CAR-T Cell Therapy for Acute Lymphoblastic Leukemia Relapsed and Refractory Disease

Current Hematologic Malignancy Reports

13, 396-406

DOI: 10.1007/s11899-018-0470-x

Citation Report

#	Article	IF	CITATIONS
1	B Cell Siglecs–News on Signaling and Its Interplay With Ligand Binding. Frontiers in Immunology, 2018, 9, 2820.	2.2	71
2	Approach to the Adult Acute Lymphoblastic Leukemia Patient. Journal of Clinical Medicine, 2019, 8, 1175.	1.0	28
3	Driving the CAR to the Bone Marrow Transplant Program. Current Hematologic Malignancy Reports, 2019, 14, 561-569.	1.2	10
4	Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Science Translational Medicine, 2019, 11, .	5.8	178
5	The Emergence of Universal Immune Receptor T Cell Therapy for Cancer. Frontiers in Oncology, 2019, 9, 176.	1.3	64
6	CAR T Cell Therapy for Hematological Malignancies. Current Medical Science, 2019, 39, 874-882.	0.7	22
7	The Emergence of Natural Killer Cells as a Major Target in Cancer Immunotherapy. Trends in Immunology, 2019, 40, 142-158.	2.9	218
8	The effect of graftâ€versusâ€host disease on outcomes after allogeneic stem cell transplantation for refractory lymphoblastic lymphoma in children and young adults. Pediatric Blood and Cancer, 2020, 67, e28129.	0.8	5
9	Central Nervous System Relapse After Stem Cell Transplantation in Adolescents and Young Adults with Acute Lymphoblastic Leukemia: A Single-Institution Experience. Journal of Adolescent and Young Adult Oncology, 2020, 9, 166-171.	0.7	6
11	Colorectal Cancer Immunotherapy: Options and Strategies. Frontiers in Immunology, 2020, 11, 1624.	2.2	207
12	Immunotherapy for Metastatic Prostate Cancer: Current and Emerging Treatment Options. Urologic Clinics of North America, 2020, 47, 487-510.	0.8	10
13	Role of Allogeneic HCT as Postremission Therapy for Transplant-Eligible Adult Lymphoblastic Leukemia/Lymphoma After Frontline Hyper-CVAD. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 690-696.	0.2	1
14	A Holistic Perspective: Exosomes Shuttle between Nerves and Immune Cells in the Tumor Microenvironment. Journal of Clinical Medicine, 2020, 9, 3529.	1.0	10
15	Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomedicine and Pharmacotherapy, 2020, 128, 110276.	2.5	21
16	Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions. Journal of Hematology and Oncology, 2020, 13, 70.	6.9	100
17	Quantitative Control of Gene-Engineered T-Cell Activity through the Covalent Attachment of Targeting Ligands to a Universal Immune Receptor. Journal of the American Chemical Society, 2020, 142, 6554-6568.	6.6	36
18	Use of CAR-T cell therapy, PD-1 blockade, and their combination for the treatment of hematological malignancies. Clinical Immunology, 2020, 214, 108382.	1.4	40
19	Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells, 2020, 9, 561.	1.8	281

#	Article	IF	CITATIONS
20	T-Cell Gene Therapy in Cancer Immunotherapy: Why It Is No Longer Just CARs on The Road. Cells, 2020, 9, 1588.	1.8	20
21	How I treat relapsed acute lymphoblastic leukemia in the pediatric population. Blood, 2020, 136, 1803-1812.	0.6	90
22	Is Hematopoietic Stem Cell Transplantation Required to Unleash the Full Potential of Immunotherapy in Acute Myeloid Leukemia?. Journal of Clinical Medicine, 2020, 9, 554.	1.0	10
23	CAR-T Cell Therapy in Cancer: Tribulations and Road Ahead. Journal of Immunology Research, 2020, 2020, 1-11.	0.9	49
24	Exploring the Dilemma of Allogeneic Hematopoietic Cell Transplantation after Chimeric Antigen Receptor T Cell Therapy: To Transplant or Not?. Biology of Blood and Marrow Transplantation, 2020, 26, e183-e191.	2.0	25
25	Pseudoprogression of extramedullary disease in relapsed acute lymphoblastic leukemia after CAR T-cell therapy. Immunotherapy, 2021, 13, 5-10.	1.0	10
26	Temporal trends in childhood cancer survival in Egypt, 2007 to 2017: A large retrospective study of 14 808 children with cancer from the Children's Cancer Hospital Egypt. International Journal of Cancer, 2021, 148, 1562-1574.	2.3	8
27	Time to Get Turned on by Chemical Biology. ChemBioChem, 2021, 22, 814-817.	1.3	3
28	Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. British Journal of Cancer, 2021, 124, 359-367.	2.9	590
29	Have CD19-directed immunotherapy and haploidentical hematopoietic cell transplantation transformed pediatric B-cell acute lymphoblastic leukemia into a chronic disease?. Oncolmmunology, 2021, 10, 1956125.	2.1	Ο
31	Use of Blinatumomab in Acute Lymphoblastic Leukemia in Municipal Healthcare: A Case Report. Klinicheskaya Onkogematologiya/Clinical Oncohematology, 2021, 14, 198-203.	0.1	1
32	Siglec-6 is a target for chimeric antigen receptor T-cell treatment of chronic lymphocytic leukemia. Leukemia, 2021, 35, 2581-2591.	3.3	11
33	Anti-CD19 CAR-T cell therapy bridge to HSCT decreases the relapse rate and improves the long-term survival of R/R B-ALL patients: a systematic review and meta-analysis. Annals of Hematology, 2021, 100, 1003-1012.	0.8	21
34	Perspectives for the Use of CAR-T Cells for the Treatment of Multiple Myeloma. Frontiers in Immunology, 2021, 12, 632937.	2.2	12
35	Acute Lymphoblastic Leukemia in Adolescents and Young Adults. , 0, , .		0
36	Introductory Chapter: A Brief History of Acute Leukemias Treatment. , 0, , .		Ο
37	Genetic Mechanism of Leukemia Relapse Following CD19 Chimeric Antigen Receptor T Cell Therapy. Cancer Biotherapy and Radiopharmaceuticals, 2021, , .	0.7	1
38	The TRAIL in the Treatment of Human Cancer: An Update on Clinical Trials. Frontiers in Molecular Biosciences, 2021, 8, 628332.	1.6	73

#	Article	IF	CITATIONS
39	Chimeric Antigen Receptor Design and Efficacy in Ovarian Cancer Treatment. International Journal of Molecular Sciences, 2021, 22, 3495.	1.8	9
40	KTE-X19 anti-CD19 CAR T-cell therapy in adult relapsed/refractory acute lymphoblastic leukemia: ZUMA-3 phase 1 results. Blood, 2021, 138, 11-22.	0.6	90
41	MicroRNAâ€ʿ325 inhibits the proliferation and induces the apoptosis of TÂcell acute lymphoblastic leukemia cells in a BAG2â€ʿdependent manner. Experimental and Therapeutic Medicine, 2021, 21, 631.	0.8	5
42	Therapeutic Targeting of the Leukaemia Microenvironment. International Journal of Molecular Sciences, 2021, 22, 6888.	1.8	16
43	Phenolic Compounds – An Emerging Group of Natural Compounds against Leukaemia: in vitro, in vivo and Clinical Applications. Biochemistry, 0, , .	0.8	0
44	KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet, The, 2021, 398, 491-502.	6.3	315
45	Central nervous system (CNS) involvement has an adverse impact on survival in newly diagnosed adult acute lymphoblastic leukemia (ALL) assessed by flow cytometry. Leukemia and Lymphoma, 2021, 62, 3264-3270.	0.6	3
46	Cell and molecular level of strategy of COVID-19 to induce immunodeficiency. Possible therapeutic solutions. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2021, 98, 450-467.	0.3	2
47	Case Report: Multi-Omics Analysis and CAR-T Treatment of a Chronic Myeloid Leukemia Blast Crisis Case 5 Years After the Discontinuation of TKI. Frontiers in Oncology, 2021, 11, 739871.	1.3	7
48	Conditional control of chimeric antigen receptor T-cell activity through a destabilizing domain switch and its chemical ligand. Cytotherapy, 2021, 23, 1085-1096.	0.3	2
49	Novel TCR-like CAR-T cells targeting an HLAâ^—0201-restricted SSX2 epitope display strong activity against acute myeloid leukemia. Molecular Therapy - Methods and Clinical Development, 2021, 23, 296-306.	1.8	12
50	Natural Killer Cells in Cancer and Cancer Immunotherapy. Cancer Letters, 2021, 520, 233-242.	3.2	19
51	Innate and adaptive immunity in cancer. , 2022, , 19-61.		0
52	Interleukinâ€37 improves Tâ€cellâ€mediated immunity and chimeric antigen receptor Tâ€cell therapy in aged backgrounds. Aging Cell, 2021, 20, e13309.	3.0	14
53	Clinical Trials with Cytokine-Induced Killer Cells and CAR-T Cell Transplantation for Non-small Cell Lung Cancer Treatment. Advances in Experimental Medicine and Biology, 2020, 1292, 113-130.	0.8	5
54	Current Management and New Developments in the Treatment of ALL. Cancer Treatment and Research, 2021, 181, 75-96.	0.2	0
55	Mediastinal tumours and pseudo-tumours: a comprehensive review with emphasis on multidisciplinary approach. European Respiratory Review, 2021, 30, 200309.	3.0	12
56	Chimeric Antigen Receptor T-Cell Immunotherapy for Cancer. , 2020, , .		1

#	Article	IF	CITATIONS
57	Chimeric Antigen Receptor-Engineered T-Cells - A New Way and Era for Lymphoma Treatment. Recent Patents on Anti-Cancer Drug Discovery, 2020, 14, 312-323.	0.8	2
58	Immunotherapy and Radiosurgery. , 2020, , 423-436.		Ο
60	Clinical determinants of relapse following CAR-T therapy for hematologic malignancies: Coupling active strategies to overcome therapeutic limitations. Current Research in Translational Medicine, 2022, 70, 103320.	1.2	9
61	Newly Found Peacekeeper: Potential of CD8+ Tregs for Graft-Versus-Host Disease. Frontiers in Immunology, 2021, 12, 764786.	2.2	5
62	Modeling and simulation of the "IL-36 cytokine―and CAR-T cells interplay in cancer onset. International Journal of Modeling, Simulation, and Scientific Computing, 0, , .	0.9	0
63	Idecabtagene vicleucel (ide-cel) CAR T-cell therapy for relapsed and refractory multiple myeloma. Future Oncology, 2022, 18, 277-289.	1.1	20
64	An impedimetric immunosensor for the selective detection of CD34+ T-cells in human serum. Sensors and Actuators B: Chemical, 2022, 356, 131306.	4.0	8
65	"Off-the-shelf―immunotherapies for multiple myeloma. Seminars in Oncology, 2022, 49, 60-68.	0.8	4
66	Efficiency of antiâ€VEGF therapy in central nervous system AML relapse: A case report and literature review. Clinical Case Reports (discontinued), 2022, 10, e05367.	0.2	3
67	Chimeric antigen receptor T cell structure, its manufacturing, and related toxicities; A comprehensive review. Advances in Cancer Biology Metastasis, 2022, 4, 100035.	1.1	7
68	Efficacy and safety of CD19-specific CAR T cell–based therapy in B-cell acute lymphoblastic leukemia patients with CNSL. Blood, 2022, 139, 3376-3386.	0.6	36
69	Resistance Mechanisms in Pediatric B-Cell Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences, 2022, 23, 3067.	1.8	6
70	Donor T cells for CAR T cell therapy. Biomarker Research, 2022, 10, 14.	2.8	9
71	CAR T-cell immunotherapy: a powerful weapon for fighting hematological B-cell malignancies. Frontiers of Medicine, 2021, 15, 783-804.	1.5	3
72	The safety and efficacy of CAR-T cells in the treatment of prostate cancer: review. Biomarkers, 2022, 27, 22-34.	0.9	1
73	An Overview of Conventional Drugs and Nanotherapeutic Options for the Treatment and Management of Pediatric Acute Lymphoblastic Leukemia. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 3050-3061.	0.9	0
74	Allogeneic gamma delta T cells as adoptive cellular therapy for hematologic malignancies. Exploration of Immunology, 0, , 334-350.	1.7	12
75	The current treatment approach to adolescents and young adults with acute lymphoblastic leukemia (AYA-ALL): challenges and considerations. Expert Review of Anticancer Therapy, 2022, 22, 845-860.	1.1	2

#	Article	IF	CITATIONS
76	Comparative effectiveness of ZUMA-5 (axi-cel) vs SCHOLAR-5 external control in relapsed/refractory follicular lymphoma. Blood, 2022, 140, 851-860.	0.6	28
77	Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	33
78	A Novel Bispecific T-Cell Engager (CD1a x CD3Îμ) BTCE Is Effective against Cortical-Derived T Cell Acute Lymphoblastic Leukemia (T-ALL) Cells. Cancers, 2022, 14, 2886.	1.7	9
79	Molecular Therapy in Myasthenia Gravis. Touch Reviews in Neurology, 2022, 18, 49.	0.1	Ο
80	Receptor Guanylyl Cyclase C and Cyclic GMP in Health and Disease: Perspectives and Therapeutic Opportunities. Frontiers in Endocrinology, 0, 13, .	1.5	10
81	Leveraging gene therapy to achieve long-term continuous or controllable expression of biotherapeutics. Science Advances, 2022, 8, .	4.7	7
82	RCMNet: A deep learning model assists CAR-T therapy for leukemia. Computers in Biology and Medicine, 2022, 150, 106084.	3.9	10
83	Chemotherapy induces plasmatic antioxidant changes in pediatric patients with acute lymphoid leukemia B that correlate to disease prognosis. Current Research in Immunology, 2022, 3, 228-233.	1.2	1
85	Next generations of CAR-T cells - new therapeutic opportunities in hematology?. Frontiers in Immunology, 0, 13, .	2.2	24
86	The pathogenesis, diagnosis, prevention, and treatment of CAR-T cell therapy-related adverse reactions. Frontiers in Pharmacology, 0, 13, .	1.6	7
87	Comparative analysis of the variability of the human leukocyte antigen peptideâ€binding pockets in patients with acute leukaemia. British Journal of Haematology, 2023, 200, 197-209.	1.2	4
88	Mature B―and plasma ell flow cytometric analysis: A review of the impact of targeted therapy. Cytometry Part B - Clinical Cytometry, 2023, 104, 224-242.	0.7	3
89	Manganese immunotherapy for treating osteosarcoma: Glycosylating 1V209 anchored MnO2 nanosheets prompt pro-inflammatory macrophage polarization. Nano Today, 2023, 48, 101670.	6.2	5
90	Mild blurry vision as the initial presentation of central nervous system relapses of acute lymphoblastic leukemia: a case report. BMC Ophthalmology, 2022, 22, .	0.6	Ο
91	Activation priming and cytokine polyfunctionality modulate the enhanced functionality of low-affinity CD19 CAR T cells. Blood Advances, 2023, 7, 1725-1738.	2.5	7
92	Hematological Problems in Pediatric Surgery. , 2023, , 119-144.		Ο
93	Chimeric antigen receptor T (<scp>CARâ€T</scp>) cells: Novel cell therapy for hematological malignancies. Cancer Medicine, 2023, 12, 7844-7858.	1.3	15
94	Single-Cell Transcriptomics Reveals Immune Reconstitution in Patients with R/R T-ALL/LBL Treated with Donor-Derived CD7 CAR-T Therapy. Clinical Cancer Research, 2023, 29, 1484-1495.	3.2	6

#	Article	IF	CITATIONS
95	Extracorporeal membrane oxygenation in adults receiving haematopoietic cell transplantation: an international expert statement. Lancet Respiratory Medicine,the, 2023, 11, 477-492.	5.2	7
96	All-trans retinoic acid improves NSD2-mediated RARα phase separation and efficacy of anti-CD38 CAR T-cell therapy in multiple myeloma. , 2023, 11, e006325.		3
97	Targeting CD19 and CD22 with CAR-T cell therapy in acute lymphoid leukemia. , 0, 36, 918-923.		0
98	Highly sensitive single tube B″ymphoblastic leukemia/lymphoma minimal/measurable residual disease test robust to surface antigen directed therapy. Cytometry Part B - Clinical Cytometry, 2023, 104, 279-293.	0.7	5
99	Muramyl dipeptide CD10 monoclonal antibody immunoconjugates inhibited acute leukemia in nude mice. Bioscience Reports, 0, , .	1.1	0
101	The clinical application of immuno-therapeutics. , 2024, , 237-288.e7.		0
103	Stem Cell Transplant for Acute Lymphoblastic Leukemia. , 2023, , 479-500.		0
104	Updated Clinical Perspectives and Challenges of Chimeric Antigen Receptor-T Cell Therapy in Colorectal Cancer and Invasive Breast Cancer. Archivum Immunologiae Et Therapiae Experimentalis, 2023, 71, .	1.0	1
109	Overcoming toxicity challenges in CAR-T therapy: mechanisms and mitigation strategies. , 2024, , .		0