A Calixareneâ€Based Metal–Organic Framework for I Detection

Angewandte Chemie - International Edition 57, 12961-12965 DOI: 10.1002/anie.201805355

Citation Report

#	Article	IF	CITATIONS
1	A Lowâ€Temperature Approach for the Phaseâ€Pure Synthesis of MILâ€140 Structured Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 13598-13608.	1.7	16
2	Recent advances in POM-organic frameworks and POM-organic polyhedra. Coordination Chemistry Reviews, 2019, 397, 220-240.	9.5	172
3	A fluorescent pillarene coordination polymer. Polymer Chemistry, 2019, 10, 2980-2985.	1.9	38
4	CO ₂ Capture on Functionalized Calixarenes: A Computational Study. Journal of Physical Chemistry A, 2019, 123, 10116-10122.	1.1	10
5	Solvent-responsive cavitand lanthanum complex. Dalton Transactions, 2019, 48, 13732-13739.	1.6	2
6	Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nature Reviews Materials, 2019, 4, 708-725.	23.3	214
7	Inversion of Dispersion: Colloidal Stability of Calixarene-Modified Metal–Organic Framework Nanoparticles in Nonpolar Media. Journal of the American Chemical Society, 2019, 141, 12182-12186.	6.6	23
8	Diamondoid Nanostructures as sp 3 â€Carbonâ€Based Gas Sensors. Angewandte Chemie, 2019, 131, 10038-10043.	1.6	1
9	Diamondoid Nanostructures as sp ³ arbonâ€Based Gas Sensors. Angewandte Chemie - International Edition, 2019, 58, 9933-9938.	7.2	20
10	Selective decontamination of the reactive air pollutant nitrous acid <i>via</i> node-linker cooperativity in a metal–organic framework. Chemical Science, 2019, 10, 5576-5581.	3.7	28
11	Direct grafting-from of PEDOT from a photoreactive Zr-based MOF – a novel route to electrically conductive composite materials. Chemical Communications, 2019, 55, 3367-3370.	2.2	29
12	Highly Stable Copper(I)–Thiacalix[4]areneâ€Based Frameworks for Highly Efficient Catalysis of Click Reactions in Water. Chemistry - A European Journal, 2019, 25, 16660-16667.	1.7	23
13	Separation performance of <i>p-tert</i> -butyl(tetradecyloxy)calix[6]arene as a stationary phase for capillary gas chromatography. RSC Advances, 2019, 9, 38486-38495.	1.7	6
14	Coordination polymers of zinc(II) and manganese(II) made by complexation of calix[4]arene functionalized with carboxylates afford alveolar materials. Inorganica Chimica Acta, 2019, 486, 562-567.	1.2	9
15	Highly efficient synergistic CO ₂ conversion with epoxide using copper polyhedron-based MOFs with Lewis acid and base sites. Inorganic Chemistry Frontiers, 2020, 7, 4517-4526.	3.0	36
16	Destruction of Metal–Organic Frameworks: Positive and Negative Aspects of Stability and Lability. Chemical Reviews, 2020, 120, 13087-13133.	23.0	294
17	3D Hydrangea Macrophylla-like Nickel–Vanadium Metal–Organic Frameworks Formed by Self-Assembly of Ultrathin 2D Nanosheets for Overall Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 48495-48510.	4.0	57
18	Applications of multifunctional zirconium-based metal-organic frameworks in analytical chemistry: Overview and perspectives. TrAC - Trends in Analytical Chemistry, 2020, 131, 116015.	5.8	35

#	Article	IF	CITATIONS
19	Transitionâ€Metalâ€Containing Porphyrin Metal–Organic Frameworks as Ï€â€Backbonding Adsorbents for NO 2 Removal. Angewandte Chemie, 2020, 132, 19848-19851.	1.6	2
20	Transitionâ€Metalâ€Containing Porphyrin Metal–Organic Frameworks as Ï€â€Backbonding Adsorbents for NO ₂ Removal. Angewandte Chemie - International Edition, 2020, 59, 19680-19683.	7.2	49
21	Two coordination polymers based on p-tert-butylcalix[4]arene as efficient luminescent sensor for Fe3+ and MnO4â^ ions. Inorganic Chemistry Communication, 2020, 122, 108290.	1.8	10
22	Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 2020, 49, 6364-6401.	18.7	784
23	Overview of the Synthesis and Structure of Calix[n]quinones (n=4, 6, 8). Chemistry - an Asian Journal, 2020, 15, 2952-2959.	1.7	8
24	Nearâ€Zero Power MOFâ€Based Sensors for NO ₂ Detection. Advanced Functional Materials, 2020, 30, 2006598.	7.8	74
25	Solvent-assisted linker exchange as a tool for the design of mixed-linker MIL-140D structured MOFs for highly selective detection of gaseous H ₂ S. RSC Advances, 2020, 10, 12334-12338.	1.7	3
26	Metal–Organic Frameworks against Toxic Chemicals. Chemical Reviews, 2020, 120, 8130-8160.	23.0	406
27	Luminescent MOF crystals embedded in PMMA/PDMS transparent films as effective NO ₂ gas sensors. Molecular Systems Design and Engineering, 2020, 5, 1048-1056.	1.7	34
28	Topology-Based Functionalization of Robust Chiral Zr-Based Metal–Organic Frameworks for Catalytic Enantioselective Hydrogenation. Journal of the American Chemical Society, 2020, 142, 9642-9652.	6.6	48
29	Topology: ToposPro. , 2021, , 389-412.		23
30	Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chemical Reviews, 2021, 121, 1286-1424.	23.0	349
31	Highly sensitive NO2 response and abnormal P-N sensing transition with ultrathin Mo-doped SnS2 nanosheets. Chemical Engineering Journal, 2021, 420, 127572.	6.6	46
32	4.8 nm Concave {M72} (M=Co, Ni, Fe) metal-organic polyhedra capped by 18 calixarenes. Science China Chemistry, 2021, 64, 426-431.	4.2	33
33	MOF-based electrocatalysts for high-efficiency CO ₂ conversion: structure, performance, and perspectives. Journal of Materials Chemistry A, 2021, 9, 22710-22728.	5.2	20
34	Growth of robust metal–organic framework films by spontaneous oxidation of a metal substrate for NO ₂ sensing. Materials Chemistry Frontiers, 2021, 5, 6476-6484.	3.2	13
35	Coordination polymers with embedded recognition sites: lessons from cyclotriveratrylene-type ligands. CrystEngComm, 2021, 23, 4087-4102.	1.3	4
36	Continuous MOF Membrane-Based Sensors via Functionalization of Interdigitated Electrodes. Membranes, 2021, 11, 176.	1.4	15

CITATION REPORT

#	Article	IF	CITATIONS
37	A reticular chemistry guide for the design of periodic solids. Nature Reviews Materials, 2021, 6, 466-487.	23.3	166
38	Hold on Tight: MOF-Based Irreversible Gas Sensors. Industrial & Engineering Chemistry Research, 2021, 60, 7998-8006.	1.8	31
39	Selfâ€Assembly of Polyoxometalateâ€Resorcin[4]areneâ€Based Inorganicâ€Organic Complexes: Metal Ion Effects on the Electrochemical Performance of Lithium Ion Batteries. Chemistry - A European Journal, 2021, 27, 10123-10133.	1.7	8
40	Der derzeitige Stand von MOF―und COFâ€Anwendungen. Angewandte Chemie, 2021, 133, 24174-24202.	1.6	18
41	The Current Status of MOF and COF Applications. Angewandte Chemie - International Edition, 2021, 60, 23975-24001.	7.2	450
42	Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nature Communications, 2021, 12, 4895.	5.8	40
43	Enhancement of singlet oxygen generation based on incorporation of oxoporphyrinogen (OxP) into microporous solids. Materials Today Chemistry, 2021, 21, 100534.	1.7	8
44	Structural Regulation and Light Hydrocarbon Adsorption/Separation of Three Zirconium–Organic Frameworks Based on Different V-Shaped Ligands. ACS Applied Materials & Interfaces, 2021, 13, 41680-41687.	4.0	25
45	Nickel-Loaded SSZ-13 Zeolite-Based Sensor for the Direct Electrical Readout Detection of NO ₂ . Industrial & Engineering Chemistry Research, 2021, 60, 14371-14380.	1.8	4
46	Resorcin[4]arene-based microporous metal–organic framework/reduced graphene oxide composite as an electrocatalyst for effective and simultaneous determination of p-nitrophenol and o-nitrophenol isomers. Sensors and Actuators B: Chemical, 2021, 347, 130604.	4.0	18
47	Inside/Outside: Postâ€5ynthetic Modification of the Zrâ€Benzophenonedicarboxylate Metal–Organic Framework. Chemistry - A European Journal, 2020, 26, 2222-2232.	1.7	10
48	Hybrids of Metal–Organic Frameworks as Organized Supramolecular Nano-reactors. RSC Catalysis Series, 2019, , 479-502.	0.1	0
49	A versatile enrichment of functionalized calixarene as a facile sensor for amino acids. Luminescence, 2022, 37, 370-390.	1.5	6
50	Templated synthesis of zirconium(<scp>iv</scp>)-based metal–organic layers (MOLs) with accessible chelating sites. Chemical Communications, 2022, 58, 957-960.	2.2	6
51	Metal–Organic Frameworks for NO <i>_x</i> Adsorption and Their Applications in Separation, Sensing, Catalysis, and Biology. Small, 2022, 18, e2105484.	5.2	29
52	CdS based chemiresistor with Schottky contact: Toxic gases detection with enhanced sensitivity and selectivity at room temperature. Sensors and Actuators B: Chemical, 2022, 357, 131421.	4.0	15
53	Advances in Metal-Organic Frameworks-Based Gas Sensors for Hazardous Substances. SSRN Electronic Journal, 0, , .	0.4	0
54	Recent Progress in Metal-Organic Framework Based Fluorescent Sensors for Hazardous Materials Detection. Molecules, 2022, 27, 2226.	1.7	25

CITATION REPORT

#	Article	IF	CITATIONS
55	Perspectives in Adsorptive and Catalytic Mitigations of NO _{<i>x</i>} Using Metal–Organic Frameworks. Energy & Fuels, 2022, 36, 3347-3371.	2.5	13
56	Metal-organic framework coated planar polymer optical waveguide for carbon dioxide detection and sensing. , 2022, , .		2
57	Anchoring Platinum Clusters onto Oxygen Vacancy-Modified In ₂ O ₃ for Ultraefficient, Low-Temperature, Highly Sensitive, and Stable Detection of Formaldehyde. ACS Sensors, 2022, 7, 1201-1212.	4.0	28
58	Advances in metal-organic frameworks-based gas sensors for hazardous substances. TrAC - Trends in Analytical Chemistry, 2022, 153, 116644.	5.8	29
59	Tuning the Size and Geometry of Pd(II)-Based Metallacalixarenes by Varying the N-Containing Ligands: Synthesis, Structure, and Sensing Properties. Crystal Growth and Design, 2022, 22, 3740-3752.	1.4	1
60	Effectiveness of metal-organic framework as sensors: Comprehensive review. , 2022, , 47-64.		2
61	Recent Advances in Research on the Effect of Physicochemical Properties on the Cytotoxicity of Metal–Organic Frameworks. Small Science, 2022, 2, .	5.8	20
62	Macrocyclic scaffold: A boon in advancement of sensor technology- review. Materials Today: Proceedings, 2022, 71, 370-376.	0.9	2
63	Solid-phase extraction of nonsteroidal anti-inflammatory drugs in urine and water samples using acidic calix[4]arene intercalated in LDH followed by quantification via HPLC-UV. Microchemical Journal, 2022, 183, 107985.	2.3	6
64	Molecular Evolution of Nitrogen Dioxide on a Nanostructured Gold Surface in the Atmosphere by <i>In Situ</i> Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 18006-18017.	1.5	0
65	Moisture-Insensitive and Highly Selective Detection of NO ₂ by Ion-in-Conjugation Covalent Organic Frameworks. ACS Sensors, 2022, 7, 3782-3789.	4.0	5
66	A Selfâ€Powered, Rechargeable, and Wearable Hydrogel Patch for Wireless Gas Detection with Extraordinary Performance. Advanced Functional Materials, 2023, 33, .	7.8	33
67	Cuâ€MOFâ€808 as a Sensing Material for Gaseous Hydrogen Sulfide. ChemPlusChem, 2023, 88, .	1.3	0
68	Recent Breakthroughs in Supercapacitors Boosted by Macrocycles. ChemSusChem, 0, , .	3.6	1
69	Preferential Crystallization of <i>tert</i> -Butyl-calix[6]arene Chlorobenzene Solvate from a Solvent Mixture. Crystal Growth and Design, 0, , .	1.4	0
70	Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chemical Reviews, 2023, 123, 5347-5420.	23.0	37
71	A mesoporous Zr-based metal–organic framework driven by the assembly of an octatopic linker. Chemical Communications, 2023, 59, 7803-7806.	2.2	2
74	Applications of macrocycle-based solid-state host–guest chemistry. Nature Reviews Chemistry, 2023, 7, 768-782.	13.8	6

#	Article	IF	CITATIONS
75	Application of Metal–Organic Framework Sponges for Toxic or Greenhouse Gas Adsorption. , 2023, , 219-246.		1