Muscle MRI in patients with dysferlinopathy: pattern reclinical trials

Journal of Neurology, Neurosurgery and Psychiatry 89, 1071-1081

DOI: 10.1136/jnnp-2017-317488

Citation Report

#	Article	IF	CITATIONS
1	A new mutation of the SCGA gene is the cause of a late onset mild phenotype limb girdle muscular dystrophy type 2D with axial involvement. Neuromuscular Disorders, 2018, 28, 633-638.	0.3	15
2	Insights into lipid accumulation in skeletal muscle in dysferlin-deficient mice. Journal of Lipid Research, 2019, 60, 2057-2073.	2.0	11
3	Dysferlin deficiency alters lipid metabolism and remodels the skeletal muscle lipidome in mice. Journal of Lipid Research, 2019, 60, 1350-1364.	2.0	22
4	Advancements in magnetic resonance imagingâ€based biomarkers for muscular dystrophy. Muscle and Nerve, 2019, 60, 347-360.	1.0	17
5	Advances in Quantitative Imaging of Genetic and Acquired Myopathies: Clinical Applications and Perspectives. Frontiers in Neurology, 2019, 10, 78.	1.1	32
6	Dysferlin-deficiency has greater impact on function of slow muscles, compared with fast, in aged BLAJ mice. PLoS ONE, 2019, 14, e0214908.	1.1	13
7	What Is in the Myopathy Literature?. Journal of Clinical Neuromuscular Disease, 2019, 20, 129-134.	0.3	0
8	Disease duration and disability in dysfeRlinopathy can be described by muscle imaging using heatmaps and random forests. Muscle and Nerve, 2019, 59, 436-444.	1.0	14
9	Muscle MRI in a large cohort of patients with oculopharyngeal muscular dystrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 576-585.	0.9	38
10	European muscle MRI study in limb girdle muscular dystrophy type R1/2A (LGMDR1/LGMD2A). Journal of Neurology, 2020, 267, 45-56.	1.8	43
11	Thigh Muscle Fat Infiltration Is Associated With Impaired Physical Performance Despite Remission in Cushing's Syndrome. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2039-e2049.	1.8	17
12	"Boule du biceps―in dysferlinopathy. Neurology, 2020, 94, 83-84.	1.5	1
13	Radiological findings in siblings with dysferlin mutation with diverse phenotype. Journal of the Neurological Sciences, 2020, 409, 116579.	0.3	0
14	POGLUT1 biallelic mutations cause myopathy with reduced satellite cells, α-dystroglycan hypoglycosylation and a distinctive radiological pattern. Acta Neuropathologica, 2020, 139, 565-582.	3.9	29
15	247th ENMC International Workshop: Muscle magnetic resonance imaging - Implementing muscle MRI as a diagnostic tool for rare genetic myopathy cohorts. Hoofddorp, The Netherlands, September 2019. Neuromuscular Disorders, 2020, 30, 938-947.	0.3	11
16	The increasing role of muscle MRI to monitor changes over time in untreated and treated muscle diseases. Current Opinion in Neurology, 2020, 33, 611-620.	1.8	18
17	Whole-body muscle MRI of patients with MATR3-associated distal myopathy reveals a distinct pattern of muscular involvement and highlights the value of whole-body examination. Journal of Neurology, 2020, 267, 2408-2420.	1.8	12
18	Accuracy of a machine learning muscle MRI-based tool for the diagnosis of muscular dystrophies. Neurology, 2020, 94, e1094-e1102.	1.5	45

#	Article	IF	CITATIONS
19	Lower limb muscle magnetic resonance imaging in Chinese patients with myotonic dystrophy type 1. Neurological Research, 2020, 42, 170-177.	0.6	4
20	Global versus individual muscle segmentation to assess quantitative MRI-based fat fraction changes in neuromuscular diseases. European Radiology, 2021, 31, 4264-4276.	2.3	19
21	Null variants in <scp><i>DYSF</i></scp> result in earlier symptom onset. Clinical Genetics, 2021, 99, 396-406.	1.0	4
22	A novel dysferlin gene mutation in a Filipino male with Miyoshi myopathy. Clinical Neurology and Neurosurgery, 2021, 201, 106433.	0.6	1
23	Abnormal Expression of Dysferlin in Blood Monocytes Supports Primary Dysferlinopathy in Patients Confirmed by Genetic Analyses. Frontiers in Neurology, 2020, 11, 540098.	1.1	4
24	Correlation Between Respiratory Accessory Muscles and Diaphragm Pillars MRI and Pulmonary Function Test in Late-Onset Pompe Disease Patients. Frontiers in Neurology, 2021, 12, 621257.	1.1	5
26	Muscle Diversity, Heterogeneity, and Gradients: Learning from Sarcoglycanopathies. International Journal of Molecular Sciences, 2021, 22, 2502.	1.8	7
27	Deep phenotyping of an international series of patients with lateâ€onset dysferlinopathy. European Journal of Neurology, 2021, 28, 2092-2102.	1.7	9
28	MR imaging of inherited myopathies: a review and proposal of imaging algorithms. European Radiology, 2021, 31, 8498-8512.	2.3	10
29	Miyoshi myopathy and limb girdle muscular dystrophy R2 are the same disease. Neuromuscular Disorders, 2021, 31, 265-280.	0.3	18
30	Over three decades of natural history of limb girdle muscular dystrophy type R1/2A and R2/2B: Mathematical modelling of a multifactorial study. Neuromuscular Disorders, 2021, 31, 489-497.	0.3	2
31	Platelet Derived Growth Factor-AA Correlates With Muscle Function Tests and Quantitative Muscle Magnetic Resonance in Dystrophinopathies. Frontiers in Neurology, 2021, 12, 659922.	1.1	3
32	Thigh and Leg Muscle MRI Findings in GNE Myopathy. Journal of Neuromuscular Diseases, 2021, 8, 735-742.	1.1	5
33	TREAT-NMD stakeholder meeting for natural history studies in limb girdle muscular dystrophy 18th June 2019, Amsterdam, The Netherlands. Neuromuscular Disorders, 2021, 31, 899-906.	0.3	0
34	Muscle involvement assessed by quantitative magnetic resonance imaging in patients with anoctamin 5 deficiency. European Journal of Neurology, 2021, 28, 3121-3132.	1.7	13
35	Whole-body muscle MRI in McArdle disease. Neuromuscular Disorders, 2022, 32, 5-14.	0.3	3
36	High Inter-Rater Reliability of Manual Segmentation and Volume-Based Tractography in Healthy and Dystrophic Human Calf Muscle. Diagnostics, 2021, 11, 1521.	1.3	3
37	Comparison of T2 MSME and STIR methods in assessment of muscle emergency changes in patients with LGMD R2. Diagnostic Radiology and Radiotherapy, 2021, 12, 41-48.	0.0	0

3

#	Article	IF	CITATIONS
38	Intensive Teenage Activity Is Associated With Greater Muscle Hyperintensity on T1W Magnetic Resonance Imaging in Adults With Dysferlinopathy. Frontiers in Neurology, 2020, 11, 613446.	1.1	3
39	Dystrophic muscle distribution in late-stage muscular dystrophy. Autopsy and Case Reports, 2020, 10, e2020221.	0.2	0
40	MRI pattern changes in pelvic muscle and lower limb in patients with dysferlinopathy. Diagnostic Radiology and Radiotherapy, 2020, 11, 93-105.	0.0	0
41	Phenotypic and genotypic analysis of limb-Girdle muscular dystrophy type 2B. Journal of King Abdulaziz University, Islamic Economics, 2020, 25, 214-217.	0.5	1
42	Muscle magnetic resonance imaging in myotonic dystrophy type 1 (DM1): Refining muscle involvement and implications for clinical trials. European Journal of Neurology, 2022, 29, 843-854.	1.7	10
43	Upper body involvement in GNE myopathy assessed by muscle imaging. Neuromuscular Disorders, 2022, 32, 410-418.	0.3	2
44	Clinical, Neurophysiological, Radiological, Pathological, and Genetic Features of Dysferlinopathy in Saudi Arabia. Frontiers in Neuroscience, 2022, 16, 815556.	1.4	5
45	A deep learning tool without muscle-by-muscle grading to differentiate myositis from facio-scapulo-humeral dystrophy using MRI. Diagnostic and Interventional Imaging, 2022, 103, 353-359.	1.8	8
46	Muscle MRI characteristic pattern for late-onset TK2 deficiency diagnosis. Journal of Neurology, 2022, 269, 3550-3562.	1.8	4
47	Threeâ€year quantitative magnetic resonance imaging and phosphorus magnetic resonance spectroscopy study in lower limb muscle in dysferlinopathy. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1850-1863.	2.9	12
49	Magnetic resonance imaging pattern variability in dysferlinopathy Acta Myologica, 2021, 40, 158-171.	1.5	3
50	Comparison of strength testing modalities in dysferlinopathy. Muscle and Nerve, 2022, 66, 159-166.	1.0	3
51	Quantitative Muscle Analysis in Facioscapulohumeral Muscular Dystrophy Using <scp>Wholeâ€Body Fatâ€Referenced MRI</scp> : Protocol Development, Multicenter Feasibility, and Repeatability. Muscle and Nerve, 2022, , .	1.0	1
53	Water T2 could predict functional decline in patients with dysferlinopathy. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 2888-2897.	2.9	7
54	Three-dimensional mechanical characterization of murine skeletal muscle using quantitative micro-elastography. Biomedical Optics Express, 2022, 13, 5879.	1.5	2
55	Clinical Reasoning: A 36-Year-Old Man With Asymmetric Muscle Weakness. Neurology, 2022, 99, 1057-1061.	1.5	1
56	Anoctamin 5 (ANO5) Muscle Disorders: A Narrative Review. Genes, 2022, 13, 1736.	1.0	5
58	265th ENMC International Workshop: Muscle imaging in Facioscapulohumeral Muscular Dystrophy (FSHD): relevance for clinical trials. 22–24 April 2022, Hoofddorp, The Netherlands. Neuromuscular Disorders, 2023, 33, 65-75.	0.3	4

#	Article	IF	CITATIONS
59	Epidemiology and natural history in 101 subjects with FKRP-related limb-girdle muscular dystrophy R9. The Norwegian LGMDR9 cohort study (2020). Neuromuscular Disorders, 2023, 33, 119-132.	0.3	2
60	Dysferlin Deficiency Results in Myofiber-Type Specific Differences in Abundances of Calcium-Handling and Glycogen Metabolism Proteins. International Journal of Molecular Sciences, 2023, 24, 76.	1.8	1
61	Contribution of muscle MRI for diagnosis of myopathy. Revue Neurologique, 2023, 179, 61-80.	0.6	6
62	An inâ€frame pseudoexon activation caused by a novel deepâ€intronic variant in the <i>dysferlin</i> gene. Annals of Clinical and Translational Neurology, 2023, 10, 292-296.	1.7	1
63	The Limb-Girdle Muscular Dystrophies. CONTINUUM Lifelong Learning in Neurology, 2022, 28, 1698-1714.	0.4	5
64	A transcriptome atlas of leg muscles from healthy human volunteers reveals molecular and cellular signatures associated with muscle location. ELife, 0, 12 , .	2.8	4
65	Expanding the muscle imaging spectrum in dysferlinopathy: description of an outlier population from the classical MRI pattern. Neuromuscular Disorders, 2023, 33, 349-357.	0.3	2
66	Muscle MRI patterns for limb girdle muscle dystrophies: systematic review. Journal of Neurology, 2023, 270, 3946-3957.	1.8	1
73	Analysis of muscle magnetic resonance imaging of a large cohort of patient with VCP-mediated disease reveals characteristic features useful for diagnosis. Journal of Neurology, 2023, 270, 5849-5865.	1.8	0
78	Muscle Imaging in Muscular Dystrophies. Current Clinical Neurology, 2023, , 233-253.	0.1	0
79	Autosomal Recessive Limb-Girdle Muscular Dystrophies. Current Clinical Neurology, 2023, , 93-121.	0.1	0