VISUALLY CONTROLLED LOCOMOTION AND VISUAL

British Journal of Psychology 49, 182-194 DOI: 10.1111/j.2044-8295.1958.tb00656.x

Citation Report

#	Article	IF	CITATIONS
1	A biologically inspired neural network model for 3-D motion detection. , 0, , .		2
2	The information contained in light. Acta Psychologica, 1959, 15, 261-263.	1.5	3
3	The information contained in light. Acta Psychologica, 1960, 17, 23-30.	1.5	9
4	A comparative and analytical study of visual depth perception Psychological Monographs, 1961, 75, 1-44.	1.8	273
5	Ecological optics. Vision Research, 1961, 1, 253-262.	1.4	285
6	The perception of depth through motion Psychological Bulletin, 1962, 59, 422-433.	6.1	37
7	Persistent Fear Responses in Rhesus Monkeys to the Optical Stimulus of "Looming". Science, 1962, 136, 982-983.	12.6	367
8	Experiments on visually controlled orientation in the desert locust, Schistocerca gregaria (ForskåI). Animal Behaviour, 1962, 10, 361-369.	1.9	25
9	Plasticity in Human Sensorimotor Control. Science, 1963, 142, 455-462.	12.6	341
10	The useful dimensions of sensitivity American Psychologist, 1963, 18, 1-15.	4.2	231
11	Perception of impending collision: A study of visually directed avoidant behavior Psychological Monographs, 1965, 79, 1-26.	1.8	228
12	The Study of Visual Depth and Distance Perception in Animals. Advances in the Study of Behavior, 1965, 1, 99-154.	1.6	43
13	Directional Guidance of Motor Vehicles—A Preliminary Survey and Analysis. Ergonomics, 1966, 9, 193-202.	2.1	15
14	Approach response of domestic chicks to an optical display Journal of Comparative and Physiological Psychology, 1967, 64, 529-531.	1.8	15
15	Primate naturalistic research and problems of early experience. Developmental Psychobiology, 1968, 1, 175-184.	1.6	9
16	Untersuchungen zur visuellen Raumorientierung bei Totenkopfaffen (Saimiri sciureus L.). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1968, 60, 176-208.	1.6	9
17	ON THEORIES FOR VISUAL SPACE PERCEPTION Scandinavian Journal of Psychology, 1970, 11, 75-79.	1.5	45
18	Visual Discrimination of Movement: Midbrain or Forebrain?. Science, 1970, 170, 1428-1430.	12.6	57

ATION RED

ARTICLE IF CITATIONS # Orienting response and apparent movement toward or away from the observer.. Journal of 19 1.5 45 Experimental Psychology, 1971, 87, 37-45. Research on the Psychological-Behavioral Effects of the Physical Environment,. Review of Educational Research, 1971, 41, 447-465. Visual depth preferences of the domestic duckling.. Journal of Comparative and Physiological 21 1.8 4 Psychology, 1972, 78, 14-21. The Role of Optical Expansion Patterns in Locomotor Control. American Journal of Psychology, 1973, 114 86, 311. The Autonomy of Visual Kinaesthesis. Perception, 1973, 2, 287-294. 23 1.2 454 Visual proprioceptive control of standing in human infants. Perception & Psychophysics, 1974, 15, 2.3 691 529-532. Apparatus for measuring and recording path velocity and direction characteristics of human 25 4.0 12 locomotion. Behavior Research Methods, 1976, 8, 442-446. The effects of vision on the general locomotor behaviour of the goldfish, Carassius auratus. Animal 26 Behaviour, 1976, 24, 376-380. 27 What the Eye Tells the Hand. Journal of Motor Behavior, 1976, 8, 43-58. 0.9 22 Failure to avoid impending collision by the golden hamster (Mesocricetus auratus). Bulletin of the 0.2 Psychonomic Society, 1977, 9, 53-54. Computer-analyzed measures of characteristics of human locomotion and mobility. Behavior 29 19 4.0Research Methods, 1977, 9, 456-462. Visual control of locomotion. Scandinavian Journal of Psychology, 1977, 18, 224-230. 1.5 30 198 Visual-Vestibular Interaction: Effects on Self-Motion Perception and Postural Control., 1978, $\mathbf{31}$ 338 755-804. Skill Acquisition: An Event Approach with Special Reference to Searching for the Optimum of a Function of Several Variables. , 1978, , 1-40. 94 The Role of Vision in the Control of Posture During Linear Motion. Progress in Brain Research, 1979, 33 1.4 155 50, 197-209. James Gibson's Ecological Revolution in Psychology. Philosophy of the Social Sciences, 1979, 9, 189-204. Information Used in Judging Impending Collision. Perception, 1979, 8, 647-658. 35 389 1.2 Against direct perception. Behavioral and Brain Sciences, 1980, 3, 373-381.

#	Article	IF	Citations
37	Direct perception: an opponent and a precursor of computational theories. Behavioral and Brain Sciences, 1980, 3, 381-382.	0.7	1
38	Direct perception and a call for primary perception. Behavioral and Brain Sciences, 1980, 3, 382-383.	0.7	1
39	The function and process of perception. Behavioral and Brain Sciences, 1980, 3, 383-384.	0.7	0
40	Direct perception or mediated perception: a comparison of rival viewpoints. Behavioral and Brain Sciences, 1980, 3, 384-385.	0.7	1
41	Direct perception or adaptive resonance?. Behavioral and Brain Sciences, 1980, 3, 385-386.	0.7	11
42	Visual perception is underdetermined by stimulation. Behavioral and Brain Sciences, 1980, 3, 386-386.	0.7	0
43	Mediating the so-called immediate processes of perception. Behavioral and Brain Sciences, 1980, 3, 386-387.	0.7	1
44	Inferring the meaning of direct perception. Behavioral and Brain Sciences, 1980, 3, 387-388.	0.7	8
45	Direct perception and perceptual processes. Behavioral and Brain Sciences, 1980, 3, 388-388.	0.7	2
46	On the nature of information in behalf of direct perception. Behavioral and Brain Sciences, 1980, 3, 388-389.	0.7	1
47	Direct vs. representational views of cognition: A parallel between vision and phonology. Behavioral and Brain Sciences, 1980, 3, 389-390.	0.7	20
48	Why argue about direct perception?. Behavioral and Brain Sciences, 1980, 3, 390-391.	0.7	5
49	Visual perception: the shifting domain of discourse. Behavioral and Brain Sciences, 1980, 3, 391-392.	0.7	1
50	Perceptual activity and direct perception. Behavioral and Brain Sciences, 1980, 3, 392-393.	0.7	6
51	Are mediating representations the ghosts in the machine?. Behavioral and Brain Sciences, 1980, 3, 393-394.	0.7	0
52	How wrong is Gibson?. Behavioral and Brain Sciences, 1980, 3, 394-395.	0.7	1
53	Animal-environment mutuality and direct perception. Behavioral and Brain Sciences, 1980, 3, 395-397.	0.7	7
54	Information pickup is the activity of perceiving. Behavioral and Brain Sciences, 1980, 3, 397-398.	0.7	6

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
55	Difficulties with a direct theory of perception. Behavioral and Brain Sciences, 1980, 3, 398-399.	0.7	22
56	There is more to psychological meaningfulness than computation and representation. Behavioral and Brain Sciences, 1980, 3, 399-400.	0.7	5
57	Abstract machine theory and direct perception. Behavioral and Brain Sciences, 1980, 3, 400-401.	0.7	84
58	What kind of indirect process is visual perception?. Behavioral and Brain Sciences, 1980, 3, 401-404.	0.7	4
59	In defense of invariances and higher-order stimuli. Behavioral and Brain Sciences, 1980, 3, 404-405.	0.7	0
60	Logical atomism and computation do not refute Gibson. Behavioral and Brain Sciences, 1980, 3, 405-405.	0.7	0
61	Percepts, intervening variables, and neural mechanisms. Behavioral and Brain Sciences, 1980, 3, 405-406.	0.7	0
62	The computational/representational paradigm as normal science: further support. Behavioral and Brain Sciences, 1980, 3, 406-407.	0.7	3
63	What are the contributions of the direct perception approach?. Behavioral and Brain Sciences, 1980, 3, 407-408.	0.7	0
64	Perception, information, and computation. Behavioral and Brain Sciences, 1980, 3, 408-415.	0.7	4
65	A Sketch of an Ecological Metatheory for Theories of Learning. Psychology of Learning and Motivation - Advances in Research and Theory, 1980, , 147-205.	1.1	71
66	Egomotion and relative depth map from optical flow. Biological Cybernetics, 1980, 36, 87-102.	1.3	265
67	Air Sonars with Acoustical Display of Spatial Information. , 1980, , 769-816.		22
68	Perceived Movement in the Visual Crib. Journal of Genetic Psychology, 1980, 137, 191-198.	1.2	0
69	Compensation for substrate elasticity in the kinematics of leaping by infant pigtailed macaques (Macaca nemestrina). Brain Research, 1980, 184, 467-480.	2.2	5
70	The optic flow field: the foundation of vision. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1980, 290, 169-179.	2.3	475
71	16 Visuo-Motor Coordination in Space-Time. Advances in Psychology, 1980, , 281-295.	0.1	203
73	Analysis of Visual Motion by Biological and Computer Systems. Computer, 1981, 14, 57-69.	1.1	124

#	Article	IF	CITATIONS
74	Measurement of sensory intensity. Behavioral and Brain Sciences, 1981, 4, 175-189.	0.7	199
75	Cognitive algebra and sensation measurement. Behavioral and Brain Sciences, 1981, 4, 189-190.	0.7	3
76	Psychophysical theory: On the avoidance of contradiction. Behavioral and Brain Sciences, 1981, 4, 190-190.	0.7	1
77	Limitations of the physical correlate theory of psychophysical judgment. Behavioral and Brain Sciences, 1981, 4, 190-191.	0.7	0
78	Direct judgments: Sensation or stimulus correlate?. Behavioral and Brain Sciences, 1981, 4, 191-192.	0.7	0
79	Warren's physical correlate theory: Correlation does not imply causation. Behavioral and Brain Sciences, 1981, 4, 192-193.	0.7	4
80	Sensations, correlates and judgments: Why physics?. Behavioral and Brain Sciences, 1981, 4, 193-194.	0.7	3
81	On relating physiology to sensation. Behavioral and Brain Sciences, 1981, 4, 195-195.	0.7	4
82	A dialogue on loudness. Behavioral and Brain Sciences, 1981, 4, 195-196.	0.7	0
83	Context affects measures of sensory intensity. Behavioral and Brain Sciences, 1981, 4, 196-197.	0.7	0
84	Physical correlate theory: A question and a prediction. Behavioral and Brain Sciences, 1981, 4, 197-198.	0.7	0
85	Sensory coding: The search for invariants. Behavioral and Brain Sciences, 1981, 4, 198-199.	0.7	4
86	What (good) are scales of sensation?. Behavioral and Brain Sciences, 1981, 4, 199-200.	0.7	1
87	Distance - a physical correlate of brightness and loudness scaling?. Behavioral and Brain Sciences, 1981, 4, 200-201.	0.7	3
88	The experimental subject as an opportunist. Behavioral and Brain Sciences, 1981, 4, 201-201.	0.7	0
89	Schooling and the new psychophysics. Behavioral and Brain Sciences, 1981, 4, 201-203.	0.7	38
90	Binocular brightness and physical correlate theory. Behavioral and Brain Sciences, 1981, 4, 203-203.	0.7	0
91	Is the sensory code truly inaccessible?. Behavioral and Brain Sciences, 1981, 4, 204-205.	0.7	0

	CITATION	KEPORT	
# 92	ARTICLE Logical difficulties in physical correlate theory. Behavioral and Brain Sciences, 1981, 4, 205-206.	IF 0.7	Citations
93	Sensory scaling: A paradigm whose time has past. Behavioral and Brain Sciences, 1981, 4, 206-207.	0.7	33
94	A biologist looks at psycho-acoustics. Behavioral and Brain Sciences, 1981, 4, 207-207.	0.7	1
95	Messages, media and codes. Behavioral and Brain Sciences, 1981, 4, 207-208.	0.7	0
96	Sensation: A relativist's view. Behavioral and Brain Sciences, 1981, 4, 208-209.	0.7	0
97	Psychophysics and ecometrics. Behavioral and Brain Sciences, 1981, 4, 209-210.	0.7	52
98	The physics of light and the physical correlate theory of sensory scaling. Behavioral and Brain Sciences, 1981, 4, 210-211.	0.7	1
99	Variability in the measurement of sensory intensity. Behavioral and Brain Sciences, 1981, 4, 211-212.	0.7	1
100	Magnitude estimation: Why one of Warren's claims is correct. Behavioral and Brain Sciences, 1981, 4, 212-213.	0.7	0
101	Sensation magnitude judgments are based upon estimates of physical magnitudes. Behavioral and Brain Sciences, 1981, 4, 213-223.	0.7	35
102	In defense of a sensory process theory of psychophysical scaling. Behavioral and Brain Sciences, 1981, 4, 194-194.	0.7	4
103	Objections to physical correlate theory, with emphasis on loudness. Behavioral and Brain Sciences, 1981, 4, 203-204.	0.7	5
104	Visual information about moving objects Journal of Experimental Psychology: Human Perception and Performance, 1981, 7, 795-810.	0.9	285
105	Use of Foreground and Background Information in Visually Guided Locomotion. Perception, 1981, 10, 191-198.	1.2	23
106	Optical Variables as Measures of Performance during Simulated Flight. Proceedings of the Human Factors Society Annual Meeting, 1982, 26, 312-315.	0.1	3
107	How do we avoid confounding the direction we are looking and the direction we are moving?. Science, 1982, 215, 194-196.	12.6	247
108	Spatial Behaviour in Golden Hamsters <i>(Mesocricetus Auratus)</i> : A Returning Task in a T-Maze with no Intra- or Extra-Maze Cues Available. Perceptual and Motor Skills, 1982, 54, 337-338.	1.3	3
109	Stimulus Dimensionality and Infants' Perceived Movement in Depth. Journal of Genetic Psychology, 1983, 143, 193-200.	1.2	16

#	Article	IF	CITATIONS
110	Optical Flow and Texture Variables Useful for Detecting Changes in Simulated Self Motion. Proceedings of the Human Factors Society Annual Meeting, 1983, 27, 996-1000.	0.1	0
111	Orientation in buildings: Effects of familiarity, visual access, and orientation aids Journal of Applied Psychology, 1983, 68, 177-186.	5.3	121
112	Learning to use the ultrasonic spatial sensor by the blind infant: Comments on Aitken and Bower. Journal of Experimental Child Psychology, 1984, 37, 207-211.	1.4	2
113	Human visual navigation in the presence of 3-D rotations. Biological Cybernetics, 1985, 52, 377-381.	1.3	72
114	Movement as an emergent form: Its structural limits. Human Movement Science, 1985, 4, 119-148.	1.4	19
115	A note on modulation of gait in man: Effects of constraining stride length and frequency. Human Movement Science, 1986, 5, 333-343.	1.4	31
116	Effects of deprivation of vision and vibrissae on goal-directed locomotion in cats. Experimental Brain Research, 1986, 65, 229-34.	1.5	10
117	Perceived size and motion in depth from optical expansion. Perception & Psychophysics, 1986, 39, 309-326.	2.3	39
118	A Note on Modulations and Structuring of Locomotion in Children and Adults. Journal of Motor Behavior, 1986, 18, 475-485.	0.9	3
119	Sensitivity to Perspective Structure While Walking without Vision. Perception, 1986, 15, 173-188.	1.2	253
120	Treadmill versus walkway locomotion in humans: an EMG study. Ergonomics, 1986, 29, 665-676.	2.1	89
121	Thalamo-cortical connections and their correlation with receptive field properties in the cat's lateral suprasylvian visual cortex. Experimental Brain Research, 1987, 67, 100-112.	1.5	42
122	Distribution of optokinetic sensitivity over the eye of crabs: its relation to habitat and possible role in flow-field analysis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1987, 160, 127-135.	1.6	175
123	Representation of locomotor space by the blind. Perception & Psychophysics, 1987, 42, 132-139.	2.3	35
124	Postural movements induced by rotations of visual scenes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1988, 5, 1781.	1.5	73
125	Exploratory Behavior in the Development of Perceiving, Acting, and the Acquiring of Knowledge. Annual Review of Psychology, 1988, 39, 1-42.	17.7	862
126	The Role of Visual Information in Control of a Constrained Locomotor Task. Journal of Motor Behavior, 1988, 20, 17-37.	0.9	72
127	Perception of translational heading from optical flow Journal of Experimental Psychology: Human Perception and Performance, 1988, 14, 646-660.	0.9	390

#	Article	IF	CITATIONS
128	The Acquisition of Bimanual Coordination in an Interactive Graphics Task. Advances in Psychology, 1988, 55, 103-126.	0.1	2
129	Directionally Selective Motion Detection by Insect Neurons. , 1989, , 360-390.		191
130	Discrete Visual Samples May Control Locomotor Equilibrium and Foot Positioning in Man. Journal of Motor Behavior, 1989, 21, 72-91.	0.9	167
131	Affordances and the Body: An Intentional Analysis of Gibson's Ecological Approach to Visual Perception. Journal for the Theory of Social Behaviour, 1989, 19, 1-30.	1.2	390
132	Centrifugal motion bias in the cat's lateral suprasylvian visual cortex is independent of early flow field exposure Journal of Physiology, 1990, 423, 641-660.	2.9	20
133	Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. Behavioral and Brain Sciences, 1990, 13, 519-542.	0.7	575
134	Does visual-field specialization really have implications for coordinated visual-motor behavior?. Behavioral and Brain Sciences, 1990, 13, 542-543.	0.7	1
135	Seeing double: Dichotomizing the visual system. Behavioral and Brain Sciences, 1990, 13, 543-544.	0.7	0
136	The benefits and constraints of visual processing dichotomies. Behavioral and Brain Sciences, 1990, 13, 544-545.	0.7	3
137	Ups and downs of the visual field: Manipulation and locomotion. Behavioral and Brain Sciences, 1990, 13, 545-546.	0.7	1
138	Response field biases in parietal, temporal, and frontal lobe visual areas. Behavioral and Brain Sciences, 1990, 13, 546-547.	0.7	1
139	Twisting the world by 90°. Behavioral and Brain Sciences, 1990, 13, 547-548.	0.7	12
140	Visual information in the upper and lower visual fields may be processed differently, but how and why remains to be established. Behavioral and Brain Sciences, 1990, 13, 549-550.	0.7	0
141	The ups and downs of visual fields. Behavioral and Brain Sciences, 1990, 13, 550-551.	0.7	0
142	Ecology and functional specialization: The whole is less than the sum of the parts. Behavioral and Brain Sciences, 1990, 13, 551-551.	0.7	0
143	Pigeons, primates, and division of labor in the vertebrate visual system. Behavioral and Brain Sciences, 1990, 13, 551-552.	0.7	0
144	Attention to near and far space: The third dichotomy. Behavioral and Brain Sciences, 1990, 13, 552-553.	0.7	12
145	The role of dorsal/ventral processing dissociation in the economy of the primate brain. Behavioral and Brain Sciences, 1990, 13, 553-554.	0.7	0

	CHATION N		
#	Article	IF	Citations
146	Why the computations must not be ignored. Behavioral and Brain Sciences, 1990, 13, 554-555.	0.7	0
147	Peripheral lower visual fields: A neglected factor?. Behavioral and Brain Sciences, 1990, 13, 555-555.	0.7	2
148	Properties of neurons in the dorsal visual pathway of the monkey. Behavioral and Brain Sciences, 1990, 13, 555-556.	0.7	0
149	Different regions of space or different spaces altogether: What are the dorsal/ventral systems processing?. Behavioral and Brain Sciences, 1990, 13, 556-557.	0.7	35
150	The primary visual system does not care about Previc's near-far dichotomy. Why not?. Behavioral and Brain Sciences, 1990, 13, 557-558.	0.7	1
151	Only half way up. Behavioral and Brain Sciences, 1990, 13, 558-558.	0.7	1
152	Visual processing in three-dimensional space: Perceptions and misperceptions. Behavioral and Brain Sciences, 1990, 13, 559-575.	0.7	9
153	Functional specialization in the visual system: Retinotopic or body centered?. Behavioral and Brain Sciences, 1990, 13, 548-549.	0.7	1
154	Control With an Eye for Perception: Precursors to an Active Psychophysics. Ecological Psychology, 1990, 2, 83-111.	1.1	53
155	Is elevation encoded in cognitive maps?. Journal of Environmental Psychology, 1990, 10, 341-351.	5.1	64
156	Unintentional modulations of human gait by optical flow. Behavioural Brain Research, 1990, 38, 275-281.	2.2	119
157	An Informational Perspective on skill Transfer in Human-Machine Systems. Human Factors, 1991, 33, 251-266.	3.5	79
158	Visual Cues and Processes Involved in Goal-Directed Locomotion. Advances in Psychology, 1991, , 99-123.	0.1	8
159	Visual Control of Human Locomotion. Advances in Psychology, 1991, , 55-97.	0.1	35
160	Chapter 17 Locomotor Automatism and Visual Feedback. Advances in Psychology, 1992, , 399-419.	0.1	4
161	Use of a Distracting Task to Obtain Defensive Head Movements to Looming Visual Stimuli by Human Adults in a Laboratory Setting. Perception, 1992, 21, 245-259.	1.2	60
162	Chapter 13 Coincidence-Anticipation Timing: The Perceptual-Motor Interface. Advances in Psychology, 1992, , 315-334.	0.1	7
163	Chapter 16 The Role of Vision in the Planning and Guidance of Locomotion Through the Environment. Advances in Psychology, 1992, 85, 375-397.	0.1	8

	CHATION N		
#	ARTICLE	IF	CITATIONS
164	Steady-state fluctuations of human walking. Behavioural Brain Research, 1992, 47, 181-189.	2.2	68
165	Optical magnification as event information. Psychological Research, 1992, 54, 146-159.	1.7	7
166	On the role of global and local visual information in goal-directed walking. Acta Psychologica, 1992, 81, 199-210.	1.5	18
167	Determinants of the perception of sagittal motion. Perception & Psychophysics, 1992, 52, 75-96.	2.3	39
168	Optical flow from eye movement with head immobilized: "Ocular occlusion―beyond the nose. Vision Research, 1993, 33, 777-789.	1.4	34
169	The Limit of the Visual World. Leonardo, 1993, 26, 159.	0.3	1
170	Eye movements in freely moving crabs: Their sensory basis and possible role in flow-field analysis. Comparative Biochemistry and Physiology A, Comparative Physiology, 1993, 104, 675-693.	0.6	21
171	Flight-path estimation in passive low-altitude flight by visual cues. Journal of Guidance, Control, and Dynamics, 1993, 16, 363-370.	2.8	14
172	Neural Mechanisms Underlying Direction-Selective Avoidance Behavior. Adaptive Behavior, 1993, 1, 227-261.	1.9	14
173	Time-to-contact judgment in the locomotion of adults and preschool children Journal of Experimental Psychology: Human Perception and Performance, 1993, 19, 1053-1065.	0.9	40
174	Asymmetries in the Sensitivity to Motion in Depth: A Centripetal Bias. Perception, 1993, 22, 1013-1023.	1.2	122
175	Perceptual Artifacts and Phenomena: Gibson's Role in the 20th Century. Advances in Psychology, 1993, 99, 231-260.	0.1	16
176	The Implications of Ocular Occlusion. Ecological Psychology, 1993, 5, 235-253.	1.1	6
177	Visual field information in low-altitude visual flight by line-of-sight slaved helmet-mounted displays. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24, 120-134.	0.9	22
178	Influence of visuoproprioceptive mismatch on postural adjustments. Gait and Posture, 1994, 2, 147-155.	1.4	13
180	Robot navigation from a Gibsonian viewpoint. , 0, , .		43
181	Self-knowledge of Body Position:. Advances in Psychology, 1995, , 221-241.	0.1	20
182	Effects of Pictorial Relative Size and Ground-Intercept Information on Judgments about Potential Collisions in Perspective Displays. Human Factors, 1995, 37, 528-538.	3.5	26

#	Article	IF	CITATIONS
183	Self-Motion. , 1995, , 263-325.		95
184	Processing of visual motion direction in the fronto-parallel plane in the stationary or moving observer. Behavioural Brain Research, 1995, 70, 133-144.	2.2	15
186	Visuomotor regulation of locomotion. Canadian Journal of Physiology and Pharmacology, 1996, 74, 418-425.	1.4	49
187	Neural network based on the input organization of an identified neuron signaling impending collision. Journal of Neurophysiology, 1996, 75, 967-985.	1.8	165
188	Visual Control of Steering without Course Information. Perception, 1996, 25, 481-494.	1.2	59
189	Looming responses to obstacles and apertures: The role of accretion and deletion of background texture. , 1996, 19, 577.		2
190	Role of the motor cortex in the control of visually triggered gait modifications. Canadian Journal of Physiology and Pharmacology, 1996, 74, 426-442.	1.4	107
191	Visual control of braking in goal-directed action and sport. Journal of Sports Sciences, 1997, 15, 607-620.	2.0	31
192	Kinematic Analysis of Locomotion in Unilateral Vestibular Neurectomized Cats. Journal of Vestibular Research: Equilibrium and Orientation, 1997, 7, 101-118.	2.0	5
193	Visually perceived location is an invariant in the control of action. Perception & Psychophysics, 1997, 59, 601-612.	2.3	126
194	Visual guidance of passing under a barrier. Infant and Child Development, 1997, 6, 149-158.	0.4	42
195	Projections of the nucleus of the basal optic root in pigeons (Columba livia) revealed with biotinylated dextran amine. Journal of Comparative Neurology, 1997, 384, 517-536.	1.6	67
196	Metabolic energy expenditure and the regulation of movement economy. Psychonomic Bulletin and Review, 1998, 5, 173-196.	2.8	223
197	Is visual anticipation of collision during self-motion related to perceptual style?. Acta Psychologica, 1998, 98, 1-16.	1.5	20
198	Projections from the accessory optic system and pretectum to the dorsolateral thalamus in the pigeon (Columbia livia): A study using both anterograde and retrograde tracers. Journal of Comparative Neurology, 1998, 391, 456-469.	1.6	32
199	Topographical organization of inferior olive cells projecting to translation and rotation zones in the vestibulocerebellum of pigeons. Neuroscience, 1998, 85, 605-614.	2.3	46
200	How Is Human Gait Controlled by Vision. Ecological Psychology, 1998, 10, 287-302.	1.1	152
201	Visually Controlled Locomotion: 40 years Later. Ecological Psychology, 1998, 10, 177-219.	1.1	127

#	Article	IF	CITATIONS
202	Visually Controlled Locomotion: Its Dependence on Optic Flow, Three-Dimensional Space Perception, and Cognition. Ecological Psychology, 1998, 10, 271-285.	1.1	51
203	Introduction: Visually Controlled Locomotion and Orientation. Ecological Psychology, 1998, 10, 157-159.	1.1	1
204	Ecological Robotics. Adaptive Behavior, 1998, 6, 473-507.	1.9	95
205	Looming Responses to Obstacles and Apertures: The Role of Accretion and Deletion of Background Texture. Psychological Science, 1998, 9, 49-52.	3.3	27
206	Action-Perception Patterns Emerge From Coupling and Adaptation. Ecological Psychology, 1998, 10, 323-346.	1.1	70
207	Intentionality And Qualia. SynthÃ^se, 1999, 121, 249-289.	1.1	2
208	What guides the selection of alternate foot placement during locomotion in humans. Experimental Brain Research, 1999, 128, 441-450.	1.5	91
209	Online steering: coordination and control of body center of mass, head and body reorientation. Experimental Brain Research, 1999, 129, 0629-0634.	1.5	302
210	Optic Flow Helps Humans Learn to Navigate through Synthetic Environments. Perception, 2000, 29, 801-818.	1.2	22
211	Distance Telescopes: A Survey of User Success. Optometry and Vision Science, 2000, 77, 260-269.	1.2	14
212	Why you should look where you are going. Nature Neuroscience, 2000, 3, 647-648.	14.8	142
213	Exploration in the service of prospective control. , 2000, 23, 441-460.		71
214	Ecological interface design: Some premises. , 2000, , 125-135.		0
215	Environmental Cues Involved in the Visual Anticipation of a Collision. Proceedings of the Human Factors and Ergonomics Society, 2000, 44, 3-332-3-335.	0.3	1
216	Discussion: The Roots of Emerging Ecological Psychology. Ecological Psychology, 2000, 12, 345-352.	1.1	2
217	Toward an Ecological Field Theory of Perceptual Control of Locomotion. Ecological Psychology, 2000, 12, 141-180.	1.1	114
218	An Investigation of Navigation Processes in Human Locomotor Behavior. Proceedings of the Human Factors and Ergonomics Society, 2000, 44, 233-236.	0.3	2
219	Balance control and posture differences in the anxious BALB/cByJ mice compared to the non anxious C57BL/6J mice. Behavioural Brain Research, 2000, 117, 185-195.	2.2	46

ARTICLE IF CITATIONS # Steering with or without the flow: is the retrieval of heading necessary?. Trends in Cognitive 220 7.8 113 Sciences, 2000, 4, 319-324. 221 Heading perception and the allocation of attention. Vision Research, 2000, 40, 2533-2543. 1.4 Attention mechanisms for multi-location first- and second-order motion perception. Vision Research, 222 1.4 64 2000, 40, 173-186. Where Is the Information for Affordances?. Ecological Psychology, 2000, 12, 53-56. Can robots make good models of biological behaviour?. Behavioral and Brain Sciences, 2001, 24, 224 0.7 323 1033-1050. The future of flow?. Trends in Cognitive Sciences, 2001, 5, 7-8. 7.8 Steering toward a goal by equalizing taus.. Journal of Experimental Psychology: Human Perception and 226 0.9 23 Performance, 2001, 27, 953-968. Control of steering in the presence of unexpected head yaw movements. Experimental Brain Research, 1.5 29 2001, 138, 128-134. Visually induced gait deviations during different locomotion speeds. Experimental Brain Research, 228 1.5 58 2001, 141, 370-374. A Visual Equalization Strategy for Locomotor Control: Of Honeybees, Robots, and Humans. 229 3.3 Psychological Science, 2002, 13, 272-278. Detecting surface features during locomotion using optic flow., 0,,. 230 8 Believable decision for virtual actors., 0, , . Stability and skill in driving. Human Movement Science, 2002, 21, 749-784. 232 1.4 35 Temporal information for spatially constrained locomotion. Experimental Brain Research, 2002, 146, 129-141. 1.5 Walking, looking to the side, and taking curved paths. Perception & Psychophysics, 2002, 64, 415-425. 234 2.3 14 A Dynamical Model of Visually-Guided Steering, Obstacle Avoidance, and Route Selection. International Journal of Computer Vision, 2003, 54, 13-34. How far ahead do we look when required to step on specific locations in the travel path during 236 290 1.5locomotion?. Experimental Brain Research, 2003, 148, 133-138. Relative contributions of visual and vestibular information on the trajectory of human gait. 1.5 38 Experimental Brain Research, 2003, 153, 113-117.

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
238	A neural network model of spiral–planar motion tuning in MSTd. Vision Research, 2003, 43, 577-595.	1.4	15
239	Neuronal correlates of context-related behavior. Journal of Pragmatics, 2003, 35, 485-504.	1.5	0
240	Learning to Keep Balance. Advances in Child Development and Behavior, 2003, 30, 1-40.	1.3	9
241	Beyond the Lens Model and Direct Perception: Toward a Broader Ecological Psychology. Ecological Psychology, 2003, 15, 241-267.	1.1	44
242	Controlling steering and judging heading: Retinal flow, visual direction, and extraretinal information Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 363-378.	0.9	103
243	Control Strategy for a Hand Balance. Motor Control, 2003, 7, 421-442.	0.6	23
244	Eye-movements aid the control of locomotion. Journal of Vision, 2003, 3, 3.	0.3	103
245	Theory testing and the global array. Behavioral and Brain Sciences, 2004, 27, 892-900.	0.7	3
247	Chapter 20 How time-to-contact is involved in the regulation of goal-directed locomotion. Advances in Psychology, 2004, 135, 475-491.	0.1	2
248	Learning to Use Visual Information. Ecological Psychology, 2004, 16, 115-128.	1.1	4
249	Judgments of Speed of Self-Motion: Modeling the Relative Effects of Speed and Altitude Change. Proceedings of the Human Factors and Ergonomics Society, 2004, 48, 1923-1927.	0.3	1
250	Using Perceptual Boundaries to Control Braking Actions. Proceedings of the Human Factors and Ergonomics Society, 2004, 48, 2300-2303.	0.3	1
251	From Optic Flow to Laws of Control. , 2004, , 307-337.		29
252	Chapter 10 Textured tau. Advances in Psychology, 2004, 135, 229-242.	0.1	2
253	Visual guidance based on optic flow: a biorobotic approach. Journal of Physiology (Paris), 2004, 98, 281-292.	2.1	37
254	The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion. Experimental Brain Research, 2004, 155, 459-468.	1.5	174
255	Expected and unexpected head yaw movements result in different modifications of gait and whole body coordination strategies. Experimental Brain Research, 2004, 157, 94-110.	1.5	31
257	A new method for the assessment of spatial orientation and spatial anxiety in mice. Brain Research Protocols, 2004, 13, 159-165.	1.6	8

#	Article	IF	CITATIONS
258	Geographical Slant Facilitates Navigation and Orientation in Virtual Environments. Perception, 2004, 33, 667-687.	1.2	73
259	Visual Guidance of Intercepting a Moving Target on Foot. Perception, 2004, 33, 689-715.	1.2	123
260	A Two-Point Visual Control Model of Steering. Perception, 2004, 33, 1233-1248.	1.2	336
261	Chapter 5 Collisions: Getting them under control. Advances in Psychology, 2004, , 67-91.	0.1	12
262	Chapter 14 Interception of projectiles, from When & where to Where once. Advances in Psychology, 2004, 135, 327-353.	0.1	1
263	Importance of perceptual representation in the visual control of action. , 2005, , .		0
264	Perceiving Possibilities for Action: On the Necessity of Calibration and Perceptual Learning for the Visual Guidance of Action. Perception, 2005, 34, 717-740.	1.2	149
265	Optical flow and viewpoint change modulate the perception and memorization of complex motion. Perception & Psychophysics, 2005, 67, 951-961.	2.3	19
266	Accurate motion-produced distance and direction under systematically distorted perception. Japanese Psychological Research, 2005, 47, 163-174.	1.1	0
267	Gliding behaviour elicited by lateral looming stimuli in flying locusts. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 61-73.	1.6	96
270	Learning from experience. , 2005, , 17-45.		0
271	From here to synchrony. , 2005, , 46-65.		0
272	What to make of coincidence. , 2005, , 66-80.		0
273	The topography of intersubjective space. , 2005, , 81-112.		0
274	The two axes of psychological explanation. , 2005, , 113-132.		0
275	Pictures of psychical change. , 2005, , 133-154.		0
276	Research among equals. , 2005, , 155-185.		0
277	Validating the curriculum. , 2005, , 186-204.		0

#	Article	IF	CITATIONS
280	Spatial Orientation Using Echolocation $\hat{a} \in$ " Characterising Signals for Downconversion. Proceedings of the Human Factors and Ergonomics Society, 2005, 49, 1009-1013.	0.3	0
282	From discrete actors to goal-directed actions: toward a process-based methodology for psychology. Philosophical Psychology, 2005, 18, 353-382.	0.9	9
283	Identifying visual–vestibular contributions during target-directed locomotion. Neuroscience Letters, 2005, 384, 217-221.	2.1	16
284	Spectrally similar periodic and non-periodic optic flows evoke different postural sway responses. Gait and Posture, 2006, 23, 180-188.	1.4	23
285	Any way you look at it, successful obstacle negotiation needs visually guided on-line foot placement regulation during the approach phase. Neuroscience Letters, 2006, 397, 110-114.	2.1	152
286	Neurophysiology of Perceptual and Motor Aspects of Interception. Journal of Neurophysiology, 2006, 95, 1-13.	1.8	95
287	Visual contribution to walking in children with Developmental Coordination Disorder. Child: Care, Health and Development, 2006, 32, 711-722.	1.7	48
288	Perception of heading without retinal optic flow. Perception & Psychophysics, 2006, 68, 872-878.	2.3	18
289	Eccentric eye and head positions in darkness induce deviation from the intended path. Experimental Brain Research, 2006, 174, 152-157.	1.5	19
290	Simultaneous measurement of steering performance and perceived heading on a curving path. ACM Transactions on Applied Perception, 2006, 3, 83-94.	1.9	5
291	Judgments of path, not heading, guide locomotion Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 88-96.	0.9	37
292	Dynamic Sensorimotor Interactions in Locomotion. Physiological Reviews, 2006, 86, 89-154.	28.8	921
293	Visual Control of Action Without Retinal Optic Flow. Psychological Science, 2006, 17, 214-221.	3.3	17
294	Neural Systems in the Visual Control of Steering. Journal of Neuroscience, 2007, 27, 8002-8010.	3.6	54
295	The Effect of Visual Experience on the Development of Functional Architecture in hMT+. Cerebral Cortex, 2007, 17, 2933-2939.	2.9	163
297	Exploring direct downconversion of ultrasound for human echolocation. , 2007, , .		1
298	Mobility interfaces for the visually impaired. , 2007, , .		6
299	Effects of Virtual Reality Immersion and Walking Speed on Coordination of Arm and Leg Movements. Presence: Teleoperators and Virtual Environments, 2007, 16, 399-413.	0.6	16

#	Article	IF	CITATIONS
300	Calibration of locomotion resulting from visual motion in a treadmill-based virtual environment. ACM Transactions on Applied Perception, 2007, 4, 4.	1.9	71
301	Gaze fixation patterns during goal-directed locomotion while navigating around obstacles and a new route-selection model. , 2007, , 677-696.		4
302	A musculoskeletal model of low grade connective tissue inflammation in patients with thyroid associated ophthalmopathy (TAO): the WOMED concept of lateral tension and its general implications in disease. BMC Musculoskeletal Disorders, 2007, 8, 17.	1.9	10
303	Optic flow and geometric field of view in a driving simulator display. Displays, 2007, 28, 145-149.	3.7	24
304	Gait deviations induced by visual stimulation in roll. Experimental Brain Research, 2008, 185, 21-26.	1.5	9
305	Evidence for flow-parsing in radial flow displays. Vision Research, 2008, 48, 655-663.	1.4	59
306	Cortical mechanisms involved in visuomotor coordination during precision walking. Brain Research Reviews, 2008, 57, 199-211.	9.0	172
307	Central Processing of Visual Information in Insects. , 2008, , 131-203.		21
308	Strategies used to walk through a moving aperture. Gait and Posture, 2008, 27, 595-602.	1.4	27
309	Task-specific modulations of locomotor action parameters based on on-line visual information during collision avoidance with moving objects. Human Movement Science, 2008, 27, 513-531.	1.4	31
310	Role of Peripheral Visual Cues in Online Visual Guidance of Locomotion. Exercise and Sport Sciences Reviews, 2008, 36, 145-151.	3.0	91
311	Perception of Robot Passability With Direct Line of Sight and Teleoperation. Human Factors, 2009, 51, 557-570.	3.5	29
312	Using Radial Outflow to Provide Depth Information During Teleoperation. Presence: Teleoperators and Virtual Environments, 2009, 18, 304-320.	0.6	7
313	Effects of Optic Flow Speed and Lateral Flow Asymmetry on Locomotion in Younger and Older Adults: A Virtual Reality Study. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2009, 64B, 222-231.	3.9	43
314	Perception of scene-relative object movement: Optic flow parsing and the contribution of monocular depth cues. Vision Research, 2009, 49, 1406-1419.	1.4	61
315	Recognition of natural scenes from global properties: Seeing the forest without representing the trees. Cognitive Psychology, 2009, 58, 137-176.	2.2	377
316	Self-controlled concurrent feedback and the education of attention towards perceptual invariants. Human Movement Science, 2009, 28, 450-467.	1.4	48
317	Gaze behavior during locomotion through apertures: The effect of locomotion forms. Human Movement Science, 2009, 28, 760-771.	1.4	21

#	Article	IF	CITATIONS
318	â€~Deep implications' or â€~an oversimplified approachâ€~?–Gibson's ideas 50 years on. British Journal of Psychology, 2009, 100, 273-276.	2.3	1
319	How do animals get about by vision? Visually controlled locomotion and orientation after 50 years. British Journal of Psychology, 2009, 100, 277-281.	2.3	10
320	Visually evoked whole-body turning responses during stepping in place in a virtual environment. Gait and Posture, 2009, 30, 317-321.	1.4	27
321	Ocular fixation, vestibular dysfunction, and visual motion hypersensitivity. Optometry - Journal of the American Optometric Association, 2009, 80, 502-512.	0.6	26
322	Modulation of Visually Evoked Movement Responses in Moving Virtual Environments. Perception, 2009, 38, 652-663.	1.2	0
324	Visual Feedforward Control in Human Locomotion during Avoidance of Obstacles That Change Size. Motor Control, 2010, 14, 424-439.	0.6	7
325	Effects of intention and learning on attention to information in dynamic touch. Attention, Perception, and Psychophysics, 2010, 72, 721-735.	1.3	44
326	Using vision to control locomotion: looking where you want to go. Experimental Brain Research, 2010, 204, 539-547.	1.5	71
327	Balancing deceit and disguise: How to successfully fool the defender in a 1 vs. 1 situation in rugby. Human Movement Science, 2010, 29, 412-425.	1.4	66
328	Learning by doing: Action performance facilitates affordance perception. Vision Research, 2010, 50, 2758-2765.	1.4	78
329	Visually guided navigation: Head-mounted eye-tracking of natural locomotion in children and adults. Vision Research, 2010, 50, 2766-2774.	1.4	148
330	Endogenous versus exogenous change: Change detection, self and agency. Consciousness and Cognition, 2010, 19, 198-214.	1.5	6
331	Visual–vestibular cue integration for heading perception: applications of optimal cue integration theory. European Journal of Neuroscience, 2010, 31, 1721-1729.	2.6	119
332	Sensitivity of the Goldfish Motion Detection System Revealed by Incoherent Random Dot Stimuli: Comparison of Behavioural and Neuronal Data. PLoS ONE, 2010, 5, e9461.	2.5	6
333	Differences in Movement Mechanics, Electromyographic, and Motor Cortex Activity Between Accurate and Nonaccurate Stepping. Journal of Neurophysiology, 2010, 103, 2285-2300.	1.8	60
334	A Contribution of Area 5 of the Posterior Parietal Cortex to the Planning of Visually Guided Locomotion: Limb-Specific and Limb-Independent Effects. Journal of Neurophysiology, 2010, 103, 986-1006.	1.8	47
335	Frequency response of lift control in Drosophila. Journal of the Royal Society Interface, 2010, 7, 1603-1616.	3.4	16
336	Changes to Control of Adaptive Gait in Individuals with Long-standing Reduced Stereoacuity. , 2010, 51, 2487.		52

		CITATION REPORT		
#	Article		IF	CITATIONS
337	On the Distinctive Features of Ecological Laws. Ecological Psychology, 2010, 22, 44-68		1.1	10
338	Effects of Reduced Contrast on the Perception and Control of Speed When Driving. Per 39, 1199-1215.	rception, 2010,	1.2	37
339	Collision Detection as a Model for Sensory-Motor Integration. Annual Review of Neuros 34, 1-19.	cience, 2011,	10.7	148
340	How simple rules determine pedestrian behavior and crowd disasters. Proceedings of th Academy of Sciences of the United States of America, 2011, 108, 6884-6888.	ne National	7.1	867
341	An evaluation of mechanisms underlying the influence of step cues on gait in Parkinsor Journal of Clinical Neuroscience, 2011, 18, 798-802.	ı's disease.	1.5	30
342	Driving skills of young adults with developmental coordination disorder: Regulating spectrum coping with distraction. Research in Developmental Disabilities, 2011, 32, 1301-1308.	ed and	2.2	26
344	Depth Perception and Defensive System Activation in a 3-D Environment. Frontiers in P 2, 205.	sychology, 2011,	2.1	7
345	The tau of flight control. Aeronautical Journal, 2011, 115, 521-556.		1.6	26
346	Control of a virtual vehicle influences postural activity and motion sickness Journal of Experimental Psychology: Applied, 2011, 17, 128-138.		1.2	84
347	Athletic experience influences shoulder rotations when running through apertures. Hur Movement Science, 2011, 30, 534-549.	nan	1.4	66
348	Effect of narrowing the base of support on the gait, gaze and quiet eye of elite ballet da controls. Cognitive Processing, 2011, 12, 267-276.	ancers and	1.4	10
349	Real-time retrieval for case-based reasoning in interactive multiagent-based simulations Systems With Applications, 2011, 38, 5145-5153.	. Expert	7.6	10
350	Modeling locomotor control. ACM Transactions on Applied Perception, 2011, 8, 1-18.		1.9	4
351	Neural processing of imminent collision in humans. Proceedings of the Royal Society B: Sciences, 2011, 278, 1476-1481.	Biological	2.6	80
352	Motor planning of locomotor adaptations on the basis of vision. Progress in Brain Rese 83-100.	arch, 2011, 188,	1.4	32
353	Perceiving for Acting With Teleoperated Robots: Ecological Principles to Human–Rob Design. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Hum 1460-1475.		2.9	12
354	On Intelligence From First Principles: Guidelines for Inquiry Into the Hypothesis of Physi Intelligence (PI). Ecological Psychology, 2012, 24, 3-32.	cal	1.1	79
355	Orienting Under Load: Intrinsic Dynamics and Postural Affordances for Visual Perceptio Psychology, 2012, 24, 95-121.	n. Ecological	1.1	12

#	Article	IF	CITATIONS
356	Unnerving Intelligence. Ecological Psychology, 2012, 24, 241-264.	1.1	18
357	Control of a Virtual Avatar Influences Postural Activity and Motion Sickness. Ecological Psychology, 2012, 24, 279-299.	1.1	34
358	The cognitive implications of virtual locomotion with a restricted field of view. Proceedings of SPIE, 2012, , .	0.8	1
359	Ecological gait dynamics: stability, variability and optimal design. Footwear Science, 2012, 4, 167-182.	2.1	6
360	Saliency detection and model-based tracking: a two part vision system for small robot navigation in forested environment. , 2012, , .		17
362	Fast visual prediction and slow optimization of preferred walking speed. Journal of Neurophysiology, 2012, 107, 2549-2559.	1.8	61
363	The role of discrepant retinal motion during walking in the realignment of egocentric space. Journal of Vision, 2012, 12, 4-4.	0.3	11
364	Simple Cognitive Heuristics Applied to Modeling Pedestrian Behavior Dynamics. Procedia, Social and Behavioral Sciences, 2012, 43, 571-578.	0.5	3
365	Effects of Near-Threshold Stimulation of the Vestibular Apparatus on Postural Responses Evoked by Displacements of the Visualized Surrounding. Neurophysiology, 2012, 43, 377-383.	0.3	1
366	Luminance and contrast in visual perception of time to collision. Vision Research, 2013, 89, 18-23.	1.4	12
367	What variables affect to a greater extent the driver's vision while driving?. Transport, 2013, 28, 331-340.	1.2	23
368	Why motor simulation cannot explain affordance perception. Adaptive Behavior, 2013, 21, 286-298.	1.9	6
369	Affordances in Situation Theory. Ecological Psychology, 2013, 25, 155-181.	1.1	7
370	Displaying Optic Flow to Simulate Locomotion: Comparing Heading and Steering. I-Perception, 2013, 4, 333-346.	1.4	4
371	Optic flow asymmetries bias high-speed steering along roads. Journal of Vision, 2013, 13, 23-23.	0.3	19
372	Visuomotor Control of Human Adaptive Locomotion: Understanding the Anticipatory Nature. Frontiers in Psychology, 2013, 4, 277.	2.1	60
373	Scene analysis in the natural environment. Frontiers in Psychology, 2014, 5, 199.	2.1	42
374	Future path and tangent point models in the visual control of locomotion in curve driving. Journal of Vision, 2014, 14, 21-21.	0.3	71

	Сітаті	ION REPORT	
#	Article	IF	CITATIONS
375	Spatiotemporal stimulus properties modulate responses to trajectory changes in a locust looming-sensitive pathway. Journal of Neurophysiology, 2014, 111, 1736-1745.	1.8	16
376	Concurrent Performance of a Cognitive and Dynamic Obstacle Avoidance Task: Influence of Dual-Task Training. Journal of Motor Behavior, 2014, 46, 357-368.	0.9	18
377	Simple Heuristics and the Modelling of Crowd Behaviours. , 2014, , 75-90.		15
378	Direct superpixel labeling for mobile robot navigation using learned general optical flow templates. , 2014, , .		6
379	Gaze shifts and fixations dominate gaze behavior of walking cats. Neuroscience, 2014, 275, 477-499.	2.3	14
380	Simulated Visual Field Loss Does Not Alter Turning Coordination in Healthy Young Adults. Journal of Motor Behavior, 2014, 46, 423-431.	0.9	4
381	Central complex neurons exhibit behaviorally gated responses to visual motion in <i>Drosophila</i> . Journal of Neurophysiology, 2014, 111, 62-71.	1.8	63
382	A driver model using optic information for longitudinal and lateral control of a long vehicle combination. , 2014, , .		3
383	Monocular distance estimation from optic flow during active landing maneuvers. Bioinspiration and Biomimetics, 2014, 9, 025002.	2.9	49
384	Importance of optic flow for postural stability of male and female young adults. European Journal of Applied Physiology, 2014, 114, 71-83.	2.5	30
385	Effects of driving experience and sensation-seeking on drivers' adaptation to road environment complexity. Safety Science, 2014, 62, 121-129.	4.9	44
386	People perception: Social vision of groups and consequences for organizing and interacting. Research in Organizational Behavior, 2014, 34, 101-127.	1.2	31
387	Influence of optic flow on the control of heading and target egocentric direction during steering toward a goal. Journal of Neurophysiology, 2014, 112, 766-777.	1.8	15
388	Visual control of trunk translation and orientation during locomotion. Experimental Brain Research, 2014, 232, 1941-1951.	1.5	17
389	Memory-guided obstacle crossing: more failures were observed for the trail limb versus lead limb. Experimental Brain Research, 2014, 232, 2131-2142.	1.5	41
390	Allocentric time-to-contact and the devastating effect of perspective. Vision Research, 2014, 105, 53-60.	1.4	8
391	Prospective dynamic balance control during the swing phase of walking: Stability boundaries and time-to-contact analysis. Human Movement Science, 2014, 36, 227-245.	1.4	9
392	Spiral motion selective neurons in area MSTd contribute to judgments of heading. Journal of Neurophysiology, 2014, 111, 2332-2342.	1.8	11

#	Article	IF	Citations
393	Effects of distance and eye-height on time-to-contact estimates. Movement and Sports Sciences - Science Et Motricite, 2015, , 17-27.	0.3	1
394	How we remember what we can do. Socioaffective Neuroscience & Psychology, 2015, 5, 24807.	2.9	3
395	Treacherous Pavements: Paving Slab Patterns Modify Intended Walking Directions. PLoS ONE, 2015, 10, e0130034.	2.5	7
396	The "textbook Gibson†The assimilation of dissidence History of Psychology, 2015, 18, 1-14.	0.3	31
397	Vision and vigilance on the go. Trends in Cognitive Sciences, 2015, 19, 115-116.	7.8	2
398	On-line and model-based approaches to the visual control of action. Vision Research, 2015, 110, 190-202.	1.4	89
399	Informational constraints on spontaneous visuomotor entrainment. Human Movement Science, 2015, 41, 265-281.	1.4	17
400	Effects of visual fidelity on curve negotiation, gaze behaviour and simulator discomfort. Ergonomics, 2015, 58, 1347-1364.	2.1	13
401	Soundâ€induced stabilization of breathing and moving. Annals of the New York Academy of Sciences, 2015, 1337, 94-100.	3.8	23
402	A GPU-accelerated cortical neural network model for visually guided robot navigation. Neural Networks, 2015, 72, 75-87.	5.9	28
403	Functional divisions for visual processing in the central brain of flying <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5523-32.	7.1	115
404	Visual illusions and direct perception: Elaborating on Gibson's insights. New Ideas in Psychology, 2015, 36, 1-9.	1.9	7
405	Dynamic Echo Information Guides Flight in the Big Brown Bat. Frontiers in Behavioral Neuroscience, 2016, 10, 81.	2.0	21
406	Infant Social Development across the Transition from Crawling to Walking. Frontiers in Psychology, 2016, 7, 960.	2.1	54
407	Large-Scale Patterns in a Minimal Cognitive Flocking Model: Incidental Leaders, Nematic Patterns, and Aggregates. Physical Review Letters, 2016, 117, 248001.	7.8	100
408	Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review. BioMedical Engineering OnLine, 2016, 15, 144.	2.7	59
409	Origins and Development of <i>Ecological Psychology</i> , the Journal. Ecological Psychology, 2016, 28, 65-77.	1.1	1
410	Visibility of urban activities and pedestrian routes: An experiment in a virtual environment. Computers, Environment and Urban Systems, 2016, 58, 60-70.	7.1	52

#	Article	IF	CITATIONS
411	The need for speed: global optic flow speed influences steering. Royal Society Open Science, 2016, 3, 160096.	2.4	14
412	Comparative approaches to escape. Current Opinion in Neurobiology, 2016, 41, 167-173.	4.2	61
413	Eye movements in the wild: Oculomotor control, gaze behavior & frames of reference. Neuroscience and Biobehavioral Reviews, 2016, 69, 49-68.	6.1	58
414	Two identified looming detectors in the locust: ubiquitous lateral connections among their inputs contribute to selective responses to looming objects. Scientific Reports, 2016, 6, 35525.	3.3	45
415	Optic flow stabilizes flight in ruby-throated hummingbirds. Journal of Experimental Biology, 2016, 219, 2443-8.	1.7	21
416	An assessment of auditory-guided locomotion in an obstacle circumvention task. Experimental Brain Research, 2016, 234, 1725-1735.	1.5	25
417	The temporal dynamics of heading perception in the presence of moving objects. Journal of Neurophysiology, 2016, 115, 286-300.	1.8	21
418	The organization of exploratory behaviors in infant locomotor planning. Developmental Science, 2017, 20, e12421.	2.4	53
419	Self-estimation of physical ability in stepping over an obstacle is not mediated by visual height perception: a comparison between young and older adults. Psychological Research, 2017, 81, 740-749.	1.7	12
420	The "field of safe travel―revisited: interpreting driving behaviour performance through a holistic approach. Transport Reviews, 2017, 37, 695-714.	8.8	8
421	Sensorimotor integration of vision and proprioception for obstacle crossing in ambulatory individuals with spinal cord injury. Journal of Neurophysiology, 2017, 117, 36-46.	1.8	17
422	Coding of navigational affordances in the human visual system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4793-4798.	7.1	149
423	How humans use visual optic flow to regulate stepping during walking. Gait and Posture, 2017, 57, 15-20.	1.4	29
424	Action ability modulates time-to-collision judgments. Experimental Brain Research, 2017, 235, 2729-2739.	1.5	15
425	A tiger beetle's pursuit of prey depends on distance. Physical Biology, 2017, 14, 026004.	1.8	3
426	Effect of spatial scale on children's performance in a searching task. Journal of Environmental Psychology, 2017, 49, 86-95.	5.1	7
427	Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During Self-Motion. I-Perception, 2017, 8, 204166951770820.	1.4	30
428	Optic flow-based collision-free strategies: From insects to robots. Arthropod Structure and Development, 2017, 46, 703-717.	1.4	112

ARTICLE IF CITATIONS # Affordances and neuroscience: Steps towards a successful marriage. Neuroscience and Biobehavioral 429 6.1 39 Reviews, 2017, 80, 622-629. Extended tau theory for robot motion control., 2017,,. 431 Ultra-selective looming detection from radial motion opponency. Nature, 2017, 551, 237-241. 27.8 121 The Effects of Motion Feedback in Manual Preview Tracking Tasks., 2017,,. Visuomotor Entrainment and the Frequency-Dependent Response of Walking Balance to Perturbations. 433 4.9 28 IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1135-1142. Mind Your Step: the Effects of Mobile Phone Use on Gaze Behavior in Stair Climbing. Journal of Technology in Behavioral Science, 2017, 2, 109-120. 434 2.3 When the Sound Becomes the Goal. 4E Cognition and Teleomusicality in Early Infancy. Frontiers in 435 2.1 22 Psychology, 2017, 8, 1585. Virtual Reality As a Training Tool to Treat Physical Inactivity in Children. Frontiers in Public Health, 436 2.7 2017, 5, 349. Pigeons (C. livia) Follow Their Head during Turning Flight: Head Stabilization Underlies the Visual 437 2.8 20 Control of Flight. Frontiers in Neuroscience, 2017, 11, 655. Intercepting a moving target: On-line or model-based control?. Journal of Vision, 2017, 17, 12. Blindness enhances auditory obstacle circumvention: Assessing echolocation, sensory substitution, 439 2.5 45 and visual-based navigation. PLoS ONE, 2017, 12, e0175750. Fixation Prediction and Visual Priority Maps for Biped Locomotion. IEEE Transactions on Cybernetics, 440 9.5 2018, 48, 2294-2306. Effects of Linear Perspective on Human Use of Preview in Manual Control. IEEE Transactions on 441 3.5 12 Human-Machine Systems, 2018, 48, 496-508. Living in Space. A Phenomenological Account., 2018, , 3-52. 442 443 An ecological approach to creativity in making. New Ideas in Psychology, 2018, 49, 1-6. 1.9 33 The Primary Role of Flow Processing in the Identification of Scene-Relative Object Movement. Journal 444 of Neuroscience, 2018, 38, 1737-1743. The influence of visual flow and perceptual load on locomotion speed. Attention, Perception, and 445 1.319 Psychophysics, 2018, 80, 69-81. 446 Identification and Modeling of Driver Multiloop Feedback and Preview Steering Control., 2018, , .

ARTICLE IF CITATIONS Steering bends and changing lanes: The impact of optic flow and road edges on two point steering 0.3 6 447 control. Journal of Vision, 2018, 18, 14. Do Older Adults Select Appropriate Motor Strategies in a Stepping-Down Paradigm?. Frontiers in 448 2.8 Physiology, 2018, 9, 1419. 449 Visual Control of Walking Speed in Drosophila. Neuron, 2018, 100, 1460-1473.e6. 8.1 59 Wide-eyed glare scares raptors: From laboratory evidence to applied management. PLoS ONE, 2018, 13, e0204802. Rapid assessment of natural visual motion integration across primate species. Proceedings of the 451 7.1 2 National Academy of Sciences of the United States of America, 2018, 115, 11112-11114. The Body Position Spatial Task, a Test of Whole-Body Spatial Cognition: Comparison Between Adults With and Without Parkinson Disease. Neurorehabilitation and Neural Repair, 2018, 32, 961-975. Computational mechanisms underlying cortical responses to the affordance properties of visual 454 3.2 79 scenes. PLoS Computational Biology, 2018, 14, e1006111. Meta-Invariant Structure in Stimulus Arrays: A Response to Mace's Zetetic Challenge to Ecological 1.1 Perceptual Researchers. Ecological Psychology, 2018, 30, 346-372. Cognitive load reduces the effects of optic flow on gait and electrocortical dynamics during 456 1.8 34 treadmill walking. Journal of Neurophysiology, 2018, 120, 2246-2259. IMAGE FLOW. Photographies, 2018, 11, 133-148. 0.2 Perception of the speed of self-motion vs. object-motion: Another example of two modes of vision?. 458 1.5 6 Consciousness and Cognition, 2018, 64, 61-71. A Tool to Quantify the Functional Impact of Oscillopsia. Frontiers in Neurology, 2018, 9, 142. 2.4 "The whole perimeter is difficult†Parkinson's disease and the conscious experience of walking in 460 1.8 7 everyday environments. Disability and Rehabilitation, 2019, 41, 2784-2791. Regular physical activity modulates perceived visual speed when running in treadmill-mediated virtual 2.5 environments. PLoS ONE, 2019, 14, e0219017. Radical Embodied Cognitive Neuroscience. Ecological Psychology, 2019, 31, 166-181. 462 23 1.1 Visual control of steering in curve driving. Journal of Vision, 2019, 19, 1. A Hierarchical View of Gecko Locomotion: Photic Environment, Physiological Optics, and Locomotor 464 2.05 Performance. Integrative and Comparative Biology, 2019, 59, 443-455. Saccular function is associated with both angular and distance errors on the triangle completion 1.5 test. Clinical Neurophysiology, 2019, 130, 2137-2143.

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
466	Gaze coordination with strides during walking in the cat. Journal of Physiology, 2019, 5	597, 5195-5229.	2.9	12
467	Functional Modeling of Human Perceptual Guidance using Constraint Set Analysis. IFA 2019, 51, 67-74.	C-PapersOnLine,	0.9	1
468	Speed perception affected by field of view: Energy-based versus rhythm-based process Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 65, 227-241.	ing.	3.7	8
469	A Markov Jump Approach to Modeling and Analysis of Pedestrian Dynamics. IEEE Acces 87808-87815.	ss, 2019, 7,	4.2	1
470	Investigating the Crucial Role of Optic Flow in Postural Control: Central vs. Peripheral Applied Sciences (Switzerland), 2019, 9, 934.	Jisual Field.	2.5	16
471	Human electrocortical dynamics while stepping over obstacles. Scientific Reports, 201	9, 9, 4693.	3.3	92
472	Getting Back Into the Loop: The Perceptual-Motor Determinants of Successful Transiti Automated Driving. Human Factors, 2019, 61, 1037-1065.	ons out of	3.5	38
473	Group formation and cohesion of active particles with visual perception–dependent 2019, 364, 70-74.	motility. Science,	12.6	168
474	Retinal Stabilization Reveals Limited Influence of Extraretinal Signals on Heading Tunin Superior Temporal Area. Journal of Neuroscience, 2019, 39, 8064-8078.	g in the Medial	3.6	12
475	An Ecological Approach to Learning in (Not and) Development. Human Development, 2	2019, 63, 180-201.	2.0	37
476	Principles of the Guidance of Exploration for Orientation and Specification of Action. F Behavioral Neuroscience, 2019, 13, 231.	rontiers in	2.0	9
477	Does misjudgement in a stepping down paradigm predict falls in an older population?. Open Science, 2019, 6, 190786.	Royal Society	2.4	1
478	Motion Estimation Made Easy: Evolution and Trends in Visual Odometry. Studies in Co Intelligence, 2019, , 305-331.	mputational	0.9	8
479	Community-dwelling adults with a history of falling report lower perceived postural sta a foam eyes closed test than non-fallers. Experimental Brain Research, 2019, 237, 769	ibility during -776.	1.5	7
480	Motion adaptation and attention: A critical review and meta-analysis. Neuroscience an Reviews, 2019, 96, 290-301.	d Biobehavioral	6.1	5
481	Multisensory Influences on Driver Steering During Curve Navigation. Human Factors, 2	:019, 61, 337-347.	3.5	1
482	Optimal trajectory generation for time-to-contact based aerial robotic perching. Bioins Biomimetics, 2019, 14, 016008.	piration and	2.9	13
483	Optic flow improves step width and length in older adults while performing dual task. and Experimental Research, 2019, 31, 1077-1086.	Aging Clinical	2.9	7

"	Article	IF.	Ciziziana
#	Principles Underlying Locomotor Trajectory Formation. , 2019, , 1679-1695.	IF	CITATIONS
-0-			0
485	Reasons for pragmatism: affording epistemic contact in a shared environment. Phenomenology and the Cognitive Sciences, 2019, 18, 973-997.	1.8	16
486	High Spider-Fearful and Low Spider-Fearful Individuals Differentially Perceive the Speed of Approaching, but not Receding, Spider Stimuli. Cognitive Therapy and Research, 2019, 43, 514-521.	1.9	12
487	When flow is not enough: evidence from a lane changing task. Psychological Research, 2020, 84, 834-849.	1.7	2
488	Looking behavior and potential human interactions during locomotion. Journal of Vision, 2020, 20, 5.	0.3	15
489	Bumblebees perceive the spatial layout of their environment in relation to their body size and form to minimize inflight collisions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31494-31499.	7.1	30
490	Contribution of the ventrolateral thalamus to the locomotion-related activity of motor cortex. Journal of Neurophysiology, 2020, 124, 1480-1504.	1.8	10
491	Roles of visual and non-visual information in the perception of scene-relative object motion during walking. Journal of Vision, 2020, 20, 15.	0.3	7
492	Ecological Psychology and Enaction Theory: Divergent Groundings. Frontiers in Psychology, 2020, 11, 991.	2.1	34
493	An Algorithmic Approach to Natural Behavior. Current Biology, 2020, 30, R663-R675.	3.9	35
494	Locomotor Coordination, Visual Perception and Head Stability during Running. Brain Sciences, 2020, 10, 174.	2.3	8
495	Gender Differences in Postural Stability among 13-Year-Old Alpine Skiers. International Journal of Environmental Research and Public Health, 2020, 17, 3859.	2.6	10
496	Task-related gaze control in human crowd navigation. Attention, Perception, and Psychophysics, 2020, 82, 2482-2501.	1.3	22
497	Affordance-based versus current-future accounts of choosing whether to pursue or abandon the chase of a moving target. Journal of Vision, 2020, 20, 8.	0.3	4
498	Automatic coding of environmental distance for walking-related locomotion in the foot-related sensory-motor system: A TMS study on macro-affordances. Neuropsychologia, 2021, 150, 107696.	1.6	3
499	Assessing Postural Instability and Cybersickness Through Linear and Angular Displacement. Human Factors, 2021, 63, 296-311.	3.5	20
500	Diagnostics of Ataxia in Children Who Survived Cerebellar Tumor: The Relationship Between Parameters of Tandem Gait, Saccadic System and Postural Stability. Advances in Intelligent Systems and Computing, 2021, , 612-618.	0.6	2
501	Theoretical interpretation of drivers' gaze strategy influenced by optical flow. Scientific Reports, 2021, 11, 2389.	3.3	4

#	Article	IF	CITATIONS
502	Can Dogs Limbo? Dogs' Perception of Affordances for Negotiating an Opening. Animals, 2021, 11, 620.	2.3	3
503	Reafference and the origin of the self in early nervous system evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190764.	4.0	30
505	Look where you go: Characterizing eye movements toward optic flow. Journal of Vision, 2021, 21, 19.	0.3	5
506	External visual perturbation impacts muscle activation while walking on incline treadmill. Acta Astronautica, 2021, 180, 482-488.	3.2	1
507	Sensory Input Modulates Microsaccades during Heading Perception. International Journal of Environmental Research and Public Health, 2021, 18, 2865.	2.6	2
508	Information Is Where You Find It: Perception as an Ecologically Well-Posed Problem. I-Perception, 2021, 12, 204166952110003.	1.4	19
509	A Turntable Setup for Testing Visual and Tactile Grasping Movements in Non-human Primates. Frontiers in Behavioral Neuroscience, 2021, 15, 648483.	2.0	1
510	The effects of different environments on older adults' ability to successfully cross a closing gap in virtual reality. Gait and Posture, 2021, 87, 1-5.	1.4	0
511	Visual art history and the psychology of perception: Perspectivism and its 20th century abandonment in the visual arts and in Gibson's ecological psychology. Journal of the History of the Behavioral Sciences, 2022, 58, 59-84.	0.7	4
512	Visually and Tactually Guided Grasps Lead to Different Neuronal Activity in Non-human Primates. Frontiers in Neuroscience, 2021, 15, 679910.	2.8	0
513	Icy road ahead—rapid adjustments of gaze–gait interactions during perturbed naturalistic walking. Journal of Vision, 2021, 21, 11.	0.3	4
514	Effects of social position and household affordances on COVID-19 lockdown resilience and coping. Journal of Environmental Psychology, 2021, 78, 101687.	5.1	7
516	Egocentric Direction and the Visual Guidance of Robot Locomotion Background, Theory and Implementation. Lecture Notes in Computer Science, 2002, , 576-591.	1.3	12
517	Object Avoidance During Locomotion. Advances in Experimental Medicine and Biology, 2009, 629, 293-315.	1.6	27
518	Egocentric Direction and Locomotion. , 2004, , 339-362.		3
522	Model-Based Control of Perception/Action. , 2004, , 421-441.		22
523	Sensory Contributions to Spatial Knowledge of Real and Virtual Environments. , 2013, , 3-26.		22
524	Perception And Control Of Self-Motion: Implications For Visual Simulation Of Vehicular Locomotion. Recent Research in Psychology, 1987, , 40-70.	0.5	11

#	Article	IF	CITATIONS
525	Collision Avoidance Models, Visually Guided. , 2013, , 1-21.		1
526	The Generation and Early Development of Spatial Inferences. , 1983, , 39-71.		12
527	Sensorimotor Recalibration in Virtual Environments. Virtual Reality Technologies for Health and Clinical Applications, 2014, , 71-94.	0.8	3
528	Validity of Virtual Reality Environments for Sensorimotor Rehabilitation. Virtual Reality Technologies for Health and Clinical Applications, 2014, , 95-118.	0.8	10
529	Maps as Ability Amplifiers: Using Graphical Tactile Displays to Enhance Spatial Skills in People Who Are Visually Impaired. , 2020, , 65-88.		5
531	Towards Evolved Time to Contact Neurocontrollers for Quadcopters. Lecture Notes in Computer Science, 2016, , 336-347.	1.3	2
532	Active Psychophysics: A Psychophysical Program for Closed-Loop Systems. , 1993, , 987-993.		4
533	Feature Detectors, Visumotor Coordination and Efferent Control. Lecture Notes in Biomathematics, 1982, , 100-110.	0.3	1
534	Orientation Based on Directivity, a Directional Parameter of the Animal's Radiant Environment. Proceedings in Life Sciences, 1978, , 447-458.	0.5	13
535	From Fly Vision to Robot Vision: Re-Construction as a Mode of Discovery. , 2003, , 223-236.		7
536	Der Mensch als Fahrer. , 2015, , 67-162.		5
537	Autoscopy: Disrupted Self in Neuropsychiatric Disorders and Anomalous Conscious States. , 2010, , 591-634.		9
538	The Perception-Action Coupling. , 1990, , 23-37.		44
539	Development of Perceptual-Motor Control While Walking Without Vision: The Calibration of Perception and Action. , 1990, , 379-408.		18
540	From Stepping to Adaptive Walking: Modulations of an Automatism. , 1986, , 265-278.		3
541	Visual Timing of Interceptive Action. , 1985, , 1-30.		99
542	The Development of Sensitivity of Kenetic, Binocular and Pictorial Depth Information in Human Infants. , 1985, , 113-145.		38
543	Mobility and Orientation Processes of the Blind. , 1985, , 493-508.		20

#	Article	IF	CITATIONS
544	Infants' Responses to Optical Information for Collision. , 1981, , 313-334.		31
545	Ontogeny of Perception. , 1965, , 365-403.		36
546	Maintaining Posture and Avoiding Tripping. Clinics in Geriatric Medicine, 1985, 1, 581-599.	2.6	33
548	article is based on a presentation given by the first author at the Joint Swiss-Japanese Scientific Seminar Human Motion Perception, Eye Movements, and Orientation in Visual Space, supported by the Swiss National Science Foundation in cooperation with the Japanese Society for the Promotion of Science, in Gunten (Switzerland) May 19-21, 1999, The research was supported by a Grant-in-Aids for	0.9	2
549	Scientific Research f. Swiss Journal of Psychology, 2000, 59, 102-107. Editorial: Human motion perception, eye movements, and orientation in visual space. Swiss Journal of Psychology, 2000, 59, 85-88.	0.9	2
550	Perceiving affordances: Visual guidance of stair climbing Journal of Experimental Psychology: Human Perception and Performance, 1984, 10, 683-703.	0.9	574
551	Visual control of locomotion: Strategies for changing direction and for going over obstacles Journal of Experimental Psychology: Human Perception and Performance, 1991, 17, 603-634.	0.9	163
552	How do somersaulters land on their feet?. Journal of Experimental Psychology: Human Perception and Performance, 1992, 18, 1195-1202.	0.9	35
553	Visual space perception and visually directed action Journal of Experimental Psychology: Human Perception and Performance, 1992, 18, 906-921.	0.9	362
554	The perception of egomotion Journal of Experimental Psychology: Human Perception and Performance, 1976, 2, 448-456.	0.9	50
555	Visual control of posture during walking: Functional specificity Journal of Experimental Psychology: Human Perception and Performance, 1996, 22, 818-838.	0.9	67
556	Human sensitivity to acoustic information from vessel filling Journal of Experimental Psychology: Human Perception and Performance, 2000, 26, 313-324.	0.9	26
557	Visual experience, visual field size, and the development of nonvisual sensitivity to the spatial structure of outdoor neighborhoods explored by walking Journal of Experimental Psychology: General, 1992, 121, 210-221.	2.1	45
558	Visuomotor control, eye movements, and steering: A unified approach for incorporating feedback, feedforward, and internal models Psychological Bulletin, 2018, 144, 981-1001.	6.1	45
561	Crowd Navigation in VR: Exploring Haptic Rendering of Collisions. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 2589-2601.	4.4	9
562	Visual Perception of Egocentric Distance in Real and Virtual Environments. , 2003, , 21-46.		159
563	Illusory Self-Motion in Virtual Environments. Human Factors and Ergonomics, 2014, , 435-465.	0.0	28
565	Visually Controlled Locomotion: 40 years Later. Ecological Psychology, 1998, 10, 177-219.	1.1	75

#	Article	IF	CITATIONS
566	Guiding Movement by Coupling Taus. Ecological Psychology, 1998, 10, 221-250.	1.1	116
567	Visually Controlled Locomotion: Its Dependence on Optic Flow, Three-Dimensional Space Perception, and Cognition. Ecological Psychology, 1998, 10, 271-285.	1.1	27
568	How Is Human Gait Controlled by Vision. Ecological Psychology, 1998, 10, 287-302.	1.1	80
569	Development of Visually Guided Locomotion. Ecological Psychology, 1998, 10, 303-321.	1.1	12
570	Action-Perception Patterns Emerge From Coupling and Adaptation. Ecological Psychology, 1998, 10, 323-346.	1.1	11
571	The Locust Dcmd, a Movement-Detecting Neurone Tightly Tuned to Collision Trajectories. Journal of Experimental Biology, 1997, 200, 2209-2216.	1.7	101
572	Estimation of Visual Motion Parameters Used for Bio-inspired Navigation. Journal of Image and Graphics(United Kingdom), 2013, 1, 120-124.	3.2	4
573	Harbor Seals (Phoca vitulina) Can Perceive Optic Flow under Water. PLoS ONE, 2014, 9, e103555.	2.5	8
574	Physical Health Problems and Environmental Challenges Influence Balancing Behaviour in Laying Hens. PLoS ONE, 2016, 11, e0153477.	2.5	29
575	Gaze Behavior During Simulated Driving: Elements for a Visual Driving Aid. , 2005, , .		3
576	Characteristics and Individual Differences of Human Actions for Avoiding Harm to Eyes from a Robot. Journal of Robotics and Mechatronics, 2014, 26, 358-368.	1.0	2
578	Falls Among the Elderly and Vision: A Narrative Review. Open Medicine Journal, 2014, 1, 54-65.	0.7	4
580	A FURTHER STUDY ON CHICK'S AVOIDANCE OF VISUAL PITFALLS. Japanese Psychological Research, 1974, 16, 126-131.	1.1	4
581	Posterior parietal cortex estimates the relationship between object and body location during locomotion. ELife, 2017, 6, .	6.0	42
582	The response to background motion: Characteristics of a movement stabilization mechanism. Journal of Vision, 2021, 21, 3.	0.3	5
583	Motion cues from the background influence associative color learning of honey bees in a virtual-reality scenario. Scientific Reports, 2021, 11, 21127.	3.3	9
584	Variable-Drift Diffusion Models of Pedestrian Road-Crossing Decisions. Computational Brain & Behavior, 2022, 5, 60-80.	1.7	22
585	Controlling Bipedal Movement Using Optic Flow. , 2004, , 471-485.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
588	A Contribution to a Semiotic Approach of Risk Management. , 2007, , 65-88.			0
589	A Study on the Effect of the Weight Varying Putter in Learning Golf Putting: Based on Approach. Korean Journal of Cognitive and Biological Psychology, 2008, 20, 55-71.	the Ecological	0.0	1
590	The Dependence of Braking Strategies on Optical Variables in an Evolved Model of Visu Braking. Lecture Notes in Computer Science, 2010, , 555-564.	ually-Guided	1.3	3
591	The head, eye, and ear in cornering. Equilibrium Research, 2011, 70, 256-259.		0.1	0
592	Deep Structure and Smart Mechanisms: Designing Perspicacious Systems. , 2012, , .			0
594	THE ECOLOGICAL NATURE OF PERCEPTUAL SYSTEMS. , 1978, , 3-18.			2
595	ENVIRONMENTAL FEATURES AND ORIENTATION. , 1982, , 213-214.			2
596	Environmental Features and Orientation. , 1982, , 371-382.			0
597	Analysis of Visual Motion by Biological and Computer Systems. , 1987, , 132-144.			0
598	Cognitive Operations and Structures. , 1987, , 178-197.			0
599	The Parietal Visual System and some Aspects of Visuospatial Perception. , 1990, , 193-	209.		1
600	Issues in the Development of Mobility. , 1990, , 419-436.			3
601	The Self In Infancy - Theory and Research. Advances in Psychology, 1995, , .		0.1	35
603	Gibson and Crooks (1938): Vision and Validation. American Journal of Psychology, 201	.7, 130, 413-429.	0.3	0
604	Principles Underlying Locomotor Trajectory Formation. , 2017, , 1-17.			0
606	Principles Underlying Locomotor Trajectory Formation. , 2018, , 1-17.			0
607	SURFACE GEOMETRY AND ARCHITECTURAL DESIGN ACTIVITIES. Nihon Kenchiku Gakka Ronbunshu, 2018, 83, 1687-1694.	ai Keikakukei	0.3	2
608	Effect of travel speed on the visual control of steering toward a goal Journal of Experi Psychology: Human Perception and Performance, 2018, 44, 452-467.	mental	0.9	3

#	Article	IF	Citations
610	Tongue Part Movement Trajectories for /r/ Using Ultrasound. Perspectives of the ASHA Special Interest Groups, 2019, 4, 1644-1652.	0.8	5
612	Postural Control Mechanisms in Mammals, Including Humans. , 2020, , 344-370.		3
613	Review of pedestrian tracking: Algorithms and applications. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 084203.	0.5	3
614	Parallel Development of James J. Gibson's Ecological and Paul M. Fitts's Information Processing Approaches to Perception and Performance. American Journal of Psychology, 2020, 133, 89-106.	0.3	0
615	Central Processing of Visual Information in Insects. , 2020, , 140-198.		0
616	Chapitre 6. Apprendre à contrÃ1er sa posture aux débuts de la vieÂ: rÃ1e de la vision et de la locomotion. , 0, , 109-131.		0
617	Visuelle Wahrnehmung. , 0, , 89-107.		0
620	Navigating Through a COVID-19 World: Avoiding Obstacles. Journal of Neurologic Physical Therapy, 2021, 45, 36-40.	1.4	4
621	Moon illusion and spiral aftereffect: Illusions due to the loom-zoom system?. Journal of Experimental Psychology: General, 1982, 111, 423-440.	2.1	14
622	Ecological Entomology: How Is Gibson's Framework Useful?. Insects, 2021, 12, 1075.	2.2	4
623	Sensory-Motor Modulations of EEG Event-Related Potentials Reflect Walking-Related Macro-Affordances. Brain Sciences, 2021, 11, 1506.	2.3	5
624	Motion matters: Comparing naturalness of interaction with two locomotion interfaces using decision-making tasks in virtual reality. , 2020, , .		0
625	The function and phylogeny of eye movements. Progress in Brain Research, 2022, 267, 1-14.	1.4	2
626	Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron, 2022, 110, 1416-1431.e13.	8.1	42
627	Gaze Strategies in Driving–An Ecological Approach. Frontiers in Psychology, 2022, 13, 821440.	2.1	7
628	Perceptual dissimilarity, cognitive and linguistic skills predict novel word retention, but not extension skills in Down syndrome. Cognitive Development, 2022, 62, 101166.	1.3	1
629	Signals from posterior parietal area 5 to motor cortex during locomotion. Cerebral Cortex, 2023, 33, 1014-1043.	2.9	1
630	Optic Flow: A History. I-Perception, 2021, 12, 204166952110557.	1.4	5

#	Article	IF	Citations
635	Educational Paradigms An Epistemological Revolution. , 0, , .		6
636	Steering toward a goal by equalizing taus Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 953-968.	0.9	13
637	Four assumptions about invariance in perception Journal of Experimental Psychology: Human Perception and Performance, 1983, 9, 310-317.	0.9	14
639	Collision Avoidance Models, Visually Guided. , 2022, , 763-781.		0
641	The Speed of Optic Flow Stimuli Influences Body Sway. International Journal of Environmental Research and Public Health, 2022, 19, 10796.	2.6	1
644	Dopamine promotes head direction plasticity during orienting movements. Nature, 2022, 612, 316-322.	27.8	22
645	Distinct coordination patterns integrate exploratory head movements with whole-body movement patterns during walking. Scientific Reports, 2023, 13, .	3.3	1
646	Visual Flow and Direction of Locomotion. Science, 1985, 227, 1064-1064.	12.6	0
647	<i>Response</i> : Visual Flow and Direction of Locomotion. Science, 1985, 227, 1064-1065.	12.6	0
649	Slipping while counting: gaze–gait interactions during perturbed walking under dual-task conditions. Experimental Brain Research, 2023, 241, 765-780.	1.5	1
650	The visual control of locomotion when stepping onto moving surfaces: A comparison of younger and older adults. Experimental Gerontology, 2023, 174, 112117.	2.8	0
651	A model for transforming egocentric views into goalâ€directed behavior. Hippocampus, 2023, 33, 488-504.	1.9	5
652	Encoding of dynamic facial information in the middle dorsal face area. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1
653	Mallard landing behavior on water follows a -constant braking strategy. Journal of Experimental Biology, 2023, 226, .	1.7	1
654	Difference in auditory time-to-contact estimation between the rear and other directions. Acoustical Science and Technology, 2023, 44, 77-83.	0.5	1
655	The effect of real-world and retinal motion on speed perception for motion in depth. PLoS ONE, 2023, 18, e0283018.	2.5	0
656	障害物è‴ãŽæ©è;Œã₽é•å⊶å¦. The Brain & Neural Networks, 2023, 30, 11-20.	0.1	1
657	Highly reproducible eyeblink timing during formula car driving. IScience, 2023, 26, 106803.	4.1	1

#	Article	IF	CITATIONS
658	Wide-spread brain activation and reduced CSF flow during avian REM sleep. Nature Communications, 2023, 14, .	12.8	6
661	Strategic predatory pursuit of the stealthy, highly manoeuvrable, slow flying bat <i>Corynorhinus townsendii</i> . Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	2.6	1
663	Generalizing the optic flow equalization control law to an asymmetrical person-plus-object system. Attention, Perception, and Psychophysics, 2023, 85, 2337-2355.	1.3	0
664	Swing Regulates Movement Direction in the Sea Cucumber Apostichopus japonicus in the Presence of Food Cue: New Insights into Movement Patterns. Animals, 2023, 13, 3388.	2.3	0
665	Controlling the speed of a vehicle: Visual control of acceleration and deceleration. Trafik Ve Ulaşım Araştırmaları Dergisi, 0, , .	0.2	0
666	Visual motion detection thresholds can be reliably measured during walking and standing. Frontiers in Human Neuroscience, 0, 17, .	2.0	0
668	Time-Based Mapping of Space Using Visual Motion Invariants. , 2023, , .		0
669	Recent advances in insect vision in a 3D world: looming stimuli and escape behaviour. Current Opinion in Insect Science, 2024, 63, 101180.	4.4	0
670	Design of Mantis-Shrimp-Inspired Multifunctional Imaging Sensors with Simultaneous Spectrum and Polarization Detection Capability at a Wide Waveband. Sensors, 2024, 24, 1689.	3.8	0
671	Aerial single target acuity of harbor seals (Phoca vitulina) for stationary and moving targets of varying contrast. Vision Research, 2024, 218, 108389.	1.4	0