A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singl Superior Trifunctional Catalyst for Overall Water Splitt

Angewandte Chemie - International Edition 57, 8614-8618 DOI: 10.1002/anie.201804349

Citation Report

#	Article	IF	CITATIONS
1	Preparation of Hollow Nitrogen Doped Carbon via Stresses Induced Orientation Contraction. Small, 2018, 14, e1804183.	5.2	83
2	Toward Bifunctional Overall Water Splitting Electrocatalyst: General Preparation of Transition Metal Phosphide Nanoparticles Decorated N-Doped Porous Carbon Spheres. ACS Applied Materials & Interfaces, 2018, 10, 44201-44208.	4.0	71
3	Sulfuration of an Fe–N–C Catalyst Containing Fe <i>_x</i> C/Fe Species to Enhance the Catalysis of Oxygen Reduction in Acidic Media and for Use in Flexible Zn–Air Batteries. Advanced Materials, 2018, 30, e1804504.	11.1	269
4	Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 2018, 2, 1242-1264.	11.7	1,618
5	Twoâ€Dimensional Conjugated Aromatic Networks as Highâ€Siteâ€Density and Singleâ€Atom Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 14866-14872.	1.6	95
6	Twoâ€Dimensional Conjugated Aromatic Networks as Highâ€Siteâ€Density and Singleâ€Atom Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 14724-14730.	7.2	139
7	A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Science Advances, 2019, 5, eaaw2322.	4.7	290
8	Bimetallic Co _{3.2} Fe _{0.8} N–Nitrogen–Carbon Nanocomposites for Simultaneous Electrocatalytic Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. ACS Applied Nano Materials, 2019, 2, 5931-5941.	2.4	25
9	Co–Mn spinel supported self-catalysis induced N-doped carbon nanotubes with high efficiency electron transport channels for zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 22307-22313.	5.2	92
10	Iron-Salt Thermally Emitted Strategy to Prepare Graphene-like Carbon Nanosheets with Trapped Fe Species for an Efficient Electrocatalytic Oxygen Reduction Reaction in the All-pH Range. ACS Applied Materials & Interfaces, 2019, 11, 27823-27832.	4.0	23
11	Selfâ€Templated Conversion of Metallogel into Heterostructured TMP@Carbon Quasiaerogels Boosting Bifunctional Electrocatalysis. Advanced Functional Materials, 2019, 29, 1903660.	7.8	93
12	Bifunctional atomic iron-based catalyst for oxygen electrode reactions. Journal of Catalysis, 2019, 378, 353-362.	3.1	41
13	Hollow Spherical (Co, Zn)/N, S-Doped Carbons: Efficient Catalysts for Oxygen Reduction in Both Alkaline and Acidic Media. ACS Sustainable Chemistry and Engineering, 2019, 7, 18912-18925.	3.2	32
14	Cobalt-boron-oxide supported on N, P dual-doped carbon nanosheets as the trifunctional electrocatalyst and its application in rechargeable Zn-air battery and overall water-electrolysis. Electrochimica Acta, 2019, 327, 134980.	2.6	21
15	Chirality Induces the Self-Assembly To Generate a 3D Porous Spiral-like Polyhedron as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 45596-45605.	4.0	15
16	Transforming Energy with Single-Atom Catalysts. Joule, 2019, 3, 2897-2929.	11.7	216
17	Versatile Applications of Metal Singleâ€Atom @ 2D Material Nanoplatforms. Advanced Science, 2019, 6, 1901787.	5.6	128
18	Isolated Iron Single-Atomic Site-Catalyzed Chemoselective Transfer Hydrogenation of Nitroarenes to Arylamines, ACS Applied Materials & Amp: Interfaces, 2019, 11, 33819-33824	4.0	74

#	Article	IF	CITATIONS
19	Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10, 4290.	5.8	326
20	Recent Advances in Isolated Single-Atom Catalysts for Zinc Air Batteries: A Focus Review. Nanomaterials, 2019, 9, 1402.	1.9	42
21	Atomic Ni Anchored Covalent Triazine Framework as High Efficient Electrocatalyst for Carbon Dioxide Conversion. Advanced Functional Materials, 2019, 29, 1806884.	7.8	210
22	Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal–organic framework for tri-functional ORR, OER and HER electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 3664-3672.	5.2	243
23	A single-atom Fe–N ₄ catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chemical Communications, 2019, 55, 159-162.	2.2	209
24	Role of P-doping in Antipoisoning: Efficient MOF-Derived 3D Hierarchical Architectures for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2019, 123, 16796-16803.	1.5	50
25	Atomically Dispersed Bimetallic FeNi Catalysts as Highly Efficient Bifunctional Catalysts for Reversible Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem, 2019, 6, 3478-3487.	1.7	58
26	N,P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 14732-14742.	5.2	80
27	Carbonâ€Rich Nonprecious Metal Single Atom Electrocatalysts for CO ₂ Reduction and Hydrogen Evolution. Small Methods, 2019, 3, 1900210.	4.6	136
28	Monoâ€ / Multinuclear Water Oxidation Catalysts. ChemSusChem, 2019, 12, 3209-3235.	3.6	22
28 29	Monoâ€ ⁴ Multinuclear Water Oxidation Catalysts. ChemSusChem, 2019, 12, 3209-3235. Pyrolysis of Self-Assembled Iron(III) Porphyrin on Carbon toward Efficient Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2019, 166, F441-F447.	3.6 1.3	22 10
	Pyrolysis of Self-Assembled Iron(III) Porphyrin on Carbon toward Efficient Oxygen Reduction Reaction.		
29	Pyrolysis of Self-Assembled Iron(III) Porphyrin on Carbon toward Efficient Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2019, 166, F441-F447. Nitrogenâ€Doped Carbon Nanosheets Encapsulating Cobalt Nanoparticle Hybrids as Highâ€Performance	1.3	10
29 30	Pyrolysis of Self-Assembled Iron(III) Porphyrin on Carbon toward Efficient Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2019, 166, F441-F447. Nitrogenâ€Doped Carbon Nanosheets Encapsulating Cobalt Nanoparticle Hybrids as Highâ€Performance Bifunctional Electrocatalysts. ChemElectroChem, 2019, 6, 2683-2688. "Superaerophobic―Nickel Phosphide Nanoarray Catalyst for Efficient Hydrogen Evolution at	1.3 1.7	10 17
29 30 31	Pyrolysis of Self-Assembled Iron(III) Porphyrin on Carbon toward Efficient Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2019, 166, F441-F447. Nitrogenâ€Doped Carbon Nanosheets Encapsulating Cobalt Nanoparticle Hybrids as Highâ€Performance Bifunctional Electrocatalysts. ChemElectroChem, 2019, 6, 2683-2688. "Superaerophobic―Nickel Phosphide Nanoarray Catalyst for Efficient Hydrogen Evolution at Ultrahigh Current Densities. Journal of the American Chemical Society, 2019, 141, 7537-7543.	1.3 1.7 6.6	10 17 401
29 30 31 32	Pyrolysis of Self-Assembled Iron(III) Porphyrin on Carbon toward Efficient Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2019, 166, F441-F447. Nitrogenâ€Doped Carbon Nanosheets Encapsulating Cobalt Nanoparticle Hybrids as Highâ€Performance Bifunctional Electrocatalysts. ChemElectroChem, 2019, 6, 2683-2688. "Superaerophobic―Nickel Phosphide Nanoarray Catalyst for Efficient Hydrogen Evolution at Ultrahigh Current Densities. Journal of the American Chemical Society, 2019, 141, 7537-7543. Single-atom nanozymes. Science Advances, 2019, 5, eaav5490.	1.3 1.7 6.6 4.7	10 17 401 615
29 30 31 32 33	Pyrolysis of Self-Assembled Iron(III) Porphyrin on Carbon toward Efficient Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2019, 166, F441-F447. Nitrogenâ€Doped Carbon Nanosheets Encapsulating Cobalt Nanoparticle Hybrids as Highâ€Performance Bifunctional Electrocatalysts. ChemElectroChem, 2019, 6, 2683-2688. "Superaerophobic―Nickel Phosphide Nanoarray Catalyst for Efficient Hydrogen Evolution at Ultrahigh Current Densities. Journal of the American Chemical Society, 2019, 141, 7537-7543. Single-atom nanozymes. Science Advances, 2019, 5, eaav5490. Single Atoms on Graphene for Energy Storage and Conversion. Small Methods, 2019, 3, 1800443. Oxygen Reduction Reactions of Fe-N-C Catalysts: Current Status and the Way Forward.	1.3 1.7 6.6 4.7 4.6	 10 17 401 615 64

#	Article	IF	CITATIONS
37	In-situ growth of iron/nickel phosphides hybrid on nickel foam as bifunctional electrocatalyst for overall water splitting. Journal of Power Sources, 2019, 424, 42-51.	4.0	56
38	Generation of Nanoparticle, Atomicâ€Cluster, and Singleâ€Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc–Air Batteries. Angewandte Chemie, 2019, 131, 5413-5418.	1.6	106
39	Insights into Singleâ€Atom Metal–Support Interactions in Electrocatalytic Water Splitting. Small Methods, 2019, 3, 1800481.	4.6	94
40	Recent Advances for MOFâ€Derived Carbon‣upported Singleâ€Atom Catalysts. Small Methods, 2019, 3, 1800471.	4.6	315
41	Generation of Nanoparticle, Atomicâ€Cluster, and Singleâ€Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc–Air Batteries. Angewandte Chemie - International Edition, 2019, 58, 5359-5364.	7.2	500
42	Facile synthesis of impurity-free iron single atom catalysts for highly efficient oxygen reduction reaction and active-site identification. Catalysis Science and Technology, 2019, 9, 6556-6560.	2.1	10
43	Confined carburization-engineered synthesis of ultrathin nickel oxide/nickel heterostructured nanosheets for enhanced oxygen evolution reaction. Nanoscale, 2019, 11, 22261-22269.	2.8	18
44	Coupled nanocomposite Co _{5.47} N–Co ₃ Fe ₇ inlaid in a tremella-like carbon framework as a highly efficient multifunctional electrocatalyst for oxygen transformation and overall water splitting. Sustainable Energy and Fuels, 2019, 3, 3538-3549.	2.5	12
45	Single atom electrocatalysts supported on graphene or graphene-like carbons. Chemical Society Reviews, 2019, 48, 5207-5241.	18.7	441
46	Facile solution synthesis of FeN _x atom clusters supported on nitrogen-enriched graphene carbon aerogels with superb electrocatalytic performance toward the oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 25557-25566.	5.2	29
47	A Br-regulated transition metal active-site anchoring and exposure strategy in biomass-derived carbon nanosheets for obtaining robust ORR/HER electrocatalysts at all pH values. Journal of Materials Chemistry A, 2019, 7, 27089-27098.	5.2	40
48	Cobalt–Tanninâ€Frameworkâ€Derived Amorphous Coâ^'P/Coâ^'Nâ^'C on N, P Coâ€Doped Porous Carbon with Abundant Active Moieties for Efficient Oxygen Reactions and Water Splitting. ChemSusChem, 2019, 12, 830-838.	3.6	48
49	Probe active sites of heterogeneous electrocatalysts by X-ray absorption spectroscopy: From single atom to complex multi-element composites. Current Opinion in Electrochemistry, 2019, 14, 7-15.	2.5	22
50	Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Applied Catalysis B: Environmental, 2020, 260, 118198.	10.8	216
51	Vacancy in Ultrathin 2D Nanomaterials toward Sustainable Energy Application. Advanced Energy Materials, 2020, 10, 1902107.	10.2	76
52	Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catalysis, 2020, 10, 2231-2259.	5.5	426
53	Structural Regulation with Atomic-Level Precision: From Single-Atomic Site to Diatomic and Atomic Interface Catalysis. Matter, 2020, 2, 78-110.	5.0	221
54	Single iron atoms coordinated to g-C ₃ N ₄ on hierarchical porous N-doped carbon polyhedra as a high-performance electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2020, 56, 798-801.	2.2	45

#	Article	IF	CITATIONS
55	A review of non-precious metal single atom confined nanomaterials in different structural dimensions (1D–3D) as highly active oxygen redox reaction electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 2222-2245.	5.2	59
56	Boosting supercapacitor and capacitive deionization performance of hierarchically porous carbon by polar surface and structural engineering. Journal of Materials Chemistry A, 2020, 8, 2505-2517.	5.2	103
57	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020, 120, 623-682.	23.0	794
58	Atomicâ€Level Feâ€Nâ€C Coupled with Fe ₃ Câ€Fe Nanocomposites in Carbon Matrixes as Highâ€Efficiency Bifunctional Oxygen Catalysts. Small, 2020, 16, e1906057.	5.2	90
59	Engineering Local Coordination Environments of Atomically Dispersed and Heteroatomâ€Coordinated Single Metal Site Electrocatalysts for Clean Energyâ€Conversion. Advanced Energy Materials, 2020, 10, 1902844.	10.2	245
60	Boosting Oxygen Reduction of Single Iron Active Sites via Geometric and Electronic Engineering: Nitrogen and Phosphorus Dual Coordination. Journal of the American Chemical Society, 2020, 142, 2404-2412.	6.6	680
61	Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Materials, 2020, 27, 478-505.	9.5	221
62	Catalysis of a Single Transition Metal Site for Water Oxidation: From Mononuclear Molecules to Single Atoms. Advanced Materials, 2020, 32, e1904037.	11.1	78
63	A Freestanding 3D Heterostructure Film Stitched by MOFâ€Derived Carbon Nanotube Microsphere Superstructure and Reduced Graphene Oxide Sheets: A Superior Multifunctional Electrode for Overall Water Splitting and Zn–Air Batteries. Advanced Materials, 2020, 32, e2003313.	11.1	216
64	Design and operando/in situ characterization of preciousâ€metalâ€free electrocatalysts for alkaline water splitting. , 2020, 2, 582-613.		105
65	Bifunctional Single Atom Electrocatalysts: Coordination–Performance Correlations and Reaction Pathways. ACS Nano, 2020, 14, 13279-13293.	7.3	107
66	Identifying the Active Sites of a Single Atom Catalyst with pH-Universal Oxygen Reduction Reaction Activity. Cell Reports Physical Science, 2020, 1, 100115.	2.8	26
67	Multilayer stabilization for fabricating high-loading single-atom catalysts. Nature Communications, 2020, 11, 5892.	5.8	195
68	Iron-based nanoparticles encapsulated in super-large 3D carbon nanotube networks as a bifunctional catalyst for ultrastable rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 25913-25918.	5.2	7
69	CoNi alloys with slight oxidation@N,O Co-doped carbon: enhanced collective contributions of cores and shells to multifunctional electrocatalytic activity and Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 25805-25823.	5.2	39
70	Secondary-Atom-Doping Enables Robust Fe–N–C Single-Atom Catalysts with Enhanced Oxygen Reduction Reaction. Nano-Micro Letters, 2020, 12, 163.	14.4	114
71	Tuning of Trifunctional NiCu Bimetallic Nanoparticles Confined in a Porous Carbon Network with Surface Composition and Local Structural Distortions for the Electrocatalytic Oxygen Reduction, Oxygen and Hydrogen Evolution Reactions. Journal of the American Chemical Society, 2020, 142, 14688-14701.	6.6	231
72	Active Sites of Single-Atom Iron Catalyst for Electrochemical Hydrogen Evolution. Journal of Physical Chemistry Letters, 2020, 11, 6691-6696.	2.1	37

#	Article	IF	CITATIONS
73	Single atom is not alone: Metal–support interactions in single-atom catalysis. Materials Today, 2020, 40, 173-192.	8.3	174
74	Metal–Organicâ€Frameworkâ€Derived Co ₂ P Nanoparticle/Multiâ€Doped Porous Carbon as a Trifunctional Electrocatalyst. Advanced Materials, 2020, 32, e2003649.	11.1	261
75	Chemical design and synthesis of superior single-atom electrocatalysts <i>via in situ</i> polymerization. Journal of Materials Chemistry A, 2020, 8, 17683-17690.	5.2	19
76	Atomic iron on mesoporous N-doped carbon to achieve dehydrogenation reaction at room temperature. Nano Research, 2020, 13, 3075-3081.	5.8	23
77	Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews, 2020, 120, 11810-11899.	23.0	325
78	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 122, 12217-12314.	23.0	563
79	<i>In situ</i> exsolved Co nanoparticles coupled on LiCoO ₂ nanofibers to induce oxygen electrocatalysis for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 19946-19953.	5.2	27
80	A Review of Carbon‧upported Nonprecious Metals as Energyâ€Related Electrocatalysts. Small Methods, 2020, 4, 2000621.	4.6	76
81	Recent Progress in Nonâ€Precious Metal Single Atomic Catalysts for Solar and Nonâ€Solar Driven Hydrogen Evolution Reaction. Advanced Sustainable Systems, 2020, 4, 2000151.	2.7	14
82	Nonprecious Bimetallic Sites Coordinated on Nâ€Đoped Carbons with Efficient and Durable Catalytic Activity for Oxygen Reduction. Small, 2020, 16, e2000742.	5.2	50
83	High-Efficiency Electrocatalysis of Molecular Oxygen toward Hydroxyl Radicals Enabled by an Atomically Dispersed Iron Catalyst. Environmental Science & Technology, 2020, 54, 12662-12672.	4.6	114
84	Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Science Advances, 2020, 6, .	4.7	214
85	Recent advances and strategies in the stabilization of singleâ€atom catalysts for electrochemical applications. , 2020, 2, 488-520.		37
86	Heterostructure Design in Bimetallic Phthalocyanine Boosts Oxygen Reduction Reaction Activity and Durability. Advanced Functional Materials, 2020, 30, 2005000.	7.8	78
87	Isolated Single Atoms Anchored on N-Doped Carbon Materials as a Highly Efficient Catalyst for Electrochemical and Organic Reactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 14630-14656.	3.2	88
88	Edge-Functionalized Polyphthalocyanine Networks with High Oxygen Reduction Reaction Activity. Journal of the American Chemical Society, 2020, 142, 17524-17530.	6.6	75
89	Emerging Metal Single Atoms in Electrocatalysts and Batteries. Advanced Functional Materials, 2020, 30, 2003870.	7.8	38
90	2D-organic framework confined metal single atoms with the loading reaching the theoretical limit. Materials Horizons, 2020, 7, 2726-2733.	6.4	26

#	Article	IF	CITATIONS
91	Chromium-modulated multifunctional electrocatalytic activities of spinel oxide for Zn-air batteries and overall water splitting. Journal of Power Sources, 2020, 479, 229099.	4.0	19
92	Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn–Air Battery and Selfâ€Driven Water Splitting. Advanced Energy Materials, 2020, 10, 2002896.	10.2	210
93	Single-Atom Iron-Based Electrocatalysts for High-Temperature Polymer Electrolyte Membrane Fuel Cell: Organometallic Precursor and Pore Texture Tailoring. ACS Applied Energy Materials, 2020, 3, 11164-11176.	2.5	14
94	Recent Advances in the Development of Singleâ€Atom Catalysts for Oxygen Electrocatalysis and Zinc–Air Batteries. Advanced Energy Materials, 2020, 10, 2003018.	10.2	181
95	Recent Progress of Carbon-Supported Single-Atom Catalysts for Energy Conversion and Storage. Matter, 2020, 3, 1442-1476.	5.0	196
96	Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Applied Catalysis B: Environmental, 2020, 274, 119091.	10.8	130
97	Fe,N Co-Doped Mesoporous Carbon Nanosheets for Oxygen Reduction. ACS Applied Nano Materials, 2020, 3, 5637-5644.	2.4	16
98	Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. Journal of Materials Chemistry A, 2020, 8, 15358-15372.	5.2	16
99	Cu Nanoclusters/FeN ₄ Amorphous Composites with Dual Active Sites in N-Doped Graphene for High-Performance Zn–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 31340-31350.	4.0	71
100	Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery. Rare Metals, 2020, 39, 815-823.	3.6	94
101	Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. Journal of Power Sources, 2020, 471, 228446.	4.0	74
102	Singleâ€Atom Catalysts for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 2000768.	7.8	390
103	Singleâ€Atom Iron Catalysts on Overhangâ€Eave Carbon Cages for Highâ€Performance Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 7454-7459.	1.6	80
104	Molecular engineering of nanostructures and activities on bifunctional oxygen electrocatalysts for Zinc-air batteries. Applied Catalysis B: Environmental, 2020, 270, 118869.	10.8	34
105	Singleâ€Atom Iron Catalysts on Overhangâ€Eave Carbon Cages for Highâ€Performance Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 7384-7389.	7.2	264
106	Singleâ€Atom Catalytic Materials for Advanced Battery Systems. Advanced Materials, 2020, 32, e1906548.	11.1	156
107	General Strategy to Fabricate Metal-Incorporated Pyrolysis-Free Covalent Organic Framework for Efficient Oxygen Evolution Reaction. Inorganic Chemistry, 2020, 59, 4995-5003.	1.9	49
108	Mesoporous Iron-doped MoS ₂ /CoMo ₂ S ₄ Heterostructures through Organic–Metal Cooperative Interactions on Spherical Micelles for Electrochemical Water Splitting. ACS Nano, 2020, 14, 4141-4152.	7.3	156

#	Article	IF	Citations
109	Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nature Communications, 2020, 11, 1576.	5.8	237
110	Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 2020, 120, 11900-11955.	23.0	806
111	Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chemical Society Reviews, 2020, 49, 2215-2264.	18.7	582
112	Edgeâ€Rich Feâ~'N ₄ Active Sites in Defective Carbon for Oxygen Reduction Catalysis. Advanced Materials, 2020, 32, e2000966.	11.1	215
113	Impact of electron transfer of atomic metals on adjacent graphyne layers on electrochemical water splitting. Nanoscale, 2020, 12, 7814-7821.	2.8	16
114	Boosting Defective Carbon by Anchoring Well-Defined Atomically Dispersed Ni–N ₄ Sites for Electrocatalytic CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 10536-10543.	3.2	52
115	Iron, Copper and Nitrogen Coâ€doped Carbon with Enhanced Electrocatalytic Activity towards Oxygen Reduction. ChemElectroChem, 2020, 7, 3116-3122.	1.7	3
116	Single Ni Atoms and Clusters Embedded in Nâ€Doped Carbon "Tubes on Fibers―Matrix with Bifunctional Activity for Water Splitting at High Current Densities. Small, 2020, 16, e2002511.	5.2	38
117	Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting. Journal of Energy Chemistry, 2020, 47, 333-345.	7.1	104
118	Asymmetric Air Cathode Design for Enhanced Interfacial Electrocatalytic Reactions in Highâ€Performance Zinc–Air Batteries. Advanced Materials, 2020, 32, e1908488.	11.1	107
119	Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Science China Materials, 2020, 63, 921-948.	3.5	76
120	Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nature Materials, 2020, 19, 436-442.	13.3	725
121	Zincâ€Mediated Template Synthesis of Feâ€Nâ€C Electrocatalysts with Densely Accessible Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Advanced Materials, 2020, 32, e1907399.	11.1	319
122	Synergistic photocatalytic performance of chemically modified amino phthalocyanine-GPTMS/TiO2 for the degradation of Acid Black 1. Inorganic Chemistry Communication, 2020, 113, 107795.	1.8	14
123	Simultaneously Integrating Single Atomic Cobalt Sites and Co ₉ S ₈ Nanoparticles into Hollow Carbon Nanotubes as Trifunctional Electrocatalysts for Zn–Air Batteries to Drive Water Splitting. Small, 2020, 16, e1906735.	5.2	98
124	Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Research, 2020, 13, 401-411.	5.8	30
125	Atomically dispersed hierarchically ordered porous Fe–N–C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-Air battery. Nano Energy, 2020, 71, 104547.	8.2	206
126	Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 2020, 409, 213214.	9.5	182

#	Article	IF	CITATIONS
127	Intrinsic Electrocatalytic Activity Regulation of M–N–C Singleâ€Atom Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 4448-4463.	7.2	433
128	Intrinsische elektrokatalytische AktivitÃssteuerung von Mâ€Nâ€Câ€Einzelatomâ€Katalysatoren für die Sauerstoffreduktionsreaktion. Angewandte Chemie, 2021, 133, 4496-4512.	1.6	40
129	Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions. Journal of Energy Chemistry, 2021, 54, 89-104.	7.1	65
130	Atomic Level Dispersed Metal–Nitrogen–Carbon Catalyst toward Oxygen Reduction Reaction: Synthesis Strategies and Chemical Environmental Regulation. Energy and Environmental Materials, 2021, 4, 5-18.	7.3	55
131	Rational design of iron single atom anchored on nitrogen doped carbon as a high-performance electrocatalyst for all-solid-state flexible zinc-air batteries. Chemical Engineering Journal, 2021, 405, 125956.	6.6	33
132	3D star-like atypical hybrid MOF derived single-atom catalyst boosts oxygen reduction catalysis. Journal of Energy Chemistry, 2021, 55, 355-360.	7.1	113
133	Recent progress on single atom/sub-nano electrocatalysts for energy applications. Progress in Materials Science, 2021, 115, 100711.	16.0	27
134	Carbon hybrid with 3D nano-forest architecture in-situ catalytically constructed by CoFe alloy as advanced multifunctional electrocatalysts for Zn-air batteries-driven water splitting. Journal of Energy Chemistry, 2021, 53, 422-432.	7.1	42
135	Turning on Zn 4s Electrons in a N ₂ â€Znâ€B ₂ Configuration to Stimulate Remarkable ORR Performance. Angewandte Chemie, 2021, 133, 183-187.	1.6	42
136	Singleâ€Atom Materials: Small Structures Determine Macroproperties. Small Structures, 2021, 2, 2000051.	6.9	195
137	Atomically dispersed Ni–Ru–P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy, 2021, 80, 105467.	8.2	114
138	Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy and Environment, 2021, 6, 458-478.	4.7	79
139	Fabricating high-loading Fe-N4 single-atom catalysts for oxygen reduction reaction by carbon-assisted pyrolysis of metal complexes. Chinese Journal of Catalysis, 2021, 42, 753-761.	6.9	21
140	Recent development on metal phthalocyanines based materials for energy conversion and storage applications. Coordination Chemistry Reviews, 2021, 431, 213678.	9.5	69
141	Design of Local Atomic Environments in Singleâ€Atom Electrocatalysts for Renewable Energy Conversions. Advanced Materials, 2021, 33, e2003075.	11.1	187
142	Enabling selective, room-temperature gas detection using atomically dispersed Zn. Sensors and Actuators B: Chemical, 2021, 329, 129221.	4.0	10
143	Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications. Energy and Environmental Science, 2021, 14, 1794-1834.	15.6	45
144	Highly Active Fe/Pt Single-Atom Bifunctional Electrocatalysts on Biomass-Derived Carbon. ACS Sustainable Chemistry and Engineering, 2021, 9, 189-196.	3.2	30

#	Article	IF	CITATIONS
145	A new steric tetra-imidazole for facile synthesis of high loading atomically dispersed FeN4 electrocatalysts. Nano Energy, 2021, 80, 105533.	8.2	28
146	Synergetic Subnano Ni―and Mnâ€Oxo Clusters Anchored by Chitosan Oligomers on 2D gâ€C 3 N 4 Boost Photocatalytic CO 2 Reduction. Solar Rrl, 2021, 5, 2000472.	3.1	20
147	Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc–Air Batteries. Energy and Environmental Materials, 2021, 4, 307-335.	7.3	58
148	Turning on Zn 4s Electrons in a N ₂ â€Znâ€B ₂ Configuration to Stimulate Remarkable ORR Performance. Angewandte Chemie - International Edition, 2021, 60, 181-185.	7.2	161
149	Enabling multifunctional electrocatalysts by modifying the basal plane of unifunctional 1T′-MoS ₂ with anchored transition metal single atoms. Nanoscale, 2021, 13, 13390-13400.	2.8	69
150	Ironâ€Nitrogen Coâ€doped Carbon with a Tunable Composition as Efficient Electrocatalysts for Oxygen Reduction. ChemElectroChem, 2021, 8, 1055-1061.	1.7	3
151	Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chemical Society Reviews, 2021, 50, 7745-7778.	18.7	385
152	Recent advance in single-atom catalysis. Rare Metals, 2021, 40, 767-789.	3.6	116
153	Carbon-supported catalysts with atomically dispersed metal sites for oxygen electroreduction: present and future perspectives. Journal of Materials Chemistry A, 2021, 9, 15919-15936.	5.2	24
154	Recent progress on the synthesis and oxygen reduction applications of Fe-based single-atom and double-atom catalysts. Journal of Materials Chemistry A, 2021, 9, 19489-19507.	5.2	104
155	Ultrasonic Plasma Engineering Toward Facile Synthesis of Single-Atom M-N4/N-Doped Carbon (M = Fe,) 13, 60.	Tj ETQq0 14.4	0 0 rgBT /Ove 63
156	Active site engineering of atomically dispersed transition metal–heteroatom–carbon catalysts for oxygen reduction. Chemical Communications, 2021, 57, 7869-7881.	2.2	37
157	Perfecting electrocatalysts <i>via</i> imperfections: towards the large-scale deployment of water electrolysis technology. Energy and Environmental Science, 2021, 14, 1722-1770.	15.6	213
158	First-principles investigation of two-dimensional covalent–organic framework electrocatalysts for oxygen evolution/reduction and hydrogen evolution reactions. Sustainable Energy and Fuels, 2021, 5, 5615-5626.	2.5	13
159	IrFe/ZSM-5 Synergistic Catalyst for Selective Oxidation of Methane to Formic Acid. Energy & Fuels, 2021, 35, 4418-4427.	2.5	19
160	One-Pot Synthesis of Fe–N–C Species-Modified Carbon Nanotubes for ORR Electrocatalyst with Overall Enhanced Performance Superior to Pt/C. Nano, 2021, 16, 2150028.	0.5	5
161	Cobalt porphyrins supported on carbon nanotubes as model catalysts of metal-N4/C sites for oxygen electrocatalysis. Journal of Energy Chemistry, 2021, 53, 77-81.	7.1	77
162	Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based core–shell electrocatalysts for rechargeable zinc–air batteries. Journal of Energy Chemistry, 2021, 53, 364-371.	7.1	36

#	Article	IF	CITATIONS
163	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	5.2	135
164	Recent Trends in Development of Metal Nitride Nanocatalysts for Water Electrolysis Application. , 0, , \cdot		2
165	Recent Advances on Nonprecious-Metal-Based Bifunctional Oxygen Electrocatalysts for Zinc–Air Batteries. Energy & Fuels, 2021, 35, 6380-6401.	2.5	48
166	Engineering the Coordination Environment of Single Cobalt Atoms for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. ACS Catalysis, 2021, 11, 4498-4509.	5.5	94
167	Covalent Organic Frameworks for Efficient Energy Electrocatalysis: Rational Design and Progress. Advanced Energy and Sustainability Research, 2021, 2, 2000090.	2.8	29
168	Harnessing the Extracellular Electron Transfer Capability of <i>Geobacter sulfurreducens</i> for Ambient Synthesis of Stable Bifunctional Singleâ€Atom Electrocatalyst for Water Splitting. Advanced Functional Materials, 2021, 31, 2010916.	7.8	11
169	Hierarchical porous S-doped Fe–N–C electrocatalyst for high-power-density zinc–air battery. Materials Today Energy, 2021, 19, 100624.	2.5	30
170	Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nature Communications, 2021, 12, 1734.	5.8	488
171	Single Atomâ€Based Nanoarchitectured Electrodes for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2021, 8, 2002159.	1.9	22
172	Facile Synthesis of Bimetallic Fluoride Heterojunctions on Defect-Enriched Porous Carbon Nanofibers for Efficient ORR Catalysts. Nano Letters, 2021, 21, 2618-2624.	4.5	73
173	Single atom catalyst for electrocatalysis. Chinese Chemical Letters, 2021, 32, 2947-2962.	4.8	43
174	Heteroatom-doped porous carbon-supported single-atom catalysts for electrocatalytic energy conversion. Journal of Energy Chemistry, 2021, 63, 54-73.	7.1	16
175	Enhanced anchoring and catalytic conversion of polysulfides by iron phthalocyanine for graphene-based Li–S batteries. Ionics, 2021, 27, 3007-3016.	1.2	4
176	Polyoxometalate‧ingle Atom Catalysts (POMâ€\$ACs) in Energy Research and Catalysis. Advanced Energy Materials, 2021, 11, 2101120.	10.2	57
177	Carbonaceous Oxygen Evolution Reaction Catalysts: From Defect and Dopingâ€Induced Activity over Hybrid Compounds to Ordered Framework Structures. Small, 2021, 17, e2007484.	5.2	25
178	Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Research, 2021, 14, 3482-3488.	5.8	113
179	FeNC Electrocatalysts with Densely Accessible FeN ₄ Sites for Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2102420.	7.8	110
180	Biocatalysts at atom level: From coordination structure to medical applications. Applied Materials Today, 2021, 23, 101029.	2.3	12

#	Article	IF	CITATIONS
181	Recent advances in synergistically enhanced single-atomic site catalysts for boosted oxygen reduction reaction. Nano Energy, 2021, 84, 105817.	8.2	59
182	Recent advances of single-atom electrocatalysts for hydrogen evolution reaction. JPhys Materials, 2021, 4, 042002.	1.8	11
183	Monolithic Co-N-C membrane integrating Co atoms and clusters as a self-supporting multi-functional electrode for solid-state zinc–air batteries and self-powered water splitting. Chemical Engineering Journal, 2021, 414, 128739.	6.6	20
184	Iron polyphthalocyanine-derived ternary-balanced Fe3O4/Fe3N/Fe-N-C@PC as a high-performance electrocatalyst for the oxygen reduction reaction. Science China Materials, 2021, 64, 2987-2996.	3.5	16
185	Novel core-shell CuMo-oxynitride@N-doped graphene nanohybrid as multifunctional catalysts for rechargeable zinc-air batteries and water splitting. Nano Energy, 2021, 85, 105987.	8.2	89
186	In Silico Design of Covalent Organic Framework-Based Electrocatalysts. Jacs Au, 2021, 1, 1497-1505.	3.6	28
187	Constructing Precise Coordination of Nickel Active Sites on Hierarchical Porous Carbon Framework for Superior Oxygen Reduction. Small, 2021, 17, e2102125.	5.2	35
188	Co9S8 nanoparticles embedded in nitrogen, sulfur codoped porous carbon nanosheets for efficient oxygen/hydrogen electrocatalysis. Electrochimica Acta, 2021, 384, 138299.	2.6	11
189	Enhanced performance of atomically dispersed dual-site Fe-Mn electrocatalysts through cascade reaction mechanism. Applied Catalysis B: Environmental, 2021, 288, 120021.	10.8	104
190	Rational Design of Singleâ€Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. Advanced Materials, 2021, 33, e2008151.	11.1	175
191	Atomically dispersed Fe atoms anchored on S and N–codoped carbon for efficient electrochemical denitrification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
192	Recent Advances in Electrode Design for Rechargeable Zinc–Air Batteries. Small Science, 2021, 1, 2100044.	5.8	47
193	Engineering Single Atom Catalysts to Tune Properties for Electrochemical Reduction and Evolution Reactions. Advanced Energy Materials, 2021, 11, 2101670.	10.2	42
194	Recent developments in the use of single-atom catalysts for water splitting. Chinese Journal of Catalysis, 2021, 42, 1269-1286.	6.9	44
195	Regulating Local Electron Density of Iron Single Sites by Introducing Nitrogen Vacancies for Efficient Photoâ€Fenton Process. Angewandte Chemie - International Edition, 2021, 60, 21261-21266.	7.2	158
196	Metal–Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. Small Science, 2021, 1, 2100015.	5.8	94
197	Ultra-high loading single CoN3 sites in N-doped graphene-like carbon for efficient transfer hydrogenation of nitroaromatics. Journal of Catalysis, 2021, 400, 40-49.	3.1	26
198	Recent Developments of Microenvironment Engineering of Singleâ€Atom Catalysts for Oxygen Reduction toward Desired Activity and Selectivity. Advanced Functional Materials, 2021, 31, 2103857.	7.8	77

#	Article	IF	CITATIONS
199	Activity Promotion of Core and Shell in Multifunctional Core–Shell Co ₂ P@NC Electrocatalyst by Secondary Metal Doping for Water Electrolysis and Znâ€Air Batteries. Small, 2021, 17, e2101856.	5.2	68
200	Regulating Local Electron Density of Iron Single Sites by Introducing Nitrogen Vacancies for Efficient Photoâ€Fenton Process. Angewandte Chemie, 2021, 133, 21431-21436.	1.6	12
201	Atomically dispersed Fel´+ anchored on nitrogen-rich carbon for enhancing benzyl alcohol oxidation through Mott-Schottky effect. Applied Catalysis B: Environmental, 2021, 292, 120195.	10.8	27
202	Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries. Nano Energy, 2021, 87, 106147.	8.2	103
203	Multifunctional Electrocatalysis on Single-Site Metal Catalysts: A Computational Perspective. Catalysts, 2021, 11, 1165.	1.6	11
204	Effect of coordination surroundings of isolated metal sites on electrocatalytic performances. Journal of Power Sources, 2021, 506, 230143.	4.0	15
205	Conjugated Cobalt Phthalocyanine as Durable Electrode Materials for Lithium-Ion Storage. Journal of the Electrochemical Society, 2021, 168, 100513.	1.3	4
206	Boosting Nitrogen Reduction to Ammonia on FeN ₄ Sites by Atomic Spin Regulation. Advanced Science, 2021, 8, e2102915.	5.6	64
207	Recent progress, developing strategies, theoretical insights, and perspectives towardsÂhigh-performance copper single atom electrocatalysts. Materials Today Energy, 2021, 21, 100761.	2.5	8
208	Densely accessible Fe-Nx active sites decorated mesoporous-carbon-spheres for oxygen reduction towards high performance aluminum-air flow batteries. Applied Catalysis B: Environmental, 2021, 293, 120176.	10.8	66
209	Carbonâ€Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Advanced Materials, 2021, 33, e2103266.	11.1	104
210	Air Electrodes for Flexible and Rechargeable Znâ ^{^,} Air Batteries. Small Structures, 2022, 3, 2100103.	6.9	46
211	Atomically dispersed Ni–N4 species and Ni nanoparticles constructing N-doped porous carbon fibers for accelerating hydrogen evolution. Carbon, 2021, 185, 96-104.	5.4	10
212	An efficient and durable trifunctional electrocatalyst for zinc–air batteries driven overall water splitting. Applied Catalysis B: Environmental, 2021, 297, 120405.	10.8	127
213	Large-scale synthesis of low-cost bimetallic polyphthalocyanine for highly stable water oxidation. Applied Catalysis B: Environmental, 2021, 299, 120637.	10.8	39
214	Engineering the coordination environment in atomic Fe/Ni dual-sites for efficient oxygen electrocatalysis in Zn-air and Mg-air batteries. Chemical Engineering Journal, 2021, 426, 130758.	6.6	30
215	Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coordination Chemistry Reviews, 2021, 449, 214209.	9.5	28
216	Hierarchically ordered macro-microporous metal-organic framework derived oxygen reduction electrocatalyst. Chemical Engineering Journal, 2022, 429, 132214.	6.6	5

#	ARTICLE	IF	CITATIONS
217	Fe–N–C electrocatalysts in the oxygen and nitrogen cycles in alkaline media: the role of iron carbide. Physical Chemistry Chemical Physics, 2021, 23, 26674-26679.	1.3	13
218	Single-atom catalysts for high-energy rechargeable batteries. Chemical Science, 2021, 12, 7656-7676.	3.7	47
219	Carbonâ€Supported Singleâ€Atom Catalysts for Formic Acid Oxidation and Oxygen Reduction Reactions. Small, 2021, 17, e2004500.	5.2	63
220	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	15.6	198
221	Pyrolyzed M–N _x catalysts for oxygen reduction reaction: progress and prospects. Energy and Environmental Science, 2021, 14, 2158-2185.	15.6	170
222	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	18.7	461
223	Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities. ACS Nano, 2021, 15, 210-239.	7.3	199
224	Highâ€Performance Trifunctional Electrocatalysts Based on FeCo/Co ₂ P Hybrid Nanoparticles for Zinc–Air Battery and Selfâ€Powered Overall Water Splitting. Advanced Energy Materials, 2020, 10, 1903854.	10.2	259
225	Multiscale structural optimization: Highly efficient hollow iron-doped metal sulfide heterostructures as bifunctional electrocatalysts for water splitting. Nano Energy, 2020, 75, 104913.	8.2	119
226	Green Synthesis of a Highly Efficient and Stable Single-Atom Iron Catalyst Anchored on Nitrogen-Doped Carbon Nanorods for the Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 137-146.	3.2	35
227	Surface/interface nanoengineering for rechargeable Zn–air batteries. Energy and Environmental Science, 2020, 13, 1132-1153.	15.6	344
228	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	23.0	136
229	Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks. Nano Research, 2022, 15, 2905-2912.	5.8	7
230	Fe, B, and N Codoped Carbon Nanoribbons Derived from Heteroatom Polymers as High-Performance Oxygen Reduction Reaction Electrocatalysts for Zinc–Air Batteries. Langmuir, 2021, 37, 13018-13026.	1.6	13
231	Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. Electrochemical Energy Reviews, 2022, 5, 145-186.	13.1	86
232	Graphene upported Atomically Dispersed Metals as Bifunctional Catalysts for Nextâ€Generation Batteries Based on Conversion Reactions. Advanced Materials, 2022, 34, e2105812.	11.1	106
233	Co/CoP Heterojunction on Hierarchically Ordered Porous Carbon as a Highly Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. Advanced Energy Materials, 2021, 11, 2102134.	10.2	138
234	Phosphorus-Driven Electron Delocalization on Edge-Type FeN ₄ Active Sites for Oxygen Reduction in Acid Medium. ACS Catalysis, 2021, 11, 12754-12762.	5.5	98

	Сітатіо	n Report	
#	Article	IF	Citations
235	Single-atom dispersed Cu or Co on 2H-MoS2 monolayer for improving electrocatalytic activity of overall water splitting. Surfaces and Interfaces, 2021, 27, 101538.	1.5	9
237	Site-density engineering of single-atomic iron catalysts for high-performance proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 302, 120860.	10.8	42
238	Zinc/graphitic carbon nitride co-mediated dual-template synthesis of densely populated Fe–N _{<i>x</i>} -embedded 2D carbon nanosheets towards oxygen reduction reactions for Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 5971-5980.	5.2	12
239	Dimethylimidazole and dicyandiamide assisted synthesized rich-defect and highly dispersed CuCo-Nx anchored hollow graphite carbon nanocages as efficient trifunctional electrocatalyst in the same electrolyte. Journal of Power Sources, 2022, 517, 230721.	4.0	14
240	Synthesis of Single-Atom Catalysts Through Top-Down Atomization Approaches. Frontiers in Catalysis, 2021, 1, .	1.8	13
241	A Ferrocene Metal–Organic Framework Solid for Fe-Loaded Carbon Matrices and Nanotubes: High-Yield Synthesis and Oxygen Reduction Electrocatalysis. Inorganic Chemistry, 2021, 60, 17315-17324.	1.9	4
242	Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coordination Chemistry Reviews, 2022, 452, 214289.	9.5	54
243	Co–Fe alloy nanoparticles and Fe3C nanocrystals on N-doped biomass-derived porous carbon for superior electrocatalytic oxygen reduction. Journal of Solid State Chemistry, 2022, 307, 122735.	1.4	9
244	Recent Progress of Electrospun Nanofibers for Zinc–Air Batteries. Advanced Fiber Materials, 2022, 4, 185-202.	7.9	33
245	Single-atom catalysis for zinc-air/O2 batteries, water electrolyzers and fuel cells applications. Energy Storage Materials, 2022, 45, 504-540.	9.5	39
246	Single-atom catalysts for next-generation rechargeable batteries and fuel cells. Energy Storage Materials, 2022, 45, 301-322.	9.5	67
247	FeCoNi nanoalloys embedded in hierarchical N-rich carbon matrix with enhanced oxygen electrocatalysis for rechargeable Zn-air batteries. Journal of Materials Chemistry A, 2021, 9, 27701-27708.	5.2	22
248	Recent advances in electrocatalysis with phthalocyanines. Chemical Society Reviews, 2021, 50, 12985-13011.	18.7	135
249	Hierarchically porous carbons fabricated by dual pore-forming approach for the oxygen reduction reaction. Carbon, 2022, 189, 634-641.	5.4	14
250	Insights into mechanism of Fe-dominated active sites via phosphorus bridging in Fe-Ni bimetal single atom photocatalysts. Separation and Purification Technology, 2022, 286, 120443.	3.9	23
251	Atomically dispersed catalysts for small molecule electrooxidation in direct liquid fuel cells. Journal of Energy Chemistry, 2022, 68, 439-453.	7.1	18
252	Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Research, 2022, 15, 3959-3963.	5.8	18
253	Electronic Metal–Support Interaction Modulation of Singleâ€Atom Electrocatalysts for Rechargeable Zinc–Air Batteries. Small Methods, 2022, 6, e2100947.	4.6	29

#	Article	IF	CITATIONS
254	Sublayer-enhanced atomic sites of single atom catalysts through <i>in situ</i> atomization of metal oxide nanoparticles. Energy and Environmental Science, 2022, 15, 1183-1191.	15.6	25
255	Nitrogenâ€Ðoped Carbon Polyhedrons Confined Fe–P Nanocrystals as Highâ€Efficiency Bifunctional Catalysts for Aqueous Znâ²'CO ₂ Batteries. Small, 2022, 18, e2104965.	5.2	39
256	Inâ€Situ Silica Xerogel Assisted Facile Synthesis of Feâ€Nâ€C Catalysts with Dense Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Small, 2022, 18, e2104934.	5.2	25
257	Metal-containing heteroatom doped carbon nanomaterials for ORR, OER, and HER. , 2022, , 169-211.		0
258	Atomically Dispersed Fe–Co Dual Metal Sites as Bifunctional Oxygen Electrocatalysts for Rechargeable and Flexible Zn–Air Batteries. ACS Catalysis, 2022, 12, 1216-1227.	5.5	232
259	A multifunctional cobalt iron sulfide electrocatalyst for high performance Zn–air batteries and overall water splitting. Journal of Materials Chemistry A, 2022, 10, 4720-4730.	5.2	17
260	Graphynes: ideal supports of single atoms for electrochemical energy conversion. Journal of Materials Chemistry A, 2022, 10, 3905-3932.	5.2	21
261	Synergistically enhanced iron and zinc bimetallic sites as an advanced ORR electrocatalyst for flow liquid rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 3169-3177.	5.2	10
262	Cobalt Nanocluster-Decorated N-Rich Hierarchical Carbon Architectures Efficiently Catalyze Oxygen Reduction and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2022, 10, 2001-2009.	3.2	8
263	Ni and Fe nanoparticles, alloy and Ni/Fe-Nx coordination co-boost the catalytic activity of the carbon-based catalyst for triiodide reduction and hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 615, 501-516.	5.0	36
264	Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochimica Acta, 2022, 409, 139835.	2.6	8
265	Self-grown layered double hydroxide nanosheets on bimetal-organic frameworks-derived N-doped CoOx carbon polyhedra for flexible all-solid-state rechargeable Zn-air batteries. Journal of Power Sources, 2022, 524, 231076.	4.0	10
266	Atomically Dispersed Iron with Densely Exposed Active Sites as Bifunctional Oxygen Catalysts for Zinc–Air Flow Batteries. Small, 2022, 18, e2105892.	5.2	26
267	Understanding hydrazine oxidation electrocatalysis on undoped carbon. Physical Chemistry Chemical Physics, 2022, 24, 9897-9903.	1.3	6
268	Nitrogen-Doped Carbon Nanosheets for Efficient Degradation of Bisphenol a by H2o2 Activation at Neutral Ph Values. SSRN Electronic Journal, 0, , .	0.4	0
269	Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. Journal of Materials Chemistry A, 2022, 10, 6835-6871.	5.2	63
270	Ordered carbonaceous frameworks: a new class of carbon materials with molecular-level design. Chemical Communications, 2022, 58, 3578-3590.	2.2	14
271	Square-pyramidal Fe-N4 with defect-modulated O-coordination: Two-tier electronic structure fine-tuning for enhanced oxygen reduction. Chem Catalysis, 2022, 2, 816-835.	2.9	23

	CITATION RE	PORT	
#	Article	IF	CITATIONS
272	Recent Progress on Feâ€Based Single/Dualâ€Atom Catalysts for Zn–Air Batteries. Small, 2022, 18, e2106635.	5.2	47
273	Ni Single Atoms and Ni Phosphate Clusters Synergistically Triggered Surfaceâ€Functionalized MoS ₂ Nanosheets for Highâ€performance Freshwater and Seawater Electrolysis. Energy and Environmental Materials, 2022, 5, 1340-1349.	7.3	20
274	Advances in the Development of Singleâ€Atom Catalysts for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2200102.	11.1	202
275	Bimetallic FeCo–N–C catalyst for efficient oxygen reduction reaction. Electroanalysis, 0, , .	1.5	5
276	Towards singleâ€atom photocatalysts for future carbonâ€neutral application. SmartMat, 2022, 3, 417-446.	6.4	35
277	Iron single-atom catalysts confined in covalent organic frameworks for efficient oxygen evolution reaction. Cell Reports Physical Science, 2022, 3, 100804.	2.8	22
278	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie, 2022, 134, .	1.6	21
279	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
280	Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions. Advanced Functional Materials, 2022, 32, .	7.8	209
281	Reductive Upgrading of Biomass-Based Levulinic Acid to Î ³ -Valerolactone Over Ru-Based Single-Atom Catalysts. Frontiers in Chemistry, 2022, 10, 895198.	1.8	2
282	Precise and controllable tandem strategy triggering boosted oxygen reduction activity. Chinese Journal of Catalysis, 2022, 43, 1042-1048.	6.9	10
283	Modulating the d-band centers by coordination environment regulation of single-atom Ni on porous carbon fibers for overall water splitting. Nano Energy, 2022, 98, 107266.	8.2	57
284	Structural design for electrocatalytic water splitting to realize industrial-scale deployment: Strategies, advances, and perspectives. Journal of Energy Chemistry, 2022, 70, 129-153.	7.1	60
285	Recent Advances in Synthesis and Applications of Singleâ€Atom Catalysts for Rechargeable Batteries. Chemical Record, 2022, 22, .	2.9	14
286	Highâ€Performance Zincâ€Air Batteries Based on Bifunctional Hierarchically Porous Nitrogenâ€Đoped Carbon. Small, 2022, 18, e2105928.	5.2	23
287	Interfacial Engineering of a Phase-Controlled Heterojunction for High-Efficiency HER, OER, and ORR Trifunctional Electrocatalysis. ACS Omega, 2022, 7, 13687-13696.	1.6	13
288	Metal organic framework-based nanomaterials as suitable electrocatalysts for evolution of hydrogen. , 2022, , 185-203.		0
289	Two-dimensional transition metal-based electrocatalyst and their application in water splitting. Materials Science and Technology, 2022, 38, 535-555.	0.8	9

#	Article	IF	CITATIONS
290	Experimental and Theoretical Advances on Single Atom and Atomic Clusterâ€Decorated Lowâ€Dimensional Platforms towards Superior Electrocatalysts. Advanced Energy Materials, 2022, 12, .	10.2	25
291	Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Research, 2022, 15, 6019-6025.	5.8	53
292	Mainâ€Group Metal Singleâ€Atomic Regulators in Dualâ€Metal Catalysts for Enhanced Electrochemical CO ₂ Reduction. Small, 2022, 18, e2201391.	5.2	39
293	Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level. Nano Research, 2022, 15, 10070-10077.	5.8	10
294	Bridging heterogeneous and homogeneous catalysts by ultrathin metal-polyphthalocyanine-based nanosheets from electron-coupled transalkylation delamination. Nano Energy, 2022, 98, 107297.	8.2	9
295	Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications. Progress in Materials Science, 2022, 128, 100964.	16.0	40
296	Coordination anchoring synthesis of high-density single-metal-atom sites for electrocatalysis. Coordination Chemistry Reviews, 2022, 466, 214603.	9.5	21
297	Construction of N, P Coâ€Doped Carbon Frames Anchored with Fe Single Atoms and Fe ₂ P Nanoparticles as a Robust Coupling Catalyst for Electrocatalytic Oxygen Reduction. Advanced Materials, 2022, 34, .	11.1	93
298	First-row transition metal-based materials derived from bimetallic metal–organic frameworks as highly efficient electrocatalysts for electrochemical water splitting. Energy and Environmental Science, 2022, 15, 3119-3151.	15.6	125
299	An efficient Fe2O3/FeS heterostructures water oxidation catalyst. International Journal of Hydrogen Energy, 2022, 47, 22340-22347.	3.8	28
300	Mechanochemical-Driven Uniformly Dispersed Monatomic Fe–N _{<i>x</i>} Coordination in Carbon for Facilitating Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 7553-7563.	3.2	11
301	Metal-organic frameworks/ hydrotalcite/graphene oxide sandwich composites derived Fe-Ce@GSL hierarchical materials as highly efficient catalysts for rechargeable Zn-air batteries. Journal of Colloid and Interface Science, 2022, 625, 555-564.	5.0	13
302	Bifunctional Petal-Like Carbon-Nitrogen Doped Nifeox/ Nickel Foam Nanohybrid Electrocatalyst for Efficient Overall Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
303	High performance transition metal-based electrocatalysts for green hydrogen production. Chemical Communications, 2022, 58, 7874-7889.	2.2	14
304	Single Mo–N ₄ Atomic Sites Anchored on Nâ€doped Carbon Nanoflowers as Sulfur Host with Multiple Immobilization and Catalytic Effects for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	39
305	Singleâ€atom catalysis for carbon neutrality. , 2022, 4, 1021-1079.		96
306	Iridium–Iron Diatomic Active Sites for Efficient Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2022, 12, 9397-9409.	5.5	47
307	Asymmetric CoN ₃ P ₁ Trifunctional Catalyst with Tailored Electronic Structures Enabling Boosted Activities and Corrosion Resistance in an Uninterrupted Seawater Splitting System. Advanced Materials, 2022, 34, .	11.1	80

#	Article	IF	CITATIONS
308	Oxygenâ€coordinated lowâ€nucleus cluster catalysts for enhanced electrocatalytic water oxidation. , 2023, 5, .		12
309	Tailoring Bond Microenvironments and Reaction Pathways of Singleâ€Atom Catalysts for Efficient Water Electrolysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
310	Tailoring Bond Microenvironments and Reaction Pathways of Singleâ€Atom Catalysts for Efficient Water Electrolysis. Angewandte Chemie, 2022, 134, .	1.6	5
311	Rational coordination regulation in carbon-based single-metal-atom catalysts for electrocatalytic oxygen reduction reaction. Nano Convergence, 2022, 9, .	6.3	14
312	Single-Atom Electrocatalysis for Hydrogen Evolution Based on the Constant Charge and Constant Potential Models. Journal of Physical Chemistry Letters, 2022, 13, 7036-7042.	2.1	12
313	MOFs encapsulated nanorods derived CoNi@CN composites with open structure as highly efficient bifunctional catalysts for rechargeable Zn-air batteries. Journal of Colloid and Interface Science, 2023, 629, 73-82.	5.0	14
314	Fully Conjugated Poly(phthalocyanine) Scaffolds Derived from a Mechanochemical Approach Towards Enhanced Energy Storage. Angewandte Chemie, 0, , .	1.6	0
315	Fully Conjugated Poly(phthalocyanine) Scaffolds Derived from a Mechanochemical Approach Towards Enhanced Energy Storage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
316	Protocol for fabrication and characterization of Fe-SAC@COF for electrocatalytic oxygen evolution reaction. STAR Protocols, 2022, 3, 101626.	0.5	2
317	Microenvironment engineering of Fe-single-atomic-site with nitrogen coordination anchored on carbon nanotubes for boosting oxygen electrocatalysis in alkaline and acidic media. Chemical Engineering Journal, 2023, 451, 138684.	6.6	43
318	Bifunctional petal-like carbon–nitrogen covered NiFeOx/nickel foam nanohybrid electrocatalyst for efficient overall water splitting. Journal of Electroanalytical Chemistry, 2022, 922, 116764.	1.9	1
319	Advanced MOF-derived carbon-based non-noble metal oxygen electrocatalyst for next-generation rechargeable Zn-air batteries. Coordination Chemistry Reviews, 2022, 473, 214839.	9.5	36
320	Lanthanoid coordination compounds as diverse self-templating agents towards hierarchically porous Fe–N–C electrocatalysts. Materials Advances, 2022, 3, 7937-7945.	2.6	3
321	Recent advances in the metal–organic framework-based electrocatalysts for trifunctional electrocatalysis. Dalton Transactions, 2022, 51, 13573-13590.	1.6	16
322	Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts. Chinese Journal of Catalysis, 2022, 43, 2453-2483.	6.9	33
323	Single–atom catalysts based on Fenton-like/peroxymonosulfate system for water purification: design and synthesis principle, performance regulation and catalytic mechanism. Nanoscale, 2022, 14, 13861-13889.	2.8	18
324	Hierarchically porous N-doped carbon nanosheets with atomically dispersed Fe/Co dual-metallic sites for efficient and robust oxygen electrocatalysis in Zn–air batteries. Energy Advances, 0, , .	1.4	1
325	Unveiling the HER and ORR activity origin of isolated Co sites supported on N-doped carbon. MATEC Web of Conferences, 2022, 363, 01001.	0.1	0

#	Article	IF	CITATIONS
326	Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochemical Energy Reviews, 2022, 5, .	13.1	43
327	Highly Efficient Electrochemical CO ₂ Reduction on a Precise Homonuclear Diatomic Fe–Fe Catalyst. ACS Catalysis, 2022, 12, 11412-11420.	5.5	39
328	Atomically Dispersed Fe–N ₅ Sites Anchored in Porous N-Doped Carbon Nanofibers for Effective Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 13505-13513.	3.2	1
329	Tuning the coordination environment of Fe atoms enables 3D porous Fe/N-doped carbons as bifunctional electrocatalyst for rechargeable zinc-air battery. Journal of Colloid and Interface Science, 2022, 628, 1067-1076.	5.0	4
330	Isolating Fe Atoms in Nâ€Doped Carbon Hollow Nanorods through a ZIFâ€Phaseâ€Transition Strategy for Efficient Oxygen Reduction. Small, 2022, 18, .	5.2	23
331	Co/CoS2 heterojunction embedded in nitrogen-doped carbon framework as bifunctional electrocatalysts for hydrogen and oxygen evolution. International Journal of Hydrogen Energy, 2023, 48, 1831-1841.	3.8	6
332	Construction of Catalytic Covalent Organic Frameworks with Redoxâ€Active Sites for the Oxygen Reduction and the Oxygen Evolution Reaction. Angewandte Chemie, 2022, 134, .	1.6	7
333	Construction of Catalytic Covalent Organic Frameworks with Redoxâ€Active Sites for the Oxygen Reduction and the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	53
334	Synthesis of Nitrogenâ€Doped Hierarchical Carbon Derived from Water Hyacinth with High Catalytic Activity for Oxygen Reduction Reaction. ChemistrySelect, 2022, 7, .	0.7	0
335	Facile Solid-Phase Method for Preparing a Highly Active and Stable PtZn-Based Oxygen Reduction/Hydrogen Evolution Bifunctional Electrocatalyst: Effect of Bi-Facet Lattice Strain on Catalytic Activity. ACS Applied Energy Materials, 2022, 5, 13791-13801.	2.5	5
336	Ferrocene doped ZIF-8 derived Fe-N-C single atom catalyst to active peroxymonosulfate for removal of bisphenol A. Separation and Purification Technology, 2023, 305, 122402.	3.9	19
337	Coordination engineering of single-atom copper embedded graphene-like borocarbonitrides for hydrogen production. Applied Surface Science, 2023, 610, 155506.	3.1	5
338	Effective regulation mechanisms of Fe-Ni(oxy)hydroxide: Ni-rich heteroatomic bonding (Ni-O-Fe-O-Ni) is essential. Nano Research, 2023, 16, 12026-12034.	5.8	6
339	Linking Enhanced Kinetics of Electrocatalytic Oxygen Reduction Reaction with Increased Utilization of Active Sites in a Hierarchical Singleâ€Atom Catalyst. Small, 0, , 2205743.	5.2	0
340	Nitrogen-doped carbon nanosheets for efficient degradation of bisphenol A by H2O2 activation at neutral pH values. Separation and Purification Technology, 2023, 306, 122687.	3.9	5
341	Constructing ultrahigh-loading unsymmetrically coordinated Zn-N3O single-atom sites with efficient oxygen reduction for H2O2 production. Chemical Engineering Journal, 2023, 455, 140721.	6.6	20
342	Boosted photothermal hydrogenation of acetylene on an efficient Au–Fe alloy catalyst. Catalysis Science and Technology, 2023, 13, 41-46.	2.1	5
343	Improving the sodium storage performance of carbonaceous anode: Synergistic coupling of pore structure and ordered domain engineering. Carbon, 2023, 203, 469-478.	5.4	14

#	Article	IF	CITATIONS
344	A review on system and materials for aqueous flexible metal $\hat{a} \in$ "air batteries. , 2023, 5, .		8
345	Engineering the Electronic Structure of Singleâ€Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc–Air Batteries. Advanced Materials, 2023, 35, .	11.1	63
346	Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries. Nano Research, 2023, 16, 4246-4276.	5.8	10
347	Cathode Materials for Secondary Zinc-Air Batteries. , 2023, , 67-156.		Ο
348	Multifunctional metal-phosphide-based electrocatalysts for highly efficient solar hydrogen production integrated devices. Journal of Materials Chemistry A, 2023, 11, 2899-2909.	5.2	14
349	Precise control of ï€-conjugated polymer/carbon nanotubes heterointerfaces for oxygen reduction reactions. International Journal of Hydrogen Energy, 2023, 48, 13151-13158.	3.8	1
350	Boosting the oxygen reduction reaction behaviour of Ru single atoms in porous carbon nanospheres via microscopic coordination environment manipulation. Applied Surface Science, 2023, 615, 156304.	3.1	5
351	Mass Production of Sulfurâ€īuned Singleâ€Atom Catalysts for Zn–Air Batteries. Advanced Materials, 0, , 2209948.	11.1	23
352	Recent advances in carbon-resistant anodes for solid oxide fuel cells. Materials Chemistry Frontiers, 2023, 7, 1943-1991.	3.2	17
353	Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coordination Chemistry Reviews, 2023, 483, 215066.	9.5	29
354	Chemical vapor deposition strategy for inserting atomic FeN4 sites into 3D porous honeycomb carbon aerogels as oxygen reduction reaction catalysts in high-performance Zn-air batteries. Chemical Engineering Journal, 2023, 464, 142719.	6.6	21
355	Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coordination Chemistry Reviews, 2023, 482, 215078.	9.5	8
356	First row transition metal doped B12P12 and Al12P12 nanocages as excellent single atom catalysts for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 16663-16677.	3.8	19
357	Hybrid Catalyst Coupling Zn Single Atoms and CuN _x Clusters for Synergetic Catalytic Reduction of CO ₂ . Advanced Functional Materials, 2023, 33, .	7.8	10
358	Quasi-Solid-State Flexible Zn–Air Batteries with a Hydrophilic-Treated Co@NCNTs Array Electrocatalyst and PEO–PANa Electrolyte. , 2023, 5, 744-752.		8
359	Data-Driven Discovery of Graphene-Based Dual-Atom Catalysts for Hydrogen Evolution Reaction with Graph Neural Network and DFT Calculations. ACS Applied Materials & Interfaces, 2023, 15, 12936-12945.	4.0	12
360	Carbon-supported non-noble metal single-atom catalysts for electro-catalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 17106-17136.	3.8	9
361	A Fe-Ni-Zn triple single-atom catalyst for efficient oxygen reduction and oxygen evolution reaction in rechargeable Zn-air batteries. Chemical Engineering Journal, 2023, 460, 141868.	6.6	19

#	Article	IF	CITATIONS
362	Intermolecular Metallic Single‧ite Complexes Dispersed on Mo ₂ TiC ₂ T <i>_x</i> /MoS ₂ Heterostructure Induce Boosted Solarâ€Driven Water Splitting. Advanced Energy Materials, 2023, 13, .	10.2	17
363	Floret-like Fe-Nx nanoparticle-embedded porous carbon superstructures from a Fe-covalent triazine polymer boosting oxygen electroreduction. Frontiers of Chemical Science and Engineering, 2023, 17, 525-535.	2.3	2
364	Straightforward Preparation of Fe-Based Electrocatalytic Films at Various Substrates for IrO ₂ -like Water Oxidation Activity. Energy & Fuels, 2023, 37, 3934-3941.	2.5	4
365	Challenges and Perspectives of Single-Atom-Based Catalysts for Electrochemical Reactions. Jacs Au, 2023, 3, 736-755.	3.6	19
366	Recent advances in carbon-supported non-precious metal single-atom catalysts for energy conversion electrocatalysis. , 2023, 2, 20220059.		6
367	Direct Oxygenâ€Oxygen Cleavage through Optimizing Interatomic Distances in Dual Singleâ€atom Electrocatalysts for Efficient Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	36
368	Direct Oxygenâ€Oxygen Cleavage through Optimizing Interatomic Distances in Dual Singleâ€atom Electrocatalysts for Efficient Oxygen Reduction Reaction. Angewandte Chemie, 2023, 135, .	1.6	1
369	Promoting ZIF-8-Derived Fe–N–C Oxygen Reduction Catalysts via Zr Doping in Proton Exchange Membrane Fuel Cells: Durability and Activity Enhancements. ACS Catalysis, 2023, 13, 4221-4230.	5.5	29
370	Trends and Prospects of Bulk and Singleâ€Atom Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2023, 13, .	10.2	25
371	Molten salt induced formation of chitosan based carbon nanosheets decorated with CoNx for boosting rechargeable Zn-air batteries. Journal of Colloid and Interface Science, 2023, 641, 842-852.	5.0	1
372	Electromagnetic absorption behavior regulation in bimetallic polyphthalocyanine derived CoFe-alloy/C 0D/2D nanocomposites. Materials Today Physics, 2023, 33, 101058.	2.9	14
373	Carbon-Based Electrodes for Advanced Zinc-Air Batteries: Oxygen-Catalytic Site Regulation and Nanostructure Design. Electrochemical Energy Reviews, 2023, 6, .	13.1	32
374	Atomic-level regulation strategies of single-atom catalysts: Nonmetal heteroatom doping and polymetallic active site construction. Chem Catalysis, 2023, 3, 100586.	2.9	1
375	Insights into the Oxygen Evolution Reaction on Graphene-Based Single-Atom Catalysts from First-Principles-Informed Microkinetic Modeling. ACS Catalysis, 2023, 13, 5225-5235.	5.5	8
376	Recent advances in regulating the local environment of M-N4 structure for tailored chemical reactions. Nano Research, 2023, 16, 8596-8613.	5.8	2
377	Bimetallic Atom Dual-Doped MoS ₂ -Based Heterostructures as a High-Efficiency Catalyst To Boost Solar-Assisted Alkaline Seawater Electrolysis. ACS Sustainable Chemistry and Engineering, 2023, 11, 6688-6697.	3.2	11
378	Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). Advanced Materials, 2024, 36, .	11.1	13
379	Pomegranateâ€Like FeNC with Optimized FeN ₄ Configuration as Biâ€Functional Catalysts for Rechargeable Zincâ€Air Batteries. Small Methods, 2023, 7, .	4.6	5

C 1	- • -	0.0		PORT
		$(\cap N)$	RF	ו גו וא
\sim	171			

#	Article	IF	CITATIONS
403	Noble metal-free N-doped carbon-based electrocatalysts for air electrode of rechargeable zinc-air battery. Science China Materials, 2023, 66, 2953-3003.	3.5	3
443	Non-noble metal single-atoms for oxygen electrocatalysis in rechargeable zinc–air batteries: recent developments and future perspectives. Dalton Transactions, 2024, 53, 1915-1934.	1.6	Ο
445	Single-atom catalysts for electrocatalytic oxygen reduction. , 2024, , 91-118.		0
446	Single atom catalysts for electrocatalytic hydrogen evolution reaction. , 2024, , 147-173.		Ο
447	Introduction to single-atom catalysts. , 2024, , 1-33.		0