The optimal CO2 concentrations for the growth of three

BMC Plant Biology

18, 27

DOI: 10.1186/s12870-018-1243-3

Citation Report

#	ARTICLE	IF	CITATIONS
1	Mars Garden An Engineered Greenhouse for a Sustainable Residence on Mars. , 2019, , .		3
2	Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC Plant Biology, 2019, 19, 255.	3.6	75
3	Biotechnological strategies for improved photosynthesis in a future of elevated atmospheric CO2. Planta, 2020, 251, 24.	3.2	13
4	Growth and photosynthetic responses of Chinese cabbage (Brassica rapa L. cv. Tokyo Bekana) to continuously elevated carbon dioxide in a simulated Space Station "Veggie―crop-production environment. Life Sciences in Space Research, 2020, 27, 83-88.	2.3	17
5	Respiratory CO2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. Frontiers in Plant Science, 2020, 11 , 544435.	3.6	17
6	Predicting the Water Requirement for Rice Production as Affected by Projected Climate Change in Bihar, India. Water (Switzerland), 2020, 12, 3312.	2.7	6
7	On the carbon cycle impact of combustion of harvested plant biomass vs. fossil carbon resources. Computers and Chemical Engineering, 2020, 140, 106942.	3.8	13
8	Molecular and Physiological Alterations in Chickpea under Elevated CO2 Concentrations. Plant and Cell Physiology, 2020, 61, 1449-1463.	3.1	15
9	Soil water status triggers CO2 fertilization effect on the growth of winter wheat (Triticum) Tj ETQq0 0 0 rgBT /O	verlock 10) Tf ₁ 50 422 Td
10	CO2 enrichment: Enhancing antioxidant, antibacterial and anticancer activities in Arthrospira platensis. Food Bioscience, 2020, 35, 100575.	4.4	12
11	The Interactive Effect of Elevated CO2 and Herbivores on the Nitrogen-Fixing Plant Alnus incana ssp. rugosa. Plants, 2021, 10, 440.	3.5	1
12	The Microalga Chlorella vulgaris as a Natural Bioenergetic System for Effective CO2 Mitigation—New Perspectives against Global Warming. Symmetry, 2021, 13, 997.	2.2	20
13	A metaâ€analysis of responses of C ₃ plants to atmospheric CO ₂ : dose–response curves for 85 traits ranging from the molecular to the wholeâ€plant level. New Phytologist, 2022, 233, 1560-1596.	7.3	55
14	Response of water fluxes and biomass production to climate change in permanent grassland soil ecosystems. Hydrology and Earth System Sciences, 2021, 25, 6087-6106.	4.9	8
15	Computational analysis of the environment in an indoor vertical farming system. International Journal of Heat and Mass Transfer, 2022, 186, 122460.	4.8	16
16	Air Cleaning Performance of Two Species of Potted Plants and Different Substrates. Applied Sciences (Switzerland), 2022, 12, 284.	2.5	5
18	Global risks of Bedellia somnulentella (Lepidoptera: Bedelliidae) invasion: a modeling exercise using a mechanistic model, CLIMEX. Theoretical and Applied Climatology, 2022, 149, 401-411.	2.8	5

#	Article	IF	CITATIONS
20	A global meta-analysis of woody plant responses to elevated CO2: implications on biomass, growth, leaf N content, photosynthesis and water relations. Ecological Processes, 2022, 11, .	3.9	8
21	Morphological and ecophysiological responsiveness of Stipa tenacissima L. populations along a Mediterranean climatic gradient. South African Journal of Botany, 2022, 151, 116-125.	2.5	1
22	Impact of climate changes on weed vegetation and herbicides efficiency. Fiziologia Rastenij I Genetika, 2022, 54, 387-403.	0.5	0
23	Extraterrestrial nature reserves (ETNRs). International Journal of Astrobiology, 2023, 22, 118-156.	1.6	1
24	Greenhouse gases fluxes and carbon cycle in agroecosystems under humid continental climate conditions. Agriculture, Ecosystems and Environment, 2023, 352, 108502.	5. 3	1
25	Elevated CO2 concentration regulate the stomatal traits of oilseed rape to alleviate the impact of water deficit on physiological properties. Environmental and Experimental Botany, 2023, 211, 105355.	4.2	1
27	Effects of elevated CO2 concentration and experimental warming on morphological, physiological, and biochemical responses of winter wheat under soil water deficiency. Frontiers in Plant Science, 0, 14, .	3.6	0
28	Variation of CO ₂ Concentration in Greenhouses and Effects on Growth and Yield in Alstroemeria with CO ₂ Supplementation. Korean Journal of Environmental Agriculture, 2023, 42, 231-238.	0.4	0
29	Effects of elevated carbon dioxide on plant growth and leaf photosynthesis of annual ryegrass along a phosphorus deficiency gradient. Frontiers in Plant Science, 0, 14, .	3.6	0
30	Assessment of the Air Cleaning Performance and Humidity and Temperature Control by Five Evergreen Woody Plants. Atmosphere, 2023, 14, 1819.	2.3	0
31	Response of WUE of maize at ear stage to the coupling effect of CO2 and temperature. Heliyon, 2024, 10, e23646.	3.2	0