The positive effects of exogenous 5-aminolevulinic acid photosystem and calvin cycle of Kentucky bluegrass see stress

Environmental and Experimental Botany 155, 260-271

DOI: 10.1016/j.envexpbot.2018.07.006

Citation Report

#	Article	IF	CITATIONS
1	5-Aminolevulinic Acid Improves Nutrient Uptake and Endogenous Hormone Accumulation, Enhancing Low-Temperature Stress Tolerance in Cucumbers. International Journal of Molecular Sciences, 2018, 19, 3379.	4.1	63
2	GSTU43 gene involved in ALA-regulated redox homeostasis, to maintain coordinated chlorophyll synthesis of tomato at low temperature. BMC Plant Biology, 2019, 19, 323.	3.6	19
3	Transcriptome analysis reveals a positive effect of brassinosteroids on the photosynthetic capacity of wucai under low temperature. BMC Genomics, 2019, 20, 810.	2.8	29
4	Physiological responses and accumulation characteristics of turfgrasses exposed to potentially toxic elements. Journal of Environmental Management, 2019, 246, 796-807.	7.8	14
5	Hydrogen peroxide as a mediator of 5â€aminolevulinic acidâ€induced Na ⁺ retention in roots for improving salt tolerance of strawberries. Physiologia Plantarum, 2019, 167, 5-20.	5.2	26
6	Identification and Expression Analysis of the <i>SWEET</i> Gene Family from <i>Poa pratensis</i> Under Abiotic Stresses. DNA and Cell Biology, 2020, 39, 1606-1620.	1.9	16
7	The use of 5â€aminolevulinic acid to reduce heatâ€stressâ€related damages in tall fescue. Crop Science, 2021, 61, 3206-3218.	1.8	7
8	Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis. Chemosphere, 2020, 250, 126158.	8.2	33
9	Substrate Application of 5-Aminolevulinic Acid Enhanced Low-temperature and Weak-light Stress Tolerance in Cucumber (Cucumis sativus L.). Agronomy, 2020, 10, 472.	3.0	20
10	Gene expression differences for drought stress response in three cool-season turfgrasses. Itsrj, 0, , .	0.3	1
11	5-Aminolevulinic Acid Pretreatment Mitigates Drought and Salt Stresses in Poplar Plants. Forests, 2021, 12, 1112.	2.1	4
12	Foliar Application of Trehalose or 5-Aminolevulinic Acid Improves Photosynthesis and Biomass Production in Drought Stressed Alpinia zerumbet. Agriculture (Switzerland), 2021, 11, 908.	3.1	5
13	Co-remediation of PTEs contaminated soil in mining area by heat modified sawdust and herb. Chemosphere, 2021, 281, 130908.	8.2	4
14	Exogenously applied 5-aminolevulinic acid modulates growth, secondary metabolism and oxidative defense in sunflower under water deficit stress. Physiology and Molecular Biology of Plants, 2020, 26, 489-499.	3.1	25
15	Transcriptional Regulation of Different Rhizome Parts Reveal the Candidate Genes That Regulate Rhizome Development in <i>Poa pratensis</i> In DNA and Cell Biology, 2022, 41, 151-168.	1.9	3
16	Hydrogen sulfide improves tall fescue photosynthesis response to low-light stress by regulating chlorophyll and carotenoid metabolisms. Plant Physiology and Biochemistry, 2022, 170, 133-145.	5.8	16
17	Iron deficiency impacts chlorophyll biosynthesis, leaf cell expansion, xylem development and physiology of Prunus persica grafted onto rootstocks Garnem and GF 677. Zemdirbyste, 2022, 109, 55-62.	0.8	4
18	Exogenous application of 5-aminolevulinic acid alleviated damage to wheat chloroplast ultrastructure under drought stress by transcriptionally regulating genes correlated with photosynthesis and chlorophyll biosynthesis. Acta Physiologiae Plantarum, 2022, 44, 1.	2.1	6

#	Article	IF	Citations
19	5-Aminolevulinic acid-induced salt tolerance in strawberry (cv. †Benihoppe'): Possible role of nitric oxide on interception of salt ions in roots. Scientia Horticulturae, 2022, 304, 111294.	3.6	4
20	Trehalose alleviates salt tolerance by improving photosynthetic performance and maintaining mineral ion homeostasis in tomato plants. Frontiers in Plant Science, 0, 13, .	3.6	12
21	Exogenous 5-aminolevulinic acid alleviates low-temperature damage by modulating the xanthophyll cycle and nutrient uptake in tomato seedlings. Plant Physiology and Biochemistry, 2022, 189, 83-93.	5.8	11
22	Exogenous 5-aminolevulinic acid alleviates low-temperature injury by regulating glutathione metabolism and \hat{l}^2 -alanine metabolism in tomato seedling roots. Ecotoxicology and Environmental Safety, 2022, 245, 114112.	6.0	7
23	5-Aminolevulinic acid promotes low-light tolerance by regulating chloroplast ultrastructure, photosynthesis, and antioxidant capacity in tall fescue. Plant Physiology and Biochemistry, 2022, 190, 248-261.	5.8	5
24	Key factors for differential drought tolerance in two contrasting wild materials of Artemisia wellbyi identified using comparative transcriptomics. BMC Plant Biology, 2022, 22, .	3.6	1
25	干旱对ä¸åŒå"ç§å°é°¦å¹¼è‹—的生ç†ç"ŸåŒ—èf迫以åŠå¤æº5-氨基乙酰丙é…,的缓解作ç"	'''. A ota Agi	ron o mica Sinic
26	Synthesis, characterization, antimicrobial activity, and toxicity evaluation of aminolevulinic acid–silver and silver–iron nanoparticles for potential applications in agriculture. RSC Advances, 2022, 12, 30094-30103.	3.6	3
27	Zinc oxide nanoparticles mediated biostimulant impact on cadmium detoxification and in silico analysis of zinc oxide-cadmium networks in Zea mays L. regulome. Environmental Pollution, 2023, 316, 120641.	7.5	12
29	MdDGK3-like as a negative regulator participates in ALA-induced PP2AC to promote stomatal opening in apple leaves. Horticultural Plant Journal, 2023, , .	5.0	1
30	MeJA-mediated enhancement of salt-tolerance of Populus wutunensis by 5-aminolevulinic acid. BMC Plant Biology, 2023, 23, .	3.6	1
31	Alleviation of Shade Stress in Chinese Yew (Taxus chinensis) Seedlings with 5-Aminolevulinic Acid (ALA). Plants, 2023, 12, 2333.	3.5	1
32	Crosstalk between 5-Aminolevulinic Acid and Abscisic Acid Adjusted Leaf Iron Accumulation and Chlorophyll Synthesis to Enhance the Cold Tolerance in Solanum lycopersicum Seedlings. International Journal of Molecular Sciences, 2023, 24, 10781.	4.1	1
33	Comparative study of stress generated by osmolytes on the growth, photosynthesis and metabolic responses in Nigella sativa. Biocatalysis and Agricultural Biotechnology, 2023, 52, 102818.	3.1	O
34	Regulation of 5-Aminolevunilic Acid and Its Application in Agroforestry. Forests, 2023, 14, 1857.	2.1	2
35	Use of superabsorbent plants for urban greening as a tool to sequester atmosphere carbon. E3S Web of Conferences, 2023, 463, 02008.	0.5	O
36	Physiology of medicinal and aromatic plants under drought stress. Crop Journal, 2024, 12, 330-339.	5 . 2	1
37	5-Aminolevulinic acid improves cold resistance through regulation of SlMYB4/SlMYB88-SlGSTU43 module to scavenge reactive oxygen species in tomato. Horticulture Research, 2024, 11 , .	6.3	O

ARTICLE IF CITATIONS

38 Carbon monoxide is involved in melatonin-enhanced drought resistance in tomato seedlings by enhancing chlorophyll synthesis pathway. BMC Plant Biology, 2024, 24, . 3.6 0