Hydrogel Cross-Linked with Dynamic Covalent Bonding Burn Wound Healing

ACS Applied Materials & Distribution (10, 25194-25202)

DOI: 10.1021/acsami.8b08165

Citation Report

#	Article	IF	CITATIONS
1	Facile fabrication and characterization of highly stretchable lignin-based hydroxyethyl cellulose self-healing hydrogel. Carbohydrate Polymers, 2019, 223, 115080.	5.1	109
2	Incorporation of ZnO/Bioactive Glass Nanoparticles into Alginate/Chitosan Composite Hydrogels for Wound Closure. ACS Applied Bio Materials, 2019, 2, 5042-5052.	2.3	56
3	Multiresponsive and Self-Healing Hydrogel via Formation of Polymer–Nanogel Interfacial Dynamic Benzoxaborole Esters at Physiological pH. ACS Applied Materials & Interfaces, 2019, 11, 44742-44750.	4.0	35
4	Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration. Carbohydrate Polymers, 2019, 225, 115110.	5.1	121
5	Injectable biomaterials for translational medicine. Materials Today, 2019, 28, 81-97.	8.3	82
6	Photocatalytic antibacterial agent incorporated double-network hydrogel for wound healing. Colloids and Surfaces B: Biointerfaces, 2019, 180, 237-244.	2.5	37
7	Thermoresponsive dendronized chitosan-based hydrogels as injectable stem cell carriers. Polymer Chemistry, 2019, 10, 2305-2315.	1.9	21
8	Smartâ€Sensing Polymer Coatings with Autonomously Reporting Corrosion Dynamics of Selfâ€Healing Systems. Advanced Materials Interfaces, 2019, 6, 1900055.	1.9	41
9	Using Synergistic Multiple Dynamic Bonds to Construct Polymers with Engineered Properties. Macromolecular Rapid Communications, 2019, 40, e1900038.	2.0	82
10	Design and optimization of process parameters of polyvinyl (alcohol)/chitosan/nano zinc oxide hydrogels as wound healing materials. Carbohydrate Polymers, 2019, 207, 542-554.	5.1	140
11	Improvement of platelet aggregation and rapid induction of hemostasis in chitosan dressing using silver nanoparticles. Cellulose, 2020, 27, 385-400.	2.4	31
12	All-natural injectable hydrogel with self-healing and antibacterial properties for wound dressing. Cellulose, 2020, 27, 2637-2650.	2.4	44
13	Stretchable, compressible, self-healable carbon nanotube mechanically enhanced composite hydrogels with high strain sensitivity. Journal of Materials Chemistry C, 2020, 8, 1933-1942.	2.7	18
14	Dynamic covalent polymers for biomedical applications. Materials Chemistry Frontiers, 2020, 4, 489-506.	3.2	94
15	Arginine derivatives assist dopamine-hyaluronic acid hybrid hydrogels to have enhanced antioxidant activity for wound healing. Chemical Engineering Journal, 2020, 392, 123775.	6.6	177
16	Dynamic covalent chemistry-regulated stimuli-activatable drug delivery systems for improved cancer therapy. Chinese Chemical Letters, 2020, 31, 1051-1059.	4.8	57
17	Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application. European Polymer Journal, 2020, 139, 110024.	2.6	46
18	An overview of dynamic covalent bonds in polymer material and their applications. European Polymer Journal, 2020, 141, 110094.	2.6	132

#	Article	IF	CITATIONS
19	Green preparation of anti-inflammation an injectable 3D porous hydrogel for speeding up deep second-degree scald wound healing. RSC Advances, 2020, 10, 36101-36110.	1.7	6
20	Redox and pH dual-responsive injectable hyaluronan hydrogels with shape-recovery and self-healing properties for protein and cell delivery. Carbohydrate Polymers, 2020, 250, 116979.	5.1	35
21	A novel polyurethane elastomer with super mechanical strength and excellent self-healing performance of wide scratches. Progress in Organic Coatings, 2020, 149, 105943.	1.9	19
22	Dual-crosslinked hyaluronan hydrogels with rapid gelation and high injectability for stem cell protection. Scientific Reports, 2020, 10, 14997.	1.6	20
23	Synthesis and characterization of a hyaluronic acid-based hydrogel with antioxidative and thermosensitive properties. RSC Advances, 2020, 10, 33851-33860.	1.7	4
24	Emergence of Heptazine-Based Graphitic Carbon Nitride within Hydrogel Nanocomposites for Scarless Healing of Burn Wounds. ACS Applied Polymer Materials, 2020, 2, 5743-5755.	2.0	8
25	Fully physically crosslinked pectin-based hydrogel with high stretchability and toughness for biomedical application. International Journal of Biological Macromolecules, 2020, 149, 707-716.	3.6	56
26	Research status of self-healing hydrogel for wound management: A review. International Journal of Biological Macromolecules, 2020, 164, 2108-2123.	3.6	151
27	Recent Progress of Highly Adhesive Hydrogels as Wound Dressings. Biomacromolecules, 2020, 21, 3966-3983.	2.6	127
28	WUWHS 2020 Global Healing Changing Lives, Abu Dhabi, UAE March 8–12. Journal of Wound Care, 2020, 29, 1-314.	0.5	1
29	Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Chemical Reviews, 2020, 120, 10834-10886.	23.0	107
30	Injectable Adhesive Self-Healing Multicross-Linked Double-Network Hydrogel Facilitates Full-Thickness Skin Wound Healing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57782-57797.	4.0	154
31	Template-assisted hydrogelation of a dynamic covalent polyviologen-based supramolecular architecture via donor-acceptor interactions. Materials Today Chemistry, 2020, 17, 100289.	1.7	11
32	Copper Sulfide Nanoparticles-Incorporated Hyaluronic Acid Injectable Hydrogel With Enhanced Angiogenesis to Promote Wound Healing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 417.	2.0	39
33	Self-Healing Hydrogels Based on Reversible Covalent Linkages: A Survey of Dynamic Chemical Bonds in Network Formation. Advances in Polymer Science, 2020, , 243-294.	0.4	13
34	Dual dynamically crosslinked thermosensitive hydrogel with self-fixing as a postoperative anti-adhesion barrier. Acta Biomaterialia, 2020, 110, 119-128.	4.1	57
35	Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing. Composites Part B: Engineering, 2020, 197, 108139.	5.9	111
36	Triblock Copolymer Micelle-Crosslinked Hydrogels. Advances in Polymer Science, 2020, , 211-241.	0.4	3

3

#	Article	IF	Citations
37	Selection of Appropriate Wound Dressing for Various Wounds. Frontiers in Bioengineering and Biotechnology, 2020, 8, 182.	2.0	197
38	Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. Materials, 2020, 13, 2853.	1.3	90
39	Rapid gelation of oxidized hyaluronic acid and succinyl chitosan for integration with insulin-loaded micelles and epidermal growth factor on diabetic wound healing. Materials Science and Engineering C, 2020, 117, 111273.	3.8	56
40	Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing. Carbohydrate Polymers, 2020, 247, 116689.	5.1	140
41	Access to Highly Tough Hydrogels by Polymer Modules for Application of Catalytic Reactors. Industrial & Engineering Chemistry Research, 2020, 59, 4977-4986.	1.8	3
42	Design of a Multifunctional Biomaterial Inspired by Ancient Chinese Medicine for Hair Regeneration in Burned Skin. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12489-12499.	4.0	48
43	Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomaterials Science, 2020, 8, 2084-2101.	2.6	245
44	Solvent processable and recyclable covalent adaptable organogels based on dynamic trans-esterification chemistry: separation of toluene from azeotropic mixtures. Polymer Chemistry, 2020, 11, 1471-1480.	1.9	6
45	Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chemical Engineering Journal, 2020, 394, 124888.	6.6	401
46	Fabrication of selfâ€healing hydrogel from quaternized Nâ€[3(dimethylamino)propyl]methacrylamide copolymer for antimicrobial and drug release applications. Journal of Biomedical Materials Research - Part A, 2021, 109, 42-53.	2.1	11
47	Lignin-Incorporated Nanogel Serving As an Antioxidant Biomaterial for Wound Healing. ACS Applied Bio Materials, 2021, 4, 3-13.	2.3	58
48	Adaptable hydrogel with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells. Bioactive Materials, 2021, 6, 1375-1387.	8.6	90
49	Stimuli-responsive Nanocomposite Hydrogels Incorporating Soft Nanoparticles for Biomedical Applications. RSC Soft Matter, 2021, , 566-593.	0.2	0
50	Recent trends on burn wound care: hydrogel dressings and scaffolds. Biomaterials Science, 2021, 9, 4523-4540.	2.6	80
51	Controlled release of KGF-2 for regulation of wound healing by KGF-2 complexed with "lotus seedpod surface-like―porous microspheres. Journal of Materials Chemistry B, 2021, 9, 4039-4049.	2.9	6
52	An environmentally friendly wound dressing based on a self-healing, extensible and compressible antibacterial hydrogel. Green Chemistry, 2021, 23, 1312-1329.	4.6	69
53	A review of the properties and applications of bioadhesive hydrogels. Polymer Chemistry, 2021, 12, 3721-3739.	1.9	78
54	Dually Crosslinked Polymer Networks Incorporating Dynamic Covalent Bonds. Polymers, 2021, 13, 396.	2.0	61

#	Article	IF	CITATIONS
55	Hyperbranched polymer with dynamic thiol–aldehyde crosslinking and its application as a self-healable bioadhesive. Journal of Materials Chemistry B, 2021, 9, 5818-5828.	2.9	8
56	Biomimetic Hydrogels Loaded with Nanofibers Mediate Sustained Release of pDNA and Promote In Situ Bone Regeneration. Macromolecular Bioscience, 2021, 21, e2000393.	2.1	9
57	PEG- <i>α-</i> CD/AM/liposome @amoxicillin double network hydrogel wound dressing—Multiple barriers for long-term drug release. Journal of Biomaterials Applications, 2021, 35, 1085-1095.	1.2	12
58	Doubleâ€Network Heparin Dynamic Hydrogels: Dynagels as Antiâ€bacterial 3D Cell Culture Scaffolds. Chemistry - A European Journal, 2021, 27, 7080-7084.	1.7	4
59	Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomaterials Science and Engineering, 2021, 7, 4048-4076.	2.6	89
60	Advances in Injectable and Selfâ€healing Polysaccharide Hydrogel Based on the Schiff Base Reaction. Macromolecular Rapid Communications, 2021, 42, e2100025.	2.0	94
61	A double-crosslinked self-healing antibacterial hydrogel with enhanced mechanical performance for wound treatment. Acta Biomaterialia, 2021, 124, 139-152.	4.1	61
62	Current progress of self-healing polymers for medical applications in tissue engineering. Iranian Polymer Journal (English Edition), 2022, 31, 7-29.	1.3	8
63	Ultrafast Fabrication of Self-Healing and Injectable Carboxymethyl Chitosan Hydrogel Dressing for Wound Healing. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24095-24105.	4.0	126
64	Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chemical Reviews, 2021, 121, 11149-11193.	23.0	161
65	Injectable adaptive self-healing hyaluronic acid/poly (\hat{I}^3 -glutamic acid) hydrogel for cutaneous wound healing. Acta Biomaterialia, 2021, 127, 102-115.	4.1	83
66	Facile fabrication of nonswellable and biocompatible hydrogels with cartilage-comparable performances. Materials Today Communications, 2021, 27, 102375.	0.9	5
67	Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano, 2021, 15, 12687-12722.	7.3	1,131
68	Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: In vitro and in vivo evaluations. International Wound Journal, 2022, 19, 679-691.	1.3	20
69	Hydrogel Preparation Methods and Biomaterials for Wound Dressing. Life, 2021, 11, 1016.	1.1	102
70	A novel drug delivery system —— Drug crystallization encapsulated liquid crystal emulsion. International Journal of Pharmaceutics, 2021, 607, 121007.	2.6	7
71	Biomimetic Hydrogels to Promote Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 718377.	2.0	72
72	Antioxidative and Angiogenic Hyaluronic Acid-Based Hydrogel for the Treatment of Peripheral Artery Disease. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45224-45235.	4.0	9

#	Article	IF	CITATIONS
73	A \hat{I}^3 -PGA/KGM-based injectable hydrogel as immunoactive and antibacterial wound dressing for skin wound repair. Materials Science and Engineering C, 2021, 129, 112374.	3.8	32
74	Cationic peptide-based salt-responsive antibacterial hydrogel dressings for wound healing. International Journal of Biological Macromolecules, 2021, 190, 754-762.	3.6	25
75	Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing. Bioactive Materials, 2022, 8, 341-354.	8.6	273
76	pHâ€Responsive Chargeâ€Conversion Progelator Peptides. Advanced Functional Materials, 2021, 31, 2007733.	7.8	11
77	Dual Functionalized Injectable Hybrid Extracellular Matrix Hydrogel for Burn Wounds. Biomacromolecules, 2021, 22, 514-533.	2.6	18
78	Alkaline-phosphatase triggered self-assemblies enhances the anti-inflammatory property of methylprednisolone in spinal cord injury. Journal of Applied Biomaterials and Functional Materials, 2020, 18, 228080002097850.	0.7	5
79	A novel dual crosslinked polysaccharide hydrogel with self-healing and stretchable properties. Polymer Chemistry, 2021, 12, 6134-6144.	1.9	11
80	Biodegradable gelatin/silver nanoparticle composite cryogel with excellent antibacterial and antibiofilm activity and hemostasis for Pseudomonas aeruginosa-infected burn wound healing. Journal of Colloid and Interface Science, 2022, 608, 2278-2289.	5.0	96
81	3D printed ultra-fast photothermal responsive shape memory hydrogel for microrobots. International Journal of Extreme Manufacturing, 2022, 4, 015302.	6.3	34
82	Development of thermo/redox-responsive diselenide linked methoxy poly (ethylene) Tj ETQq1 1 0.784314 rgBT /C Journal of Polymer Research, 2021, 28, 1.	Overlock 1 1.2	0 Tf 50 387 6
82			
	Journal of Polymer Research, 2021, 28, 1. Role of copper nanoparticles in wound healing for chronic wounds: literature review. Burns and	1.2	6
83	Journal of Polymer Research, 2021, 28, 1. Role of copper nanoparticles in wound healing for chronic wounds: literature review. Burns and Trauma, 2022, 10, tkab047. Dynamic reversible hydrogel-bearing cucurbit[6]uril units: Unique recognition of copper ions.	2.3	50
83 84	Journal of Polymer Research, 2021, 28, 1. Role of copper nanoparticles in wound healing for chronic wounds: literature review. Burns and Trauma, 2022, 10, tkab047. Dynamic reversible hydrogel-bearing cucurbit[6]uril units: Unique recognition of copper ions. Reactive and Functional Polymers, 2022, 170, 105095. A highly resilient and ⟨scp⟩ultraâ€sensitive⟨/scp⟩ hydrogel for wearable sensors. Journal of Applied	2.3	50
83 84 85	Journal of Polymer Research, 2021, 28, 1. Role of copper nanoparticles in wound healing for chronic wounds: literature review. Burns and Trauma, 2022, 10, tkab047. Dynamic reversible hydrogel-bearing cucurbit[6]uril units: Unique recognition of copper ions. Reactive and Functional Polymers, 2022, 170, 105095. A highly resilient and ⟨scp⟩ultraâ€sensitive⟨/scp⟩ hydrogel for wearable sensors. Journal of Applied Polymer Science, 2022, 139, 51925. A Sequential Therapeutic Hydrogel With Injectability and Antibacterial Activity for Deep Burn Wounds'	2.3 2.0 1.3	50111
83 84 85	Journal of Polymer Research, 2021, 28, 1. Role of copper nanoparticles in wound healing for chronic wounds: literature review. Burns and Trauma, 2022, 10, tkab047. Dynamic reversible hydrogel-bearing cucurbit [6] uril units: Unique recognition of copper ions. Reactive and Functional Polymers, 2022, 170, 105095. A highly resilient and ⟨scp⟩ultraâ€sensitive⟨/scp⟩ hydrogel for wearable sensors. Journal of Applied Polymer Science, 2022, 139, 51925. A Sequential Therapeutic Hydrogel With Injectability and Antibacterial Activity for Deep Burn Wounds' Cleaning and Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 794769. Bioadhesion design of hydrogels: adhesion strategies and evaluation methods for biological	1.2 2.3 2.0 1.3	501115
83 84 85 86 87	Journal of Polymer Research, 2021, 28, 1. Role of copper nanoparticles in wound healing for chronic wounds: literature review. Burns and Trauma, 2022, 10, tkab047. Dynamic reversible hydrogel-bearing cucurbit [6] uril units: Unique recognition of copper ions. Reactive and Functional Polymers, 2022, 170, 105095. A highly resilient and ⟨scp⟩ultraâ€sensitive⟨/scp⟩ hydrogel for wearable sensors. Journal of Applied Polymer Science, 2022, 139, 51925. A Sequential Therapeutic Hydrogel With Injectability and Antibacterial Activity for Deep Burn Wounds' Cleaning and Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 794769. Bioadhesion design of hydrogels: adhesion strategies and evaluation methods for biological interfaces. Journal of Adhesion Science and Technology, 2023, 37, 335-369. Chemical stimuli-induced reversible bond cleavage in covalently crosslinked hydrogels. Coordination	1.2 2.3 2.0 1.3 2.0	5011150

#	Article	IF	CITATIONS
91	Green Reduction of Graphene Oxide by Macromolecular CMCS to Prepare Selfâ€Healing Conductive Hydrogel Wound Dressing with Drug/Photothermal Antibacterial Activity. Macromolecular Materials and Engineering, 2022, 307, .	1.7	4
92	A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Carbohydrate Polymers, 2022, 286, 119268.	5.1	55
93	Hyaluronic acid based nanomedicines as promising wound healers for acute-to-chronic wounds: a review of recent updates and emerging trends. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 252-270.	1.8	2
94	Functional Hydrogel Dressings for Treatment of Burn Wounds. Frontiers in Bioengineering and Biotechnology, 2021, 9, 788461.	2.0	35
95	Skin-Adaptable, Long-Lasting Moisture, and Temperature-Tolerant Hydrogel Dressings for Accelerating Burn Wound Healing without Secondary Damage. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59695-59707.	4.0	45
97	Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomaterials Science, 2022, 10, 3393-3409.	2.6	58
98	A methacrylated hyaluronic acid network reinforced Pluronic F-127 gel for treatment of bacterial keratitis. Biomedical Materials (Bristol), 2022, 17, 045017.	1.7	3
99	Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness. Carbohydrate Polymers, 2022, 291, 119616.	5.1	18
100	Osteichthyes skin-inspired tough and sticky composite hydrogels for dynamic adhesive dressings. Composites Part B: Engineering, 2022, 241, 110010.	5.9	23
101	Nanocomposite conductive tough hydrogel based on metal coordination reinforced covalent Pluronic F-127 micelle network for human motion sensing. Journal of Colloid and Interface Science, 2022, 625, 817-830.	5.0	21
102	Bioactive Natural and Synthetic Polymers for Wound Repair. Macromolecular Research, 2022, 30, 495-526.	1.0	8
103	Fast-Forming Dissolvable Redox-Responsive Hydrogels: Exploiting the Orthogonality of Thiol–Maleimide and Thiol–Disulfide Exchange Chemistry. Biomacromolecules, 2022, 23, 3525-3534.	2.6	20
104	Effects of Drug-Free Pectin Hydrogel Films on Thermal Burn Wounds in Streptozotocin-Induced Diabetic Rats. Polymers, 2022, 14, 2873.	2.0	7
105	Recent Advances of Natural Polysaccharideâ€based Doubleâ€network Hydrogels for Tissue Repair. Chemistry - an Asian Journal, 2022, 17, .	1.7	11
106	Spatiotemporal self-strengthening hydrogels for oral tissue regeneration. Composites Part B: Engineering, 2022, 243, 110119.	5.9	14
107	Fabrication of Curcumin-Loaded Silk Fibroin and Polyvinyl Alcohol Composite Hydrogel Films for Skin Wound Healing. ACS Applied Bio Materials, 2022, 5, 4400-4412.	2.3	8
108	A Dioscorea opposita Thunb Polysaccharide-Based Dual-Responsive Hydrogel for Insulin Controlled Release. International Journal of Molecular Sciences, 2022, 23, 9081.	1.8	4
109	Dressing systems based on chitosan as active transport platforms in the treatment of burnt skin: Miniâ€review. Polymers for Advanced Technologies, 2022, 33, 3112-3124.	1.6	2

#	Article	IF	Citations
110	Bacterial Growth-Induced Tobramycin Smart Release Self-Healing Hydrogel for <i>Pseudomonas aeruginosa</i> Ii>-Infected Burn Wound Healing. ACS Nano, 2022, 16, 13022-13036.	7.3	198
111	Near-infrared responsive quaternized chitosan-coated MoS2/poly(vinyl alcohol) hydrogel with improved mechanical and rapid antibacterial properties. European Polymer Journal, 2022, 180, 111593.	2.6	8
112	Turn Wastes into Valuables: Supuramolecular-Interaction Enabled Preparation of Super-Strong Water-Based Adhesives from Polymethylmethacrylate Wastes. SSRN Electronic Journal, 0, , .	0.4	0
113	Dynamic covalent crosslinked hyaluronic acid hydrogels and nanomaterials for biomedical applications. Biomaterials Science, 2022, 10, 6399-6412.	2.6	14
114	Double-Crosslinked Reduced Graphene Oxide-Based Hydrogel Actuator System with Fast Electro-Responsive Deformation and Excellent Mechanical Properties. SSRN Electronic Journal, 0, , .	0.4	0
115	Vasorin-containing small extracellular vesicles retard intervertebral disc degeneration utilizing an injectable thermoresponsive delivery system. Journal of Nanobiotechnology, 2022, 20, .	4.2	11
116	Antibacterial conductive self-healable supramolecular hydrogel dressing for infected motional wound healing. Science China Chemistry, 2022, 65, 2238-2251.	4.2	26
117	Supramolecular hybrid hydrogels as rapidly on-demand dissoluble, self-healing, and biocompatible burn dressings. Bioactive Materials, 2023, 25, 415-429.	8.6	10
118	Dynamic Covalent Hydrogels: Strong yet Dynamic. Gels, 2022, 8, 577.	2.1	12
119	Hyaluronic Acidâ€Based Injectable Hydrogels for Wound Dressing and Localized Tumor Therapy: A Review. Advanced NanoBiomed Research, 2022, 2, .	1.7	11
120	Supramolecular Hydrogel Dressing: Effect of Lignin on the Self-Healing, Antibacterial, Antioxidant, and Biological Activity Improvement. ACS Applied Materials & English Services, 2022, 14, 50199-50214.	4.0	20
121	Design of Near-Infrared-Triggered Cellulose Nanocrystal-Based <i>In Situ</i> Intelligent Wound Dressings for Drug-Resistant Bacteria-Infected Wound Healing. ACS Applied Materials & Interfaces, 2022, 14, 51630-51644.	4.0	17
122	Polysaccharide-based hydrogels: New insights and futuristic prospects in wound healing. International Journal of Biological Macromolecules, 2022, 223, 1586-1603.	3.6	28
123	Light-triggered theranostic hydrogels for real-time imaging and on-demand photodynamic therapy of skin abscesses. Acta Biomaterialia, 2023, 155, 292-303.	4.1	11
124	Zwitterionic Polysaccharideâ∈Based Hydrogel Dressing as a Stem Cell Carrier to Accelerate Burn Wound Healing. Advanced Healthcare Materials, 2023, 12, .	3.9	23
125	Advances in Hemostatic Hydrogels That Can Adhere to Wet Surfaces. Gels, 2023, 9, 2.	2.1	12
126	Magneticâ€responsive Covalent Adaptable Networks. Chemistry - an Asian Journal, 2023, 18, .	1.7	5
127	A Review on Thermal Properties of Hydrogels for Electronic Devices Applications. Gels, 2023, 9, 7.	2.1	10

#	Article	IF	CITATIONS
128	Extracellular matrix (ECM)-inspired high-strength gelatin-alginate based hydrogels for bone repair. Biomaterials Science, 2023, 11, 2877-2885.	2.6	7
129	Development of self-healing vanillin/PEI hydrogels for tissue engineering. European Polymer Journal, 2023, 188, 111933.	2.6	3
130	Supramolecular interaction enabled preparation of high-strength water-based adhesives from polymethylmethacrylate wastes. IScience, 2023, 26, 106022.	1.9	1
131	The pHâ€Sensitive Optical Fiber Integrated CMCSâ€PA@Fe Hydrogels for Photothermal Therapy and Realâ€Time Monitoring of Infected Wounds. Advanced Functional Materials, 2023, 33, .	7.8	22
132	3D Printable Self-Adhesive and Self-Healing Ionotronic Hydrogels for Wearable Healthcare Devices. ACS Applied Materials & Devices, 2023, 15, 11042-11052.	4.0	17
133	Electrospun Porcine Acellular Dermal Matrix and Polycaprolactone Composite Nanofibrous Scaffolds for Accelerating Wound Healing. Fibers and Polymers, 2023, 24, 589-601.	1.1	2
134	Integrated Optical Coherence Tomography and Deep Learning for Evaluating of the Injectable Hydrogel on Skin Wound Healing. , 0, , .		0
135	Double-crosslinked reduced graphene oxide-based hydrogel actuator system with fast electro-responsive deformation and enhanced mechanical properties. Materials Today Chemistry, 2023, 29, 101434.	1.7	1
136	Hydrogel/Nanofiber Composite Wound Dressing Optimized for Skin Layer Regeneration through the Mechanotransduction-Based Microcellular Environment. ACS Applied Bio Materials, 2023, 6, 1774-1786.	2.3	6
145	Recent advances in novel materials and techniques for developing transparent wound dressings. Journal of Materials Chemistry B, 2023, 11, 6201-6224.	2.9	10
160	Hydrogels as dynamic covalent networks for skin repair. , 2024, , 605-624.		O