CITATION REPORT List of articles citing

Highly Controlled Diffusion Drug Release from Ureasil-Poly(ethylene oxide)-Na-Montmorillonite Hybrid Hydrogel Nanocomposites

DOI: 10.1021/acsami.8b04559 ACS Applied Materials & Samp; Interfaces, 2018, 10, 19059-190

Source: https://exaly.com/paper-pdf/71515460/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
31	Coupling Photoluminescence and Ionic Conduction Properties Using the Different Coordination Sites of Ureasil-Polyether Hybrid Materials. <i>ACS Applied Materials & ACS APPLIED </i>	3 <i>7</i> 3 ⁵	6
30	Two-dimensional nanomaterials: fascinating materials in biomedical field. <i>Science Bulletin</i> , 2019 , 64, 17	07 : d.82	2 7 76
29	Quaternized Chitosan-Coated Montmorillonite Interior Antimicrobial Metal-Antibiotic Coordination Complexation for Mixed Infections of Wounds. <i>Langmuir</i> , 2019 , 35, 15275-15286	4	10
28	Fabrication of hemicelluloses films with enhanced mechanical properties by graphene oxide for humidity sensing. <i>Carbohydrate Polymers</i> , 2019 , 208, 513-520	10.3	14
27	Ureasil Organic-Inorganic Hybrid as a Potential Carrier for Combined Delivery of Anti-Inflammatory and Anticancer Drugs <i>ACS Applied Bio Materials</i> , 2019 , 2, 1875-1883	4.1	7
26	Development of a gelatin-g-poly(acrylic acid-co-acrylamide) thontmorillonite superabsorbent hydrogels for in vitro controlled release of vitamin B12. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47596	2.9	16
25	Clay/PVP nanocomposites enriched with Syzygium aromaticum essential oil as a safe formulation against Aedes aegypti larvae. <i>Applied Clay Science</i> , 2020 , 185, 105394	5.2	11
24	Montmorillonite-based polyacrylamide hydrogel rings for controlled vaginal drug delivery. <i>Materials Science and Engineering C</i> , 2020 , 110, 110609	8.3	20
23	Water Diffusion in Polymer Composites Probed by Impedance Spectroscopy and Time-Resolved Chemical Imaging. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 837-845	4.3	7
22	A Fluorescent DNA Hydrogel Aptasensor Based on the Self-Assembly of Rolling Circle Amplification Products for Sensitive Detection of Ochratoxin A. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 369-375	5.7	33
21	Recent developments in the use of organic-inorganic nanohybrids for drug delivery. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2020 , 12, e1605	9.2	16
20	Surface Laser-Marking and Mechanical Properties of Acrylonitrile-Butadiene-Styrene Copolymer Composites with Organically Modified Montmorillonite. <i>ACS Omega</i> , 2020 , 5, 19255-19267	3.9	8
19	Design and preparation of quaternized pectin-Montmorillonite hybrid film for sustained drug release. <i>International Journal of Biological Macromolecules</i> , 2020 , 154, 413-420	7.9	20
18	Improved adsorption performance of rubber-based hydrogel: optimisation through response surface methodology, isotherm, and kinetic studies. <i>Journal of Sol-Gel Science and Technology</i> , 2020 , 94, 322-334	2.3	11
17	Clay-Polymer Nanocomposites Prepared by Reactive Melt Extrusion for Sustained Drug Release. <i>Pharmaceutics</i> , 2020 , 12,	6.4	17
16	Effect of sodium bentonite content on structural-properties of ureasil poly(ethylene oxide)-PEO hybrid: A perspective for water treatment. <i>Applied Clay Science</i> , 2020 , 191, 105605	5.2	1
15	Structure Regulation of Bentonite-Alginate Nanocomposites for Controlled Release of Imidacloprid. <i>ACS Omega</i> , 2020 , 5, 10068-10076	3.9	17

CITATION REPORT

14	Biomolecule-assisted synthesis of biomimetic nanocomposite hydrogel for hemostatic and wound healing applications. <i>Green Chemistry</i> , 2021 , 23, 629-669	10	26
13	Extended release of 6-aminopenicillanic acid by silanol group functionalized vermiculite. <i>Journal of Dispersion Science and Technology</i> , 1-14	1.5	2
12	Magnetic Etarrageenan/chitosan/montmorillonite nanocomposite hydrogels with controlled sunitinib release. <i>Materials Science and Engineering C</i> , 2021 , 124, 112042	8.3	7
11	In2S3-Polymer Hybrid Gels Derived from In(III) Metal®rganic Gels for Dye Adsorption, Photodegradation, and Bacteria Removal. <i>Macromolecular Materials and Engineering</i> , 2021 , 306, 210029	∂ .9	1
10	Ureasil P olyether T oFe2O4 Nanocomposites: Coupling a Drug Delivery System and Magnetic Hyperthermia. <i>ACS Applied Polymer Materials</i> ,	4.3	0
9	Progress in Montmorillonite Functionalized Artificial Bone Scaffolds: Intercalation and Interlocking, Nanoenhancement, and Controlled Drug Release. <i>Journal of Nanomaterials</i> , 2022 , 2022, 1-20	3.2	1
8	Interactions of layered clay minerals with water-soluble polymers; structural design and functions. <i>Applied Clay Science</i> , 2022 , 222, 106487	5.2	2
7	Highly Stretchable, Self-Adhesive, Direction-Aware Wireless Hydrogel-MMT Strain Sensors via a Gradient Structure of Intersecting Networks. <i>ACS Applied Electronic Materials</i> ,	4	1
6	Cationic starch modified bentonite-alginate nanocomposites for highly controlled diffusion release of pesticides. <i>International Journal of Biological Macromolecules</i> , 2022 ,	7.9	1
5	Development of Cationic Cellulose-Modified BentoniteAlginate Nanocomposite Gels for Sustained Release of Alachlor. <i>ACS Omega</i> ,	3.9	1
4	Facile construction of cationic lignin modified bentonite lalginate nanocomposite gel for sustained release of alachlor. <i>Journal of Applied Polymer Science</i> ,	2.9	0
3	One-pot self-assembly fabrication of chitosan coated hollow sphere for pH/ glutathione dual responsive drug delivery. 2022 , 218, 112773		O
2	OrganicInorganic NanoHybrids in Tissue Engineering and Drug Delivery Applications. 2022 , 133-150		O
1	Effect of Organomontmorillonite-Cloisite 20A Incorporation on the Structural and Drug Release Properties of Ureasil PEO Hybrid. 2023, 15, 33		O