Construction and Building Materials, 2022, 321, 126359.	7.2	10
192	Transfer prior knowledge from surrogate modelling: A meta-learning approach. Computers and Structures, 2022, 260, 106719.	4.4	9
193	Research on Crack Detection Algorithm of Mining Car Baffle. Recent Advances in Computer Science and Communications, 2020, 13, .	0.7	0
194	Machine Vision Based Segmentation of the Goldplate Area from a Flexible Printed Circuit Board. , 2020,		0
195	An Embedded System for Image-based Crack Detection by using Fine-Tuning model of Adaptive Structural Learning of Deep Belief Network. , 2020, , .		3
196	Crack Detecting by Recursive Attention U-Net. , 2020, , .		9
197	Concrete Dam Inspection with UAV Imagery and DCNN-based Object Detection. , 2021, , .		1
198	Image-Based Concrete Crack Detection Using Random Forest and Convolution Neural Network. Advances in Intelligent Systems and Computing, 2022, , 471-481.	0.6	3
199	Derin ×ğrenme ile Beton Yapılarda Otonom Çatlak Tespiti. El-Cezeri Journal of Science and Engineering, 0, , .	0.1	0
200	Multi-Resolution ResNet for Road and Bridge Crack Detection. , 2021, , .		3

#	Article	IF	CITATIONS
201	A Comprehensive Review of Deep Learning-Based Crack Detection Approaches. Applied Sciences (Switzerland), 2022, 12, 1374.	2.5	45
202	FFEDN: Feature Fusion Encoder Decoder Network for Crack Detection. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 15546-15557.	8.0	16
203	Estimation of Durability Benchmark on Concrete Samples Using Artificial Intelligence. Advanced Materials Research, 0, 1168, 75-91.	0.3	1
204	Digital twin-driven intelligence disaster prevention and mitigation for infrastructure: advances, challenges, and opportunities. Natural Hazards, 2022, 112, 1-36.	3.4	26
205	A review of the research and application of deep learning-based computer vision in structural damage detection. Earthquake Engineering and Engineering Vibration, 2022, 21, 1-21.	2.3	32
206	Spatial analysis of damage evolution in cyclic-loaded reinforced concrete shear walls. Journal of Building Engineering, 2022, 49, 104032.	3.4	11
207	Towards automated extraction for terrestrial laser scanning data of building components based on panorama and deep learning. Journal of Building Engineering, 2022, 50, 104106.	3.4	3
208	Applied Artificial Intelligence in NDE. , 2022, , 443-476.		0
209	Segmentation of Concrete Cracks by Using Fractal Dimension and UHK-Net. Fractal and Fractional, 2022, 6, 95.	3.3	25
210	Innovative method for pavement multiple damages segmentation and measurement by the Road-Seg-CapsNet of feature fusion. Construction and Building Materials, 2022, 324, 126719.	7.2	15
211	Use of transfer learning for detection of structural alterations. Procedia Computer Science, 2022, 200, 1368-1377.	2.0	2
212	An Automatic Road Crack Detection System. , 2022, , .		0
213	Vision Image Monitoring on Transportation Infrastructures: A Lightweight Transfer Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 2022, , 1-12.	8.0	4
214	A Deep Learning Method for Pavement Crack Identification Based on Limited Field Images. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 22156-22165.	8.0	13
215	Inadequate dataset learning for major depressive disorder MRI semantic classification. IET Image Processing, 2022, 16, 1648-1656.	2.5	0
216	A multilayer neural network approach on the effect of superplasticizer family on the flow behaviour of PPC paste. Materials Today: Proceedings, 2022, 65, 777-783.	1.8	0
217	A Novel Approach for Detection of Pavement Crack and Sealed Crack Using Image Processing and Salp Swarm Algorithm Optimized Machine Learning. Advances in Civil Engineering, 2022, 2022, 1-21.	0.7	11
218	Bibliometric Analysis and Review of Deep Learning-Based Crack Detection Literature Published between 2010 and 2022. Buildings, 2022, 12, 432.	3.1	19

#	Article	IF	CITATIONS
219	Machine learning-based evaluation of the damage caused by cracks on concrete structures. Precision Engineering, 2022, 76, 314-327.	3.4	3
220	Machine learning for structural engineering: A state-of-the-art review. Structures, 2022, 38, 448-491.	3.6	173
221	Deep learning-based fast detection of apparent concrete crack in slab tracks with dilated convolution. Construction and Building Materials, 2022, 329, 127157.	7.2	26
222	Automated bridge crack evaluation through deep super resolution network-based hybrid image matching. Automation in Construction, 2022, 137, 104229.	9.8	18
223	A framework for synthetic image generation and augmentation for improving automatic sewer pipe defect detection. Automation in Construction, 2022, 137, 104213.	9.8	17
224	Pavement Crack Identification Based on Deep Learning and Denoising Model. , 2021, , .		0
226	Concrete Spalling Severity Classification Using Image Texture Analysis and a Novel Jellyfish Search Optimized Machine Learning Approach. Advances in Civil Engineering, 2021, 2021, 1-20.	0.7	6
227	Applications of computer vision-based structural health monitoring and condition assessment in future smart cities. , 2022, , 193-221.		6
228	A Fast Inference Vision Transformer for Automatic Pavement Image Classification and Its Visual Interpretation Method. Remote Sensing, 2022, 14, 1877.	4.0	12
229	Data-driven damage assessment of reinforced concrete shear walls using visual features of damage. Journal of Building Engineering, 2022, 53, 104509.	3.4	19
231	UAV vision detection method for crane surface cracks based on Faster R-CNN and image segmentation. Journal of Civil Structural Health Monitoring, 2022, 12, 845-855.	3.9	12
232	Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete. Materials, 2022, 15, 3430.	2.9	38
233	Structural damage-causing concrete cracking detection based on a deep-learning method. Construction and Building Materials, 2022, 337, 127562.	7.2	16
234	Machine learning algorithms for monitoring pavement performance. Automation in Construction, 2022, 139, 104309.	9.8	26
235	Detection of exposed steel rebars based on deep-learning techniques and unmanned aerial vehicles. Automation in Construction, 2022, 139, 104324.	9.8	14
236	"Two-dimensional Terraced Compression method" and its application in contour detection of transmission image. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 278, 121307.	3.9	3
237	Toward aÂSystem forÂPost-Earthquake Safety Evaluation ofÂMasonry Buildings. Lecture Notes in Computer Science, 2022, , 312-323.	1.3	3
238	Pavement crack detection from CCD images with a locally enhanced transformer network. International Journal of Applied Earth Observation and Geoinformation, 2022, 110, 102825.	1.9	13

#	Article	IF	CITATIONS
239	Autonomous detection of concrete damage under fire conditions. Automation in Construction, 2022, 140, 104364.	9.8	11
240	Declaration of Interests. SSRN Electronic Journal, 0, , .	0.4	0
241	Crack Texture Feature Identification of Fiber Reinforced Concrete Based on Deep Learning. Materials, 2022, 15, 3940.	2.9	5
242	Integrated pixel-level CNN-FCN crack detection via photogrammetric 3D texture mapping of concrete structures. Automation in Construction, 2022, 140, 104388.	9.8	34
244	A perspective on the diagnosis of cracked tooth: imaging modalities evolve to Al-based analysis. BioMedical Engineering OnLine, 2022, 21, .	2.7	8
246	Deep convolutional transfer learning-based structural damage detection with domain adaptation. Applied Intelligence, 0, , .	5.3	3
248	Machine learning in concrete science: applications, challenges, and best practices. Npj Computational Materials, 2022, 8, .	8.7	79
249	Automatic detection of defects in concrete structures based on deep learning. Structures, 2022, 43, 192-199.	3.6	13
250	Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 2022, 141, 104440.	9.8	189
252	Deep Transfer Learning for Wall Bulge Endpoints Regression for Autonomous Decoration Robots. IEEE Access, 2022, 10, 73945-73955.	4.2	4
253	Automatic pixel-level detection method for concrete crack with channel-spatial attention convolution neural network. Structural Health Monitoring, 2023, 22, 1460-1477.	7.5	4
254	An off-center fed patch antenna with overlapping sub-patch for simultaneous crack and temperature sensing. Smart Materials and Structures, 2022, 31, 095036.	3.5	4
255	On statistic alignment for domain adaptation in structural health monitoring. Structural Health Monitoring, 2023, 22, 1581-1600.	7.5	7
256	A Convolutional Neural Network Based Framework for Health Monitoring of a Welded Joint Steel Frame Structure. Structural Integrity, 2023, , 251-262.	1.4	2
257	TOPO-Loss for continuity-preserving crack detection using deep learning. Construction and Building Materials, 2022, 344, 128264.	7.2	17
258	Pavement Surface Defect Detection Using Mask Region-Based Convolutional Neural Networks and Transfer Learning. Applied Sciences (Switzerland), 2022, 12, 7364.	2.5	8
259	Two-stage method based on the you only look once framework and image segmentation for crack detection in concrete structures. Architecture, Structures and Construction, 2023, 3, 429-446.	1.5	7
260	SDNET2021: Annotated NDE Dataset for Subsurface Structural Defects Detection in Concrete Bridge Decks. Infrastructures, 2022, 7, 107.	2.8	8

#	Article	IF	CITATIONS
261	Surface Cracking and Fractal Characteristics of Cement Paste after Exposure to High Temperatures. Fractal and Fractional, 2022, 6, 465.	3.3	21
262	Hierarchical Bayesian modeling for knowledge transfer across engineering fleets via multitask learning. Computer-Aided Civil and Infrastructure Engineering, 2023, 38, 821-848.	9.8	7
263	Multiclass damage detection in concrete structures using a transfer learningâ€based generative adversarial networks. Structural Control and Health Monitoring, 2022, 29, .	4.0	14
264	An apposite transfer-learned DCNN model for prediction of structural surface cracks under optimal threshold for class-imbalanced data. Journal of Building Pathology and Rehabilitation, 2022, 7, .	1.5	1
265	Efficient Identification of water conveyance tunnels siltation based on ensemble deep learning. Frontiers of Structural and Civil Engineering, 2022, 16, 564-575.	2.9	4
266	Modular deep learning segmentation algorithm for concrete microscopic images. Construction and Building Materials, 2022, 349, 128736.	7.2	8
267	Effectiveness of infrared thermography for delamination detection in reinforced concrete bridge decks. Automation in Construction, 2022, 142, 104523.	9.8	21
268	Digital technology for quality management in construction: A review and future research directions. Developments in the Built Environment, 2022, 12, 100087.	4.0	15
269	Deep learning visual interpretation of structural damage images. Journal of Building Engineering, 2022, 60, 105144.	3.4	5
270	Efficient scenario analysis for optimal adaptation of bridge networks under deep uncertainties through knowledge transfer. Structural Safety, 2023, 100, 102278.	5.3	1
271	Image-Based Detection ofÂStructural Defects Using Hierarchical Multi-scale Attention. Lecture Notes in Computer Science, 2022, , 337-353.	1.3	0
272	Unmanned Aircraft System Applications in Damage Detection and Service Life Prediction for Bridges: A Review. Remote Sensing, 2022, 14, 4210.	4.0	5
273	Peak drift ratio estimation for unreinforced masonry walls using visual features of damage. Bulletin of Earthquake Engineering, 2022, 20, 8357-8379.	4.1	8
274	Automatic Detection of Cracks in Cracked Tooth Based on Binary Classification Convolutional Neural Networks. Applied Bionics and Biomechanics, 2022, 2022, 1-12.	1.1	1
275	Automatic Recognition ofÂRoad Cracks Using Sobel Components inÂDigital Images. Lecture Notes in Civil Engineering, 2023, , 139-149.	0.4	1
276	Integrated design of an aerial soft-continuum manipulator for predictive maintenance. Frontiers in Robotics and Al, 0, 9, .	3.2	1
277	Detecting and localising damage based on image recognition and structure from motion, and reflecting it in a 3D bridge model. Structure and Infrastructure Engineering, 2024, 20, 594-606.	3.7	6
278	Review on computer vision-based crack detection and quantification methodologies for civil structures. Construction and Building Materials, 2022, 356, 129238.	7.2	37

#	Article	IF	CITATIONS
279	Datasets and processing methods for boosting visual inspection of civil infrastructure: A comprehensive review and algorithm comparison for crack classification, segmentation, and detection. Construction and Building Materials, 2022, 356, 129226.	7.2	20
280	Cracklab: A high-precision and efficient concrete crack segmentation and quantification network. Developments in the Built Environment, 2022, 12, 100088.	4.0	3
281	Adaptive Structural Learning ofÂDeep Belief Network andÂlts Application toÂReal Time Crack Detection ofÂConcrete Structure Using Drone. , 2022, , 187-206.		2
282	A Lightweight CNN-Based Vision System for Concrete Crack Detection on a Low-Power Embedded Microcontroller Platform. Procedia Computer Science, 2022, 207, 3948-3956.	2.0	2
283	Winter Wheat Lodging Area Extraction Using Deep Learning with GaoFen-2 Satellite Imagery. Remote Sensing, 2022, 14, 4887.	4.0	8
284	Concrete Bridge Defects Identification and Localization Based on Classification Deep Convolutional Neural Networks and Transfer Learning. Remote Sensing, 2022, 14, 4882.	4.0	12
285	Road damage detection using UAV images based on multi-level attention mechanism. Automation in Construction, 2022, 144, 104613.	9.8	21
286	Computer vision framework for crack detection of civil infrastructure—A review. Engineering Applications of Artificial Intelligence, 2023, 117, 105478.	8.1	50
287	Pixel-level Road Crack Detection and Segmentation Based on Deep Learning. , 2022, , .		1
288	Machine learning-aided scenario-based seismic drift measurement for RC moment frames using visual features of surface damage. Measurement: Journal of the International Measurement Confederation, 2022, 205, 112195.	5.0	16
289	Crack Identification for Bridge Structures Using an Unmanned Aerial Vehicle (UAV) Incorporating Image Geometric Correction. Buildings, 2022, 12, 1869.	3.1	7
290	Image-based automatic multiple-damage detection of concrete dams using region-based convolutional neural networks. Journal of Civil Structural Health Monitoring, 2023, 13, 413-429.	3.9	8
291	Evolutionary Computation Modelling for Structural Health Monitoring of Critical Infrastructure. Archives of Computational Methods in Engineering, 2023, 30, 1479-1493.	10.2	3
292	Recent computer vision applications for pavement distress and condition assessment. Automation in Construction, 2023, 146, 104664.	9.8	7
293	Preprocessing of Crack Recognition: Automatic Crack-Location Method Based on Deep Learning. Journal of Materials in Civil Engineering, 2023, 35, .	2.9	1
294	Deep neural network-based structural health monitoring technique for real-time crack detection and localization using strain gauge sensors. Scientific Reports, 2022, 12, .	3.3	7
295	An ensemble method for automatic real-time detection, evaluation and position of exposed subsea pipelines based on 3D real-time sonar system. Journal of Civil Structural Health Monitoring, 2023, 13, 485-504.	3.9	4
296	Deep learning models for analysis of <scp>nonâ€destructive</scp> evaluation data to evaluate reinforced concrete bridge decks: A survey. Engineering Reports, 0, , .	1.7	Ο

#	Article	IF	CITATIONS
297	Structural Health Monitoring in Cognitive Buildings. Internet of Things, 2023, , 245-262.	1.7	0
298	A gridâ€based classification and boxâ€based detection fusion model for asphalt pavement crack. Computer-Aided Civil and Infrastructure Engineering, 2023, 38, 2279-2299.	9.8	7
299	A comparison between computer vision- and deep learning-based models for automated concrete crack detection. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2023, 237, 994-1010.	0.7	1
300	Deep Learning for vision systems in Construction 4.0: a systematic review. Signal, Image and Video Processing, 2023, 17, 1821-1829.	2.7	5
301	Crack Location and Degree Detection Method Based on YOLOX Model. Applied Sciences (Switzerland), 2022, 12, 12572.	2.5	6
302	Comparative Study of Lightweight Deep Semantic Segmentation Models for Concrete Damage Detection. Applied Sciences (Switzerland), 2022, 12, 12786.	2.5	3
303	Strength Degradation and Fracture Propagation of Repeatedly Immersed Artificial Dam Samples under Uniaxial Cyclic Loading–Unloading. ACS Omega, 2023, 8, 2538-2555.	3.5	3
304	Road Crack Detection Using Deep Neural Network Based on Attention Mechanism and Residual Structure. IEEE Access, 2023, 11, 919-929.	4.2	4
305	A Deep Learning-Based Approach for Pipeline Cracks Monitoring. , 2022, , .		5
306	Crack45K: Integration of Vision Transformer with Tubularity Flow Field (TuFF) and Sliding-Window Approach for Crack-Segmentation in Pavement Structures. Buildings, 2023, 13, 55.	3.1	2
307	Automatic crack detection in the pavement with lion optimization algorithm using deep learning techniques. International Journal of Advanced Manufacturing Technology, 0, , .	3.0	0
308	Classification of Surface Fracture in Plastics Using Convolutional Neural Networks. Materials Transactions, 2023, , .	1.2	0
309	Identification of Corroded Cracks in Reinforced Concrete Based on Deep Learning SCNet Model. Research in Nondestructive Evaluation, 2022, 33, 297-320.	1.1	0
310	Damage detection on steel-reinforced concrete produced by corrosion via YOLOv3: A detailed guide. Frontiers in Built Environment, 0, 9, .	2.3	2
311	Computer Vision Applications in Intelligent Transportation Systems: A Survey. Sensors, 2023, 23, 2938.	3.8	11
312	Enhancement of impact resistance for low water/binder cementitious composites (LWBCC) based on porous aggregate: From the perspective of macroscopic and microscopic. Construction and Building Materials, 2023, 376, 130952.	7.2	1
313	Image-based reinforced concrete component mechanical damage recognition and structural safety rapid assessment using deep learning with frequency information. Automation in Construction, 2023, 150, 104839.	9.8	11
314	Establishment and evaluation of conditional GAN-based image dataset for semantic segmentation of structural cracks. Engineering Structures, 2023, 285, 116058.	5.3	5

#	Article	IF	CITATIONS
315	Comparison of multimodal RGB-thermal fusion techniques for exterior wall multi-defect detection. , 2023, 2, 100029.		1
316	Automatic detection and measurement of ground crack propagation using deep learning networks and an image processing technique. Measurement: Journal of the International Measurement Confederation, 2023, 215, 112832.	5.0	1
317	Skeleton-based noise removal algorithm for binary concrete crack image segmentation. Automation in Construction, 2023, 151, 104867.	9.8	5
318	Cognitive-Based Crack Detection for Road Maintenance: An Integrated System in Cyber-Physical-Social Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53, 3485-3500.	9.3	6
319	Detection of damages caused by earthquake and reinforcement corrosion in RC buildings with Deep Transfer Learning. Engineering Structures, 2023, 279, 115629.	5.3	11
320	Continuous crack detection using the combination of dynamic mode decomposition and connected component-based filtering method. Structures, 2023, 49, 640-654.	3.6	3
321	Análise do uso de tecnologias digitais para identificação automatizada de patologias em construções. , 0, , .		0
322	Transfer and Unsupervised Learning: An Integrated Approach to Concrete Crack Image Analysis. Sustainability, 2023, 15, 3653.	3.2	1
323	Automated crack detection and crack depth prediction for reinforced concrete structures using deep learning. Construction and Building Materials, 2023, 370, 130709.	7.2	26
324	Leveraging Saliency in Single-Stage Multi-Label Concrete Defect Detection Using Unmanned Aerial Vehicle Imagery. Remote Sensing, 2023, 15, 1218.	4.0	3
325	Comparison of Deep Convolutional Neural Networks and Histogram of Oriented Gradients Based Feature Extraction in Concrete Bridge Crack Images. Lecture Notes in Networks and Systems, 2023, , 609-616.	0.7	0
326	Semi-universal geo-crack detection by machine learning. Frontiers in Earth Science, 0, 11, .	1.8	1
327	Surrogate-assisted global transfer optimization based on adaptive sampling strategy. Advanced Engineering Informatics, 2023, 56, 101914.	8.0	0
328	Synthesized Evaluation of Reinforced Concrete Bridge Defects, Their Non-Destructive Inspection and Analysis Methods: A Systematic Review and Bibliometric Analysis of the Past Three Decades. Buildings, 2023, 13, 800.	3.1	6
329	Intelligent Recognition of Concrete Surface Cracks Based on Deep Learning and Image Processing Technology. Advances in Applied Mathematics, 2023, 12, 1130-1140.	0.1	0
330	Approaches to X-ray CT Evaluation of In-Situ Experiments on Damage Evolution in an Interpenetrating Metal-Ceramic Composite with Residual Porosity. Applied Composite Materials, 2023, 30, 815-831.	2.5	4
331	Feasibility analysis of convolution neural network models for classification of concrete cracks in Smart City structures. Multimedia Tools and Applications, 0, , .	3.9	0
332	Automatic classification and isolation of cracks on masonry surfaces using deep transfer learning and semantic segmentation. Journal of Building Pathology and Rehabilitation, 2023, 8, .	1.5	3

#	Article	IF	CITATIONS
333	A Novel Method for Concrete Crack Detection Using Image Processing Technique. , 2023, , .		0
334	Fine-Grained Detection of Pavement Distress Based on Integrated Data Using Digital Twin. Applied Sciences (Switzerland), 2023, 13, 4549.	2.5	1
335	Deterioration Detection in Historical Buildings with Different Materials Based on Novel Deep Learning Methods with Focusing on Isfahan Historical Bridges. International Journal of Architectural Heritage, 0, , 1-13.	3.1	2
336	Image Based Crack Recognition on Concrete Structures Using Convolutionalal Neural Networks. , 2022, , .		Ο
337	A Comparative Study on Crack Detection in Concrete Walls Using Transfer Learning Techniques. Journal of Composites Science, 2023, 7, 169.	3.0	8
338	Applying Deep Learning and Single Shot Detection in Construction Site Image Recognition. Buildings, 2023, 13, 1074.	3.1	4
339	A graphâ€based method for quantifying crack patterns on reinforced concrete shear walls. Computer-Aided Civil and Infrastructure Engineering, 2024, 39, 498-517.	9.8	5
340	CTCD-Net: A Cross-Layer Transmission Network for Tiny Road Crack Detection. Remote Sensing, 2023, 15, 2185.	4.0	1
341	Medical image fusion based on extended difference-of-Gaussians and edge-preserving. Expert Systems With Applications, 2023, 227, 120301.	7.6	5
342	Intelligent structural health monitoring of composite structures using machine learning, deep learning, and transfer learning: a review. Advanced Composite Materials, 2024, 33, 162-188.	1.9	5
343	Spatiotemporal deep learning approach for estimating water content profiles in soil layers. E3S Web of Conferences, 2023, 382, 22003.	0.5	0
344	Vibration dataâ€driven machine learning architecture for structural health monitoring of steel frame structures. Strain, 2023, 59, .	2.4	3
345	U-Net-Based CNN Architecture for Road Crack Segmentation. Infrastructures, 2023, 8, 90.	2.8	3
346	Enhancing the quality of compressed images using rounding intensity followed by novel dividing technique. Multimedia Tools and Applications, 2024, 83, 1753-1786.	3.9	0
347	A New Region-Based Minimal Path Selection Algorithm for Crack Detection and Ground Truth Labeling Exploiting Gabor Filters. Remote Sensing, 2023, 15, 2722.	4.0	2
348	An ensemble method for automatic real-time detection and evaluation of oil and gas leakage in subsea pipelines based on 3D real-time sonar system. Journal of Civil Structural Health Monitoring, 2023, 13, 1313-1331.	3.9	1
349	CrackDenseLinkNet: a deep convolutional neural network for semantic segmentation of cracks on concrete surface images. Structural Health Monitoring, 2024, 23, 796-817.	7.5	1
350	Applicability of smart construction technology: Prioritization and future research directions. Automation in Construction, 2023, 153, 104953.	9.8	2

#	Article	IF	CITATIONS
351	Application of soft computing in estimating primary crack spacing of reinforced concrete structures. Curved and Layered Structures, 2023, 10, .	1.3	0
352	An investigation study on automatic crack detection using image processing techniques. AIP Conference Proceedings, 2023, , .	0.4	0
353	Investigation on the multimodal failure characteristics of cement mortar under uniaxial compression loading. Construction and Building Materials, 2023, 392, 131900.	7.2	1
354	Comparison of Machine Learning Algorithms for the Prediction of the External Sulphate Attack Resistance of Blended Cements. RILEM Bookseries, 2023, , 725-735.	0.4	0
355	Artificial-intelligence-led revolution of construction materials: From molecules to Industry 4.0. Matter, 2023, 6, 1831-1859.	10.0	13
356	Infrastructure damage assessment via machine learning approaches: a systematic review. Asian Journal of Civil Engineering, 2023, 24, 3823-3852.	1.6	4
357	Machine learning models in structural engineering research and a secured framework for structural health monitoring. Multimedia Tools and Applications, 2024, 83, 7721-7759.	3.9	0
358	Fast detection algorithm for cracks on tunnel linings based on deep semantic segmentation. Frontiers of Structural and Civil Engineering, 0, , .	2.9	0
359	Fast and accurate semantic segmentation of road crack video in a complex dynamic environment. International Journal of Pavement Engineering, 2023, 24, .	4.4	0
360	Image Processing Techniques for Concrete Crack Detection: A Scientometrics Literature Review. Remote Sensing, 2023, 15, 2400.	4.0	5
362	Application of deep learning in damage classification of reinforced concrete bridges. Ain Shams Engineering Journal, 2024, 15, 102297.	6.1	7
363	Surface concrete cracks detection and segmentation using transfer learning and multi-resolution image processing. Structures, 2023, 54, 386-398.	3.6	10
364	Employing histogram of oriented gradient to enhance concrete crack detection performance with classification algorithm and Bayesian optimization. Engineering Failure Analysis, 2023, 150, 107351.	4.0	4
366	Multiattribute multitask transformer framework for visionâ€based structural health monitoring. Computer-Aided Civil and Infrastructure Engineering, 2023, 38, 2358-2377.	9.8	5
367	Quantitative road crack evaluation by a Uâ€Net architecture using smartphone images and Lidar data. Computer-Aided Civil and Infrastructure Engineering, 0, , .	9.8	2
368	Modification and Evaluation of Attention-Based Deep Neural Network for Structural Crack Detection. Sensors, 2023, 23, 6295.	3.8	1
370	Developing a Free and Open-Source Semi-Automated Building Exterior Crack Inspection Software for Construction and Facility Managers. IEEE Access, 2023, 11, 77099-77116.	4.2	2
371	Fissura_Net: An Enhanced Crack Detection and Prediction Network. , 2023, , .		0

#	Article	IF	CITATIONS
372	Multitask fatigue crack recognition network based on task similarity analysis. International Journal of Fatigue, 2023, 176, 107864.	5.7	0
373	Multiple Classification Network of Concrete Defects Based on Improved EfficientNetV2. Lecture Notes in Computer Science, 2023, , 626-638.	1.3	0
374	GMDNet: An Irregular Pavement Crack Segmentation Method Based on Multi-Scale Convolutional Attention Aggregation. Electronics (Switzerland), 2023, 12, 3348.	3.1	1
375	Damage detection method for reinforced concrete structures based on technical vision. E3S Web of Conferences, 2023, 410, 02031.	0.5	0
376	Method for Concrete Structure Analysis by Microscopy of Hardened Cement Paste and Crack Segmentation Using a Convolutional Neural Network. Journal of Composites Science, 2023, 7, 327.	3.0	1
377	Crack Detection of Concrete Images Using Dilatation and Crack Detection Algorithms. Applied Sciences (Switzerland), 2023, 13, 9238.	2.5	0
378	Trustworthiness Assessment for Crowdsourcing-Based Citywide Parking Availability Sensing via Connected and Automated Vehicles. Journal of Advanced Transportation, 2023, 2023, 1-15.	1.7	0
379	A novel approach for industrial concrete defect identification based on image processing and deep convolutional neural networks. Case Studies in Construction Materials, 2023, 19, e02392.	1.7	1
380	Diagnostics of defects of monolithic reinforced concrete structures using neural network technologies. AIP Conference Proceedings, 2023, , .	0.4	0
381	Mechanical properties and multi-layer perceptron neural networks of polyacrylonitrile fiber reinforced concrete cured outdoors. Structures, 2023, 56, 104954.	3.6	4
382	Deep Learning-Based Concrete Crack Detection Using YOLO Architecture. Communications in Computer and Information Science, 2023, , 182-193.	0.5	0
383	Automated hyperparameter tuning for crack image classification with deep learning. Soft Computing, 2023, 27, 18383-18402.	3.6	5
384	Automatic spacing inspection of rebar spacers on reinforcement skeletons using vision-based deep learning and computational geometry. Journal of Building Engineering, 2023, 79, 107775.	3.4	1
385	The use of artificial intelligence to detect defects in building structures. Construction and Architecture, 2023, 11, 18-18.	0.5	0
386	Investigation on the effect of data quality and quantity of concrete cracks on the performance of deep learning-based image segmentation. Expert Systems With Applications, 2024, 237, 121686.	7.6	1
387	Edge Detection and Alignment Control Method for Mobile Robots based on multi-Lidar Fusion. , 2023, ,		0
388	Detection of solidification crack formation in laser beam welding videos of sheet metal using neural networks. Neural Computing and Applications, 0, , .	5.6	0
390	Threshold-Based BRISQUE-Assisted Deep Learning for Enhancing Crack Detection in Concrete Structures. Journal of Imaging, 2023, 9, 218.	3.0	2

#	Article	IF	CITATIONS
391	An improved watershed algorithm and its application in image edge extraction. , 2023, , .		0
392	Image-based Concrete Cracks Identification under Complex Background with Lightweight Convolutional Neural Network. KSCE Journal of Civil Engineering, 0, , .	1.9	Ο
393	Interpretable ensemble machine learning for the prediction of the expansion of cementitious materials under external sulfate attack. Journal of Building Engineering, 2023, 80, 107951.	3.4	2
394	A Comparative Study ofÂYOLO V4 andÂV5 Architectures onÂPavement Cracks Using Region-Based Detection. Lecture Notes in Computer Science, 2023, , 49-63.	1.3	0
395	Automated Concrete Crack Inspection With Directional Lighting Platform. , 2023, 7, 1-4.		1
396	Automated fatigue crack detection of orthotropic steel decks using an improved mask region-based convolutional neural network approach. Advances in Structural Engineering, 0, , .	2.4	0
397	A Novel Road Crack Detection Technology Based on Deep Dictionary Learning and Encoding Networks. Applied Sciences (Switzerland), 2023, 13, 12299.	2.5	0
398	Revolutionizing concrete analysis: An in-depth survey of Al-powered insights with image-centric approaches on comprehensive quality control, advanced crack detection and concrete property exploration. Construction and Building Materials, 2024, 411, 134212.	7.2	2
399	Research on Freeway Surface Crack Detection Based on Improved ViT-YOLOv5. Modeling and Simulation, 2023, 12, 5114-5127.	0.1	0
400	Analysis of Geometric Characteristics of Cracks and Delamination in Aerated Concrete Products Using Convolutional Neural Networks. Buildings, 2023, 13, 3014.	3.1	1
401	A multi-scale robotic approach for precise crack measurement in concrete structures. Automation in Construction, 2024, 158, 105215.	9.8	1
402	A three-stage pavement image crack detection framework with positive sample augmentation. Engineering Applications of Artificial Intelligence, 2024, 129, 107624.	8.1	1
403	Methodology for Selecting Neural Network Architecture for Recognizing Pavement Defects. , 2023, , .		0
404	Region of interest (ROI) extraction and crack detection for UAV-based bridge inspection using point cloud segmentation and 3D-to-2D projection. Automation in Construction, 2024, 158, 105226.	9.8	Ο
405	Embankment surface crack pixel-wise identification in UAV images based on a lightweight U-Network with transfer learning. Structures, 2023, 58, 105640.	3.6	0
406	Road crack detection interpreting background images by convolutional neural networks and a selfâ€organizing map. Computer-Aided Civil and Infrastructure Engineering, 0, , .	9.8	Ο
407	Intelligence Approach for Structural Monitoring via UAV-Artificial Intelligence-Based. , 2023, , .		0
408	A Binocular Vision-Based Crack Detection and Measurement Method Incorporating Semantic Segmentation. Sensors, 2024, 24, 3.	3.8	0

#	Article	IF	CITATIONS
409	Interpretability Analysis of Convolutional Neural Networks for Crack Detection. Buildings, 2023, 13, 3095.	3.1	2
410	Innovative Imaging and Analysis Techniques for Quantifying Spalling Repair Materials in Concrete Pavements. Sustainability, 2024, 16, 112.	3.2	0
411	Scale-space effect and scale hybridization in image intelligent recognition of geological discontinuities on rock slopes. Journal of Rock Mechanics and Geotechnical Engineering, 2023, , .	8.1	0
412	Automated detection and segmentation of internal defects in reinforced concrete using deep learning on ultrasonic images. Construction and Building Materials, 2024, 411, 134491.	7.2	1
413	Artificial neural networks applications in construction and building engineering (1991–2021): Science mapping and visualization. Applied Soft Computing Journal, 2024, 152, 111174.	7.2	0
414	Estimation of Damage Levels in Masonry Structures Following Earthquake Impact Using Deep Learning-based Segmentation Method. Journal of Earthquake and Tsunami, 0, , .	1.3	0
415	A Comprehensive Analysis of the Integration of Deep Learning Models in Concrete Research from a Structural Health Perspective. Construction Materials, 2024, 4, 72-90.	0.9	0
416	Pavement Pothole Monitoring via Artificial Intelligence Technology. , 2023, , .		0
417	On the hierarchical Bayesian modelling of frequency response functions. Mechanical Systems and Signal Processing, 2024, 208, 111072.	8.0	0
418	Automated crack detection and mapping of bridge decks using deep learning and drones. Journal of Civil Structural Health Monitoring, 2024, 14, 729-743.	3.9	0
419	A Subpixel Concrete Crack Measurement Method Based on the Partial Area Effect. Buildings, 2024, 14, 151.	3.1	0
420	Multi-layers deep learning model with feature selection for automated detection and classification of highway pavement cracks. Smart and Sustainable Built Environment, 0, , .	4.0	0
421	An Automated Instance Segmentation Method for Crack Detection Integrated with CrackMover Data Augmentation. Sensors, 2024, 24, 446.	3.8	0
422	Terrestrial laser scanning-assisted roughness assessment for initial support of railway tunnel. Journal of Civil Structural Health Monitoring, 2024, 14, 781-800.	3.9	0
423	Explainable computational intelligence method to evaluate the damage on concrete surfaces compared to traditional visual inspection techniques. , 2024, , 77-109.		0
424	A comparison study of semantic segmentation networks for crack detection in construction materials. Construction and Building Materials, 2024, 414, 134950.	7.2	0
425	FSDGNet: frequency and spatial dual guide network for crack detection. Journal of Electronic Imaging, 2024, 33, .	0.9	0
426	Artificial intelligence-assisted visual inspection for cultural heritage: State-of-the-art review. Journal of Cultural Heritage, 2024, 66, 536-550.	3.3	0

~			<u> </u>	
(11	ГАТ	10N	RED	NUBL
\sim	17.51			

#	Article	IF	CITATIONS
427	Hybrid Pixel-Level Crack Segmentation for Ballastless Track Slab Using Digital Twin Model and Weakly Supervised Style Transfer. Structural Control and Health Monitoring, 2024, 2024, 1-23.	4.0	2
428	Damage localisation using disparate damage states via domain adaptation. Data-Centric Engineering, 2024, 5, .	2.3	0
429	Positioning and detection of rigid pavement cracks using GNSS data and image processing. Earth Science Informatics, 2024, 17, 1799-1807.	3.2	0
430	Photoelectricity Theory-Based Concrete Crack Image Segmentation and Optimal Exposure Interval Research. Applied Sciences (Switzerland), 2024, 14, 1527.	2.5	0
431	Automated highway pavement crack recognition under complex environment. Heliyon, 2024, 10, e26142.	3.2	0
432	Improvement of crack detectivity for noisy concrete surface by machine learning methods and infrared images. Case Studies in Construction Materials, 2024, 20, e02984.	1.7	0
433	Toward enhancing concrete crack segmentation accuracy under complex scenarios: a novel modified U-Net network. Multimedia Tools and Applications, 0, , .	3.9	0
434	Al-based structural health monitoring systems. , 2024, , 151-170.		0
435	Structural Vision Data Collection and Dataset. Synthesis Lectures on Mechanical Engineering, 2024, , 109-137.	0.1	0
436	Active Learning. Synthesis Lectures on Mechanical Engineering, 2024, , 307-322.	0.1	0
437	Semi-Supervised Learning. Synthesis Lectures on Mechanical Engineering, 2024, , 279-305.	0.1	0
438	Deep learning metasensor for crack-width assessment and self-healing evaluation in concrete. Construction and Building Materials, 2024, 422, 135768.	7.2	0
439	An improved transformer-based concrete crack classification method. Scientific Reports, 2024, 14, .	3.3	0
440	Evaluation of Infrared Thermography Dataset for Delamination Detection in Reinforced Concrete Bridge Decks. Applied Sciences (Switzerland), 2024, 14, 2455.	2.5	0
441	Investigation of Crack Propagation of Fly Ash-Based Geopolymer Concrete Using Digital Image Segmentation Approach. Lecture Notes in Civil Engineering, 2024, , 339-351.	0.4	0
442	Research on evaluation method of underwater image quality and performance of underwater structure defect detection model. Engineering Structures, 2024, 306, 117797.	5.3	0
443	Classification Method of 3D Pattern Film Images Using MLP Based on the Optimal Widths of Histogram. Electronics (Switzerland), 2024, 13, 1114.	3.1	0
444	A combined technique of implantable sensors and probabilistic localization method for monitoring acoustic events on concrete slab. Mechanical Systems and Signal Processing, 2024, 213, 111355.	8.0	0