The Interstellar Dust Properties of Nearby Galaxies

Annual Review of Astronomy and Astrophysics 56, 673-713 DOI: 10.1146/annurev-astro-081817-051900

Citation Report

#	Article	IF	CITATIONS
1	Dwarf Galaxies: Their Low Metallicity Interstellar Medium. Proceedings of the International Astronomical Union, 2018, 14, 240-254.	0.0	6
2	Fraction of bolometric luminosity absorbed by dust in DustPedia galaxies. Astronomy and Astrophysics, 2018, 620, A112.	2.1	44
3	A Theory for the Variation of Dust Attenuation Laws in Galaxies. Astrophysical Journal, 2018, 869, 70.	1.6	85
4	A deeper look at the dust attenuation law of star-forming galaxies at high redshift. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2301-2311.	1.6	7
5	Thermal and non-thermal dust sputtering in hydrodynamical simulations of the multiphase interstellar medium. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3252-3269.	1.6	39
6	Investigation of the origin of the anomalous microwave emission in LambdaÂOrionis. Publication of the Astronomical Society of Japan, 2019, 71, .	1.0	8
7	The first maps of κd – the dust mass absorption coefficient – in nearby galaxies, with DustPedia. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5256-5283.	1.6	38
8	The infrared-luminous progenitors of high- <i>z</i> quasars. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1256-1264.	1.6	10
9	Modeling ionized gas in low-metallicity environments: the Local Group dwarf galaxy IC 10. Astronomy and Astrophysics, 2019, 622, A119.	2.1	17
10	Old and young stellar populations in DustPedia galaxies and their role in dust heating. Astronomy and Astrophysics, 2019, 624, A80.	2.1	80
11	De re metallica: the cosmic chemical evolution of galaxies. Astronomy and Astrophysics Review, 2019, 27, 1.	9.1	372
12	Dust emission profiles of DustPedia galaxies. Astronomy and Astrophysics, 2019, 622, A132.	2.1	23
13	A hierarchical bayesian dust SED model and its application to the nearby universe. Proceedings of the International Astronomical Union, 2019, 15, 138-142.	0.0	0
14	Dust evolution: Going beyond the empirical. Proceedings of the International Astronomical Union, 2019, 15, 53-60.	0.0	1
15	Panchromatic SED fitting codes and modelling techniques. Proceedings of the International Astronomical Union, 2019, 15, 26-34.	0.0	3
16	A systematic metallicity study of DustPedia galaxies reveals evolution in the dust-to-metal ratios. Astronomy and Astrophysics, 2019, 623, A5.	2.1	135
17	Dust emissivity and absorption cross section in DustPedia late-type galaxies. Astronomy and Astrophysics, 2019, 631, A102.	2.1	19
18	Threshold Dissociation of the 1-ethynylpyrene Cation at Internal Energies Relevant to H i Regions. Astrophysical Journal, 2019, 885, 21.	1.6	4

#	Article	IF	CITATIONS
19	Ultraviolet photo-ionisation in far-infrared selected sources. Astronomy and Astrophysics, 2019, 627, A93.	2.1	2
20	M 31 circum-nuclear region: A molecular survey with the IRAM interferometer. Astronomy and Astrophysics, 2019, 625, A148.	2.1	2
21	Learning mid-IR emission spectra of polycyclic aromatic hydrocarbon populations from observations. Astronomy and Astrophysics, 2019, 632, A84.	2.1	11
22	The Fornax 3D project: dust mix and gas properties in the centre of early-type galaxy FCC 167. Astronomy and Astrophysics, 2019, 622, A89.	2.1	13
23	Understanding the Discrepancy between IRX and Balmer Decrement in Tracing Galaxy Dust Attenuation. Astrophysical Journal, 2019, 886, 28.	1.6	16
24	Metals and dust content across the galaxies M 101 and NGC 628. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4968-4983.	1.6	34
25	Systematic errors in dust mass determinations: insights from laboratory opacity measurements. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4666-4686.	1.6	9
26	ALMA twenty-six arcmin2 survey of GOODS-S at one millimeter (ASAGAO): Millimeter properties of stellar mass selected galaxies. Publication of the Astronomical Society of Japan, 2020, 72, .	1.0	7
27	Spectral energy distributions of dust and PAHs based on the evolution of grain size distribution in galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3046-3060.	1.6	7
28	High-resolution, 3D radiative transfer modelling. Astronomy and Astrophysics, 2020, 637, A25.	2.1	22
29	The Dust Attenuation Law in Galaxies. Annual Review of Astronomy and Astrophysics, 2020, 58, 529-575.	8.1	120
30	A radiative transfer model for the spiral galaxy M33â~ Monthly Notices of the Royal Astronomical Society, 2020, 495, 835-863.	1.6	11
31	The CO-dark molecular gas mass in 30 Doradus. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5279-5292.	1.6	24
32	Theoretical clues about dust accumulation and galaxy obscuration at high and low redshift. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1701-1720.	1.6	0
33	Less than the sum of its parts: the dust-corrected H <i>α</i> luminosity of star-forming galaxies explored at different spatial resolutions with MaNGA and MUSE. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4205-4221.	1.6	9
34	A detailed look at the stellar populations in green valley galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2720-2737.	1.6	16
35	Evolution of grain size distribution in galactic discs. Astronomy and Astrophysics, 2020, 636, A18.	2.1	15
36	The ISM scaling relations in DustPedia late-type galaxies: A benchmark study for the Local Universe. Astronomy and Astrophysics, 2020, 633, A100.	2.1	48

CITATION RI	LPORT	
Article	IF	Citations
The role of dust destruction and dust growth in the evolution of the interstellar medium. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2002-2017.	1.6	9
The apparent anticorrelation between the mass opacity of interstellar dust and the surface density of interstellar gas. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 494, L48-L52.	1.2	7
On the origin of dust in galaxy clusters at low-to-intermediate redshift. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2782-2792.	1.6	7
Predicting the global far-infrared SED of galaxies via machine learning techniques. Astronomy and Astrophysics, 2020, 634, A57.	2.1	10
LoCuSS: exploring the connection between local environment, star formation, and dust mass in Abell 1758. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4599-4612.	1.6	7
A Variant Stellar-to-nebular Dust Attenuation Ratio on Subgalactic and Galactic Scales. Astrophysical Journal, 2020, 888, 88.	1.6	6
Cool outflows in galaxies and their implications. Astronomy and Astrophysics Review, 2020, 28, 1.	9.1	253
Reproducing the Universe: a comparison between the EAGLE simulations and the nearby DustPedia galaxy sample. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2823-2838.	1.6	28
The Evolution of the IR Luminosity Function and Dust-obscured Star Formation over the Past 13 Billion Years. Astrophysical Journal, 2021, 909, 165.	1.6	87
Late-time cosmic evolution of dust: solving the puzzle. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4537-4543.	1.6	12
METAL: The Metal Evolution, Transport, and Abundance in the Large Magellanic Cloud Hubble Program. II. Variations of Interstellar Depletions and Dust-to-gas Ratio within the LMC. Astrophysical Journal, 2021, 910, 95.	1.6	21
UV Extinction as a More Fundamental Measure of Dust than E(B â^ V) or A _V . Astrophysical Journal, 2021, 911, 40.	1.6	4
Atomic carbon [C <scp>i</scp>](3 <i>P</i> 1–3 <i>P</i> 0) mapping of the nearby galaxy M 83. Publica the Astronomical Society of Japan, 2021, 73, 552-567.	ation of 1.0	6
A nearby galaxy perspective on dust evolution. Astronomy and Astrophysics, 2021, 649, A18.	2.1	48
The spatial power spectrum and derived turbulent properties of isolated galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1972-1986.	1.6	6
Constraints on the dust extinction law of the Galaxy with <i>Swift</i> /UVOT, <i>Gaia</i> , and <i>2MASS</i> . Monthly Notices of the Royal Astronomical Society, 2021, 505, 283-292.	1.6	2
Benchmarking Dust Emission Models in M101. Astrophysical Journal, 2021, 912, 103.	1.6	14

55	BEDE: Bayesian estimates of dust evolution for nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3228-3246.	1.6	11
----	--	-----	----

#

#	Article	IF	CITATIONS
56	The Heraklion Extragalactic Catalogue (HECATE): a value-added galaxy catalogue for multimessenger astrophysics. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1896-1915.	1.6	17
57	Probing the progenitors of Type Ia supernovae using circumstellar material interaction signatures. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4367-4388.	1.6	5
58	Probing the spectral shape of dust emission with the DustPedia galaxy sample. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3986-3995.	1.6	4
59	Effects of Spatial Discretization in Lyα Line Radiation Transfer Simulations. Astrophysical Journal, 2021, 916, 39.	1.6	11
60	The origin of the dust extinction curve in milky way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 507, 548-559.	1.6	15
61	Estimating Dust Attenuation From Galactic Spectra. II. Stellar and Gas Attenuation in Star-forming and Diffuse Ionized Gas Regions in MaNGA. Astrophysical Journal, 2021, 917, 72.	1.6	9
62	Measurements of the Dust Properties in z â‰ f 1–3 Submillimeter Galaxies with ALMA. Astrophysical Journal, 2021, 919, 30.	1.6	20
63	The dust-stars interplay in late-type galaxies at z $<$ 0.5: forecasts for the JWST. Astronomy and Astrophysics, 0, , .	2.1	1
64	Resolving the Dust-to-Metals Ratio and CO-to-H ₂ Conversion Factor in the Nearby Universe. Astrophysical Journal, 2021, 907, 29.	1.6	19
65	Gas-phase formation of cationic fullerene/9-aminoanthracene clusters: an indicator for interstellar dust growth. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4758-4766.	1.6	2
66	High-resolution, 3D radiative transfer modelling. Astronomy and Astrophysics, 2020, 637, A24.	2.1	17
67	In pursuit of giants. Astronomy and Astrophysics, 2020, 644, A144.	2.1	32
68	Tracing the total molecular gas in galaxies: [CII] and the CO-dark gas. Astronomy and Astrophysics, 2020, 643, A141.	2.1	84
69	High-resolution, 3D radiative transfer modelling. Astronomy and Astrophysics, 2020, 643, A90.	2.1	13
70	Identification of <i>AKARI</i> infrared sources by the Deep HSC Optical Survey: construction of a new band-merged catalogue in the North Ecliptic Pole Wide field. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4078-4094.	1.6	12
71	A deep learning approach to test the small-scale galaxy morphology and its relationship with star formation activity in hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4359-4382.	1.6	38
72	High-redshift star formation in the Atacama large millimetre/submillimetre array era. Royal Society Open Science, 2020, 7, 200556.	1.1	116
73	Dirt-cheap Gas Scaling Relations: Using Dust Absorption, Metallicity, and Galaxy Size to Predict Gas Masses for Large Samples of Galaxies. Astrophysical Journal, 2019, 884, 177.	1.6	29

#	Article	IF	CITATIONS
74	Automated Mining of the ALMA Archive in the COSMOS Field (A ³ COSMOS). II. Cold Molecular Gas Evolution out to Redshift 6. Astrophysical Journal, 2019, 887, 235.	1.6	85
75	Dissecting the Global Cold Dust Properties and Possible Submillimeter Excess of 13 Nearby Spiral Galaxies from the NGLS. Astrophysical Journal, 2020, 900, 53.	1.6	3
76	Tracing the Coevolution Path of Supermassive Black Holes and Spheroids with AKARI-selected Ultraluminous IR Galaxies at Intermediate Redshifts. Astrophysical Journal, 2020, 900, 51.	1.6	8
77	When did the initial mass function become bottom-heavy?. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1959-1984.	1.6	30
78	Exploring the dust content of galactic haloes with Herschel – IV. NGCÂ3079. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4902-4918.	1.6	2
79	Predicting far-infrared maps of galaxies via machine learning techniques. Astronomy and Astrophysics, 2021, 655, A34.	2.1	0
80	High-resolution, 3D radiative transfer modelling. Astronomy and Astrophysics, 2020, 638, A150.	2.1	14
81	High Molecular-gas to Dust Mass Ratios Predicted in Most Quiescent Galaxies. Astrophysical Journal Letters, 2021, 922, L30.	3.0	17
82	The interstellar dust emission spectrum. Astronomy and Astrophysics, 2022, 659, A70.	2.1	2
83	The Interstellar Medium of Dwarf Galaxies. Galaxies, 2022, 10, 11.	1.1	6
84	Cosmic dust evolution: The challenges for NIKA2. EPJ Web of Conferences, 2022, 257, 00019.	0.1	0
85	The mm-to-cm SED of spiral galaxies. EPJ Web of Conferences, 2022, 257, 00005.	0.1	0
86	Systematic biases in determining dust attenuation curves through galaxy SED fitting. Monthly Notices of the Royal Astronomical Society, 2022, 511, 765-783.	1.6	13
87	Searching for anomalous microwave emission in nearby galaxies. Astronomy and Astrophysics, 2022, 658, L8.	2.1	5
88	<i>Spitzer</i> and <i>Herschel</i> studies of dust in supernova remnants in the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1154-1174.	1.6	2
89	IQ Collaboratory. III. The Empirical Dust Attenuation Framework—Taking Hydrodynamical Simulations with a Grain of Dust. Astrophysical Journal, 2022, 926, 122.	1.6	10
90	Dust Extinction Law in Nearby Star-resolved Galaxies. I. M31 Traced by Supergiants. Astrophysical Journal, Supplement Series, 2022, 259, 12.	3.0	6
91	The ALMA REBELS Survey. Epoch of Reionization giants: Properties of dusty galaxies at <i>z</i> â‰^ 7. Monthly Notices of the Royal Astronomical Society, 2022, 512, 58-72.	1.6	44

#	Article	IF	CITATIONS
92	Quantifying the cool ISM in radio AGNs: evidence for late-time retriggering by galaxy mergers and interactions. Monthly Notices of the Royal Astronomical Society, 2022, 512, 86-103.	1.6	6
93	METAL: The Metal Evolution, Transport, and Abundance in the Large Magellanic Cloud Hubble Program. III. Interstellar Depletions, Dust-to-Metal, and Dust-to-Gas Ratios versus Metallicity. Astrophysical Journal, 2022, 928, 90.	1.6	9
94	Significant Molecular Gas Deficiencies in Star-forming Cluster Galaxies at z â ⁻¹ /4 1.4. Astrophysical Journal, 2022, 927, 235.	1.6	9
95	Infrared Spectral Energy Distributions and Dust Masses of Sub-solar Metallicity Galaxies at z â^1⁄4 2.3. Astrophysical Journal, 2022, 928, 68.	1.6	7
96	Deeply Buried Nuclei in the Infrared-luminous Galaxies NGC 4418 and Arp 220. I. ALMA Observations at λ = 1.4–0.4 mm and Continuum Analysis. Astrophysical Journal, 2021, 923, 206.	1.6	6
97	No Redshift Evolution of Galaxies' Dust Temperatures Seen from 0 < z < 2. Astrophysical Journal, 2022, 930, 142.	1.6	20
98	ALMA Observations of Molecular Complexity in the Large Magellanic Cloud: The N 105 Star-forming Region. Astrophysical Journal, 2022, 931, 102.	1.6	9
99	The Cold Interstellar Medium of Galaxies in the Local Universe. Annual Review of Astronomy and Astrophysics, 2022, 60, 319-361.	8.1	67
100	Dust Extinction Law in Nearby Star-resolved Galaxies. II. M33 Traced by Supergiants. Astrophysical Journal, Supplement Series, 2022, 260, 41.	3.0	5
101	Disentangling emission from star-forming regions in the Magellanic Clouds: Linking [O iii] <i>λ</i> 88 µm and 24 Aµm. Astronomy and Astrophysics, 2022, 666, A112.	2.1	3
102	Dual constraints with ALMA: new [O <scp>iii</scp>] 88-μm and dust-continuum observations reveal the ISM conditions of luminous LBGs at <i>z</i> Ââ^¼ 7. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1751-1773.	1.6	31
103	The distribution of dust in edge-on galaxies: I. The global structure. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5698-5717.	1.6	5
104	METAL: The Metal Evolution, Transport, and Abundance in the Large Magellanic Cloud Hubble Program. IV. Calibration of Dust Depletions versus Abundance Ratios in the Milky Way and Magellanic Clouds and Application to Damped LyI± Systems. Astrophysical Journal, 2022, 935, 105.	1.6	6
105	Dust grain size evolution in local galaxies: a comparison between observations and simulations. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5306-5334.	1.6	4
106	Still at odds with conventional galaxy evolution: the star formation history of ultradiffuse galaxy Dragonfly 44. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3318-3341.	1.6	11
107	Empirical Dust Attenuation Model Leads to More Realistic UVJ Diagram for TNG100 Galaxies. Astrophysical Journal, 2022, 939, 29.	1.6	1
108	The resolved scaling relations in DustPedia: Zooming in on the local Universe. Astronomy and Astrophysics, 2022, 668, A130.	2.1	13
109	From Clusters to Proto-Clusters: The Infrared Perspective on Environmental Galaxy Evolution. Universe, 2022, 8, 554.	0.9	11

#	ARTICLE	IF	Citations
110	Evolution of grain size distribution with enhanced abundance of small carbonaceous grains in galactic environments. Monthly Notices of the Royal Astronomical Society, 2022, 518, 3827-3837.	1.6	2
111	Evidence for Large-scale Excesses Associated with Low H i Column Densities in the Sky. I. Dust Excess. Astrophysical Journal, 2022, 940, 116.	1.6	4
112	Modeling Dust Production, Growth, and Destruction in Reionization-era Galaxies with the CROC Simulations: Methods and Parameter Exploration. Astrophysical Journal, 2022, 940, 74.	1.6	2
113	PHANGS–JWST First Results: A Global and Moderately Resolved View of Mid-infrared and CO Line Emission from Galaxies at the Start of the JWST Era. Astrophysical Journal Letters, 2023, 944, L10.	3.0	10
114	PHANGS–JWST First Results: Multiwavelength View of Feedback-driven Bubbles (the Phantom Voids) across NGC 628. Astrophysical Journal Letters, 2023, 944, L22.	3.0	12
115	PHANGS–JWST First Results: Mid-infrared Emission Traces Both Gas Column Density and Heating at 100 pc Scales. Astrophysical Journal Letters, 2023, 944, L9.	3.0	16
116	PHANGS–JWST First Results: Duration of the Early Phase of Massive Star Formation in NGC 628. Astrophysical Journal Letters, 2023, 944, L20.	3.0	14
117	PHANGS–JWST First Results: The 21 μm Compact Source Population. Astrophysical Journal Letters, 2023, 944, L21.	3.0	13
118	PHANGS–JWST First Results: Rapid Evolution of Star Formation in the Central Molecular Gas Ring of NGC 1365. Astrophysical Journal Letters, 2023, 944, L15.	3.0	13
119	PHANGS–JWST First Results: Tracing the Diffuse Interstellar Medium with JWST Imaging of Polycyclic Aromatic Hydrocarbon Emission in Nearby Galaxies. Astrophysical Journal Letters, 2023, 944, L8.	3.0	16
120	Kpc-scale properties of dust temperature in terms of dust mass and star formation activity. Monthly Notices of the Royal Astronomical Society, 2023, 520, 5506-5520.	1.6	3
121	A solar metallicity galaxy at <i>z</i> > 7? Possible detection of the [N <scp>ii</scp>] 122Âμm and [O <scp>iii</scp>] 52Âμm lines. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2526-2534	. 1.6	5
122	Estimating dust temperature and Far-IR luminosity of high-redshift galaxies using ALMA single-band continuum observations. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2962-2968.	1.6	4
123	Predicting interstellar radiation fields from chemical evolution models. Monthly Notices of the Royal Astronomical Society, 2023, 521, 1727-1740.	1.6	0
124	Extinction towards the cluster R136 in the Large Magellanic Cloud. An extinction law from the near-infrared to the ultraviolet. Astronomy and Astrophysics, 0, , .	2.1	2
125	The <i>z</i> ≲ 1 drop of cosmic dust abundance in a semi-analytic framework. Monthly Notices of the Royal Astronomical Society, 2023, 521, 6105-6123.	1.6	1
126	The Quest for the Missing Dust. II. Two Orders of Magnitude of Evolution in the Dust-to-gas Ratio Resolved within Local Group Galaxies. Astrophysical Journal, 2023, 946, 42.	1.6	4
127	Accurate Dust Temperature and Star Formation Rate in the Most Luminous z > 6 Quasar in the Hyperluminous Quasars at the Epoch of Reionization (HYPERION) Sample. Astrophysical Journal Letters, 2023, 946, L45.	3.0	6

ARTICLE

IF CITATIONS