An Internet of Things System for Underground Mine Ai Based on Azure Machine Learning

Sensors 18, 930 DOI: 10.3390/s18040930

Citation Report

#	Article	IF	CITATIONS
1	Prototype Emission Testing Tools for L3 Category Vehicle. IOP Conference Series: Materials Science and Engineering, 2018, 407, 012099.	0.3	2
2	Enhance the Discrimination Precision of Graphene Gas Sensors with a Hidden Markov Model. Analytical Chemistry, 2018, 90, 13790-13795.	3.2	6
3	Distributed Cooperative Wireless Charging for the Mine Internet of Things. IEEE Access, 2019, 7, 81000-81009.	2.6	8
4	Research and Analysis of Sport Medical Data Processing Algorithms Based on Deep Learning and Internet of Things. IEEE Access, 2019, 7, 118839-118849.	2.6	43
5	Fault diagnosis of multi-state gas monitoring network based on fuzzy Bayesian net. Personal and Ubiquitous Computing, 2019, 23, 573-581.	1.9	5
6	Pattern of <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>H </mml:mi> </mml:mrow> <m in a deep copper mine and its correlation with ventilation schedule. Measurement: Journal of the International Measurement Confederation, 2019, 140, 373-381</m </mml:msub></mml:mrow></mml:math>	ml:mn>2<	/mml:mn> </td
7	From personalization to patient centered systems toxicology and pharmacology. Computational Toxicology, 2019, 11, 14-22.	1.8	5
8	Prediction of Methane Levels in Underground Coal Mines using Artificial Neural Networks. , 2019, , .		1
9	A Smart Autonomous Time- and Frequency-Domain Analysis Current Sensor-Based Power Meter Prototype Developed over Fog-Cloud Analytics for Demand-Side Management. Sensors, 2019, 19, 4443.	2.1	10
10	An efficient route planning model for mobile agents on the internet of things using Markov decision process. Ad Hoc Networks, 2020, 98, 102053.	3.4	26
11	Applications of the Open-Source Hardware Arduino Platform in the Mining Industry: A Review. Applied Sciences (Switzerland), 2020, 10, 5018.	1.3	25
12	Research on Intelligent Configuration Method of Mine IoT Communication Resources Based on Data Flow Behavior. IEEE Access, 2020, 8, 172065-172075.	2.6	6
13	A Portable Environmental Data-Monitoring System for Air Hazard Evaluation in Deep Underground Mines. Energies, 2020, 13, 6331.	1.6	52
14	A Study on Industrial IoT for the Mining Industry: Synthesized Architecture and Open Research Directions. IoT, 2020, 1, 529-550.	2.3	39
15	Automatic Monitoring System in Underground Engineering Construction: Review and Prospect. Advances in Civil Engineering, 2020, 2020, 1-16.	0.4	17
16	Air Quality Index Prediction Using Azure IoT & Machine Learning forÂSmart Cities. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 721-733.	0.5	1
17	Usage of a BART Algorithm and Cognitive Services to Research Collaboration Platforms. Smart Innovation, Systems and Technologies, 2021, , 267-276.	0.5	1
18	PANDA: Preference-Based Bandwidth Allocation in Fog-Enabled Internet of Underground-Mine Things. IEEE Systems Journal, 2021, 15, 5144-5151.	2.9	5

#	Article	IF	CITATIONS
19	Systematic Review of Machine Learning Applications in Mining: Exploration, Exploitation, and Reclamation. Minerals (Basel, Switzerland), 2021, 11, 148.	0.8	48
20	Self-Driving Algorithm and Location Estimation Method for Small Environmental Monitoring Robot in Underground Mines. CMES - Computer Modeling in Engineering and Sciences, 2021, 127, 943-964.	0.8	4
21	Corrosion environment and concrete deterioration mechanism of shaft wall in coal mines. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	1
22	Associations between Incense-Burning Temples and Respiratory Mortality in Hong Kong. Atmosphere, 2021, 12, 774.	1.0	6
23	Real Time Monitoring Approach for Underground Mine Air Quality Pollution Monitoring System Based on IoT Technology. , 2021, , .		8
24	Theory of RPOD adjustment of air volume for mine intelligent ventilation. International Journal of Ventilation, 2022, 21, 316-329.	0.2	3
25	Hybrid CNN-LSTM and IoT-based coal mine hazards monitoring and prediction system. Chemical Engineering Research and Design, 2021, 152, 249-263.	2.7	51
26	A Systematic Review of Quality of Service in Wireless Sensor Networks using Machine Learning: Recent Trend and Future Vision. Journal of Network and Computer Applications, 2021, 188, 103084.	5.8	43
27	The assessment of functional efficiency of technological structure for the coal mine working face – an application of IIIE. Journal of Industrial Information Integration, 2021, , 100262.	4.3	3
28	Investigations of dynamic properties of an integrated methane and rock outburst sensor. Measurement: Journal of the International Measurement Confederation, 2021, 186, 110178.	2.5	1
29	Internet of Things for Sustainable Mining. Internet of Things, 2020, , 243-271.	1.3	31
30	Usage of a BART algorithm and cognitive services to research collaboration platforms. Journal of Physics: Conference Series, 2020, 1694, 012028.	0.3	2
31	SYSTEM FOR PREDICTION OF CARBOXYHEMOGLOBIN LEVELS AS AN INDICATOR FOR ON-TIME INSTALLATION OF SELF-CONTAINED SELF-RESCUERS IN CASE OF FIRE IN UNDERGROUND MINES. GeoScience Engineering, 2019, 65, 23-37.	0.1	6
32	t-SNE and variational auto-encoder with a bi-LSTM neural network-based model for prediction of gas concentration in a sealed-off area of underground coal mines. Soft Computing, 2021, 25, 14183-14207.	2.1	12
33	Condition Monitoring of Coal Mine Using Ensemble Boosted Tree Regression Model. Lecture Notes on Data Engineering and Communications Technologies, 2020, , 19-29.	0.5	1
34	An artificial neural network and principle component analysis based model for methane level prediction in underground coal mines. , 2020, , .		2
35	Detection and Early Warning of Toxic Gases Based on Semiconductor Wireless Sensors. Journal of Sensors, 2021, 2021, 1-11.	0.6	3
36	Learning Predictive Models for Underground Coal Mine Environment Using Sensor Data. , 2021, , .		0

#	Article	IF	CITATIONS
37	Designing a Monitoring System to Observe the Innovative Single-Wire and Wireless Energy Transmitting Systems in Explosive Areas of Underground Mines. Energies, 2022, 15, 576.	1.6	4
38	Sensing Technology Applications in the Mining Industry—A Systematic Review. International Journal of Environmental Research and Public Health, 2022, 19, 2334.	1.2	7
39	Wearable Prototype Module for the Measurement of Explosive Gases in Underground Mining. , 2021, , .		0
40	Prediction of the void formation in no-flow underfill process using machine learning-based algorithm. Microelectronics Reliability, 2022, 135, 114586.	0.9	1
41	Improving coal mine safety with internet of things (IoT) based Dynamic Sensor Information Control System. Physics and Chemistry of the Earth, 2022, 128, 103225.	1.2	13
42	Deep Learning and Internet of Things (IoT) Based Monitoring System for Miners. Journal of Mining Science, 2022, 58, 325-337.	0.1	0
43	Future mining based on internet of things (IoT) and sustainability challenges. International Journal of Sustainable Development and World Ecology, 2023, 30, 211-228.	3.2	9
44	Development of Digital Device Using ZigBee for Environmental Monitoring in Underground Mines. Applied Sciences (Switzerland), 2022, 12, 11927.	1.3	3
45	Process Parameter Optimization of Additively Manufactured Parts Using Intelligent Manufacturing. Sustainability, 2022, 14, 15475.	1.6	2
46	A Different Perspective on Air Pollution Measurements. Journal of Polytechnic, 0, , .	0.4	0
47	Determination of underground hazard location using machine learning techniques. CIM Journal, 2023, 14, 56-63.	0.3	1
48	Prediction ofÂAir Quality Using Machine Learning. Smart Innovation, Systems and Technologies, 2023, , 199-209.	O.5	0
51	An Enhanced IoT and LoRa-Based Communication System for Underground Mines. Lecture Notes in Electrical Engineering, 2023, , 513-521.	0.3	2
56	A Systematic Review on Implementation of Internet-of-Things-Based System in Underground Mines to Monitor Environmental Parameters. Journal of the Institution of Engineers (India): Series D, O, , .	0.6	2
60	Air Quality Prediction inÂSmart Cities Using Wireless Sensor Network andÂAssociative Models. Communications in Computer and Information Science, 2023, , 216-240.	0.4	0

CITATION REPORT