Identification and therapeutic modulation of a pro-infla disease-associated-microglia in Alzheimerâ€s™disease

Molecular Neurodegeneration 13, 24 DOI: 10.1186/s13024-018-0254-8

Citation Report

#	Article	IF	CITATIONS
1	Effects of APOE Genotype on Brain Proteomic Network and Cell Type Changes in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2018, 11, 454.	2.9	55
2	Corn dried distillers grains with solubles (cDDGS) in the diet of pigs change the expression of adipose genes that are potential therapeutic targets in metabolic and cardiovascular diseases. BMC Genomics, 2018, 19, 864.	2.8	7
3	The identity and function of microglia in neurodegeneration. Nature Immunology, 2018, 19, 1048-1058.	14.5	241
4	Clinical PET Imaging of Microglial Activation: Implications for Microglial Therapeutics in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 314.	3.4	60
5	Microglia in Alzheimer's Disease: A Role for Ion Channels. Frontiers in Neuroscience, 2018, 12, 676.	2.8	31
6	Quantitative proteomics of acutely-isolated mouse microglia identifies novel immune Alzheimer's disease-related proteins. Molecular Neurodegeneration, 2018, 13, 34.	10.8	100
7	Gracilin A Derivatives Target Early Events in Alzheimer's Disease: in Vitro Effects on Neuroinflammation and Oxidative Stress. ACS Chemical Neuroscience, 2019, 10, 4102-4111.	3.5	14
8	Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nature Reviews Neurology, 2019, 15, 501-518.	10.1	734
9	Transcriptional regulation of homeostatic and diseaseâ€associatedâ€microglial genes by IRF1, LXRβ, and CEBPα. Glia, 2019, 67, 1958-1975.	4.9	48
10	Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. International Journal of Molecular Sciences, 2019, 20, 3161.	4.1	173
11	Reformulating Pro-Oxidant Microglia in Neurodegeneration. Journal of Clinical Medicine, 2019, 8, 1719.	2.4	47
12	Transcriptional Networks of Microglia in Alzheimer's Disease and Insights into Pathogenesis. Genes, 2019, 10, 798.	2.4	19
13	Future horizons in Alzheimer's disease research. Progress in Molecular Biology and Translational Science, 2019, 168, 223-241.	1.7	19
14	Role of Microglial Cells in Alzheimer's Disease Tau Propagation. Frontiers in Aging Neuroscience, 2019, 11, 271.	3.4	52
15	Anti-neuroinflammatory effects of a food-grade phenolic-enriched maple syrup extract in a mouse model of Alzheimer's disease. Nutritional Neuroscience, 2021, 24, 710-719.	3.1	20
16	Asparagine endopeptidase cleaves tau at N167 after uptake into microglia. Neurobiology of Disease, 2019, 130, 104518.	4.4	17
17	Temporal profiling of Kv1.3 channel expression in brain mononuclear phagocytes following ischemic stroke. Journal of Neuroinflammation, 2019, 16, 116.	7.2	19
18	The Role of APOE4 in Disrupting the Homeostatic Functions of Astrocytes and Microglia in Aging and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 14.	3.4	174

#	Article	IF	CITATIONS
19	The Emerging Roles and Therapeutic Potential of Soluble TREM2 in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 328.	3.4	34
20	Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer's disease. Molecular Brain, 2019, 12, 104.	2.6	172
21	<i>Bifidobacterium lactis</i> BB-12 Attenuates Macrophage Aging Induced by D-Galactose and Promotes M2 Macrophage Polarization. Journal of Immunology Research, 2019, 2019, 1-12.	2.2	12
22	Friend, Foe or Both? Immune Activity in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 337.	3.4	63
23	Crashing the computer: apoptosis vs. necroptosis in neuroinflammation. Cell Death and Differentiation, 2019, 26, 41-52.	11.2	97
24	Enforced microglial depletion and repopulation as a promising strategy for the treatment of neurological disorders. Glia, 2019, 67, 217-231.	4.9	79
25	The sterol regulatory elementâ€binding protein 2 is dysregulated by tau alterations in Alzheimer disease. Brain Pathology, 2019, 29, 530-543.	4.1	11
26	The role of TREM2 in Alzheimer's disease; evidence from transgenic mouse models. Neurobiology of Aging, 2020, 86, 39-53.	3.1	25
27	Inhibitory designer receptors aggravate memory loss in a mouse model of down syndrome. Neurobiology of Disease, 2020, 134, 104616.	4.4	9
28	Astaxanthin Suppresses PM2.5-Induced Neuroinflammation by Regulating Akt Phosphorylation in BV-2 Microglial Cells. International Journal of Molecular Sciences, 2020, 21, 7227.	4.1	45
29	What has singleâ€cell RNA sequencing revealed about microglial neuroimmunology?. Immunity, Inflammation and Disease, 2020, 8, 825-839.	2.7	18
30	Kv1.3 channel blockade alleviates cerebral ischemia/reperfusion injury by reshaping M1/M2 phenotypes and compromising the activation of NLRP3 inflammasome in microglia. Experimental Neurology, 2020, 332, 113399.	4.1	46
31	Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 40.	10.8	438
32	Harnessing endophenotypes and network medicine for Alzheimer's drug repurposing. Medicinal Research Reviews, 2020, 40, 2386-2426.	10.5	61
33	The good, the bad, and the opportunities of the complement system in neurodegenerative disease. Journal of Neuroinflammation, 2020, 17, 354.	7.2	133
34	HighÂGlucose and Hypoxia-Mediated Damage to Human Brain Microvessel Endothelial Cells Induces an Altered, Pro-Inflammatory Phenotype in BV-2 Microglia In Vitro. Cellular and Molecular Neurobiology, 2022, 42, 985-996.	3.3	11
35	Sex- and region-biased depletion of microglia/macrophages attenuates CLN1 disease in mice. Journal of Neuroinflammation, 2020, 17, 323.	7.2	20
36	BV-2 Microglial Cells Overexpressing C9orf72 Hexanucleotide Repeat Expansion Produce DPR Proteins and Show Normal Functionality but No RNA Foci. Frontiers in Neurology, 2020, 11, 550140.	2.4	4

#	Article	IF	CITATIONS
37	Age-related gene expression changes in lumbar spinal cord: Implications for neuropathic pain. Molecular Pain, 2020, 16, 174480692097191.	2.1	5
38	Space-Dependent Glia–Neuron Interplay in the Hippocampus of Transgenic Models of β-Amyloid Deposition. International Journal of Molecular Sciences, 2020, 21, 9441.	4.1	9
39	Flow-cytometric microglial sorting coupled with quantitative proteomics identifies moesin as a highly-abundant microglial protein with relevance to Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 28.	10.8	37
40	Altered Mental Status as a Novel Initial Clinical Presentation for COVID-19 Infection in the Elderly. American Journal of Geriatric Psychiatry, 2020, 28, 808-811.	1.2	45
41	Neuronâ€glia interactions: Molecular basis of alzheimer's disease and applications of neuroproteomics. European Journal of Neuroscience, 2020, 52, 2931-2943.	2.6	32
42	Time Course of Peripheral and Central Immune System Alterations in Paclitaxel-Treated Mice: Possible Involvement of Dysfunctional Microglia. Neurochemical Journal, 2020, 14, 204-214.	0.5	0
43	A Novel Microglia-Specific Transcriptional Signature Correlates With Behavioral Deficits in Neuropsychiatric Lupus. Frontiers in Immunology, 2020, 11, 230.	4.8	27
44	Alzheimer's Risk Factors Age, APOE Genotype, and Sex Drive Distinct Molecular Pathways. Neuron, 2020, 106, 727-742.e6.	8.1	152
45	Alpinia oxyphylla–Schisandra chinensis Herb Pair Alleviates Amyloid-β Induced Cognitive Deficits via PI3K/Akt/Gsk-3β/CREB Pathway. NeuroMolecular Medicine, 2020, 22, 370-383.	3.4	5
46	Role of dietary fatty acids in microglial polarization in Alzheimer's disease. Journal of Neuroinflammation, 2020, 17, 93.	7.2	57
47	The voltage-gated potassium channel KV1.3 as a therapeutic target for venom-derived peptides. Biochemical Pharmacology, 2020, 181, 114146.	4.4	39
48	Kv1.3 Channel as a Key Therapeutic Target for Neuroinflammatory Diseases: State of the Art and Beyond. Frontiers in Neuroscience, 2019, 13, 1393.	2.8	61
49	Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine, 2020, 26, 769-780.	30.7	547
50	Reparative Effects of Stem Cell Factor and Granulocyte Colony-Stimulating Factor in Aged APP/PS1 Mice. , 2020, 11, 1423.		9
51	The roles of liver X receptor α in inflammation and inflammationâ€associated diseases. Journal of Cellular Physiology, 2021, 236, 4807-4828.	4.1	30
52	Alzheimer's-associated PU.1 expression levels regulate microglial inflammatory response. Neurobiology of Disease, 2021, 148, 105217.	4.4	55
53	Interpretation of psychiatric genome-wide association studies with multispecies heterogeneous functional genomic data integration. Neuropsychopharmacology, 2021, 46, 86-97.	5.4	22
54	Microglia Degrade Extracellular Tau Oligomers Deposits via Purinergic P2Y12-Driven Podosomes, Filopodia Formation and Induce Chemotaxis. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
55	Natural genetic variation determines microglia heterogeneity in wild-derived mouse models of Alzheimer's disease. Cell Reports, 2021, 34, 108739.	6.4	49
56	Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nature Communications, 2021, 12, 1151.	12.8	187
57	TREM2 Mediates Microglial Anti-Inflammatory Activations in Alzheimer's Disease: Lessons Learned from Transcriptomics. Cells, 2021, 10, 321.	4.1	25
58	Integrating Clinical and Genomic Analyses of Hippocampal-Prefrontal Circuit Disorder in Depression. Frontiers in Genetics, 2020, 11, 565749.	2.3	4
59	Opposing functions of β-arrestin 1 and 2 in Parkinson's disease via microglia inflammation and Nprl3. Cell Death and Differentiation, 2021, 28, 1822-1836.	11.2	30
60	Weighted Gene Coexpression Network Analysis Reveals Essential Genes and Pathways in Bipolar Disorder. Frontiers in Psychiatry, 2021, 12, 553305.	2.6	10
61	Reduction of Amyloid Burden by Proliferated Homeostatic Microglia in Toxoplasma gondii-Infected Alzheimer's Disease Model Mice. International Journal of Molecular Sciences, 2021, 22, 2764.	4.1	5
62	The emerging role of the chondroitin sulfate proteoglycan family in neurodegenerative diseases. Reviews in the Neurosciences, 2021, 32, 737-750.	2.9	11
63	Unique molecular characteristics and microglial origin of Kv1.3 channel–positive brain myeloid cells in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
64	Usefulness of candidate mRNAs and miRNAs as biomarkers for mild cognitive impairment and Alzheimer's disease. International Journal of Neuroscience, 2023, 133, 89-102.	1.6	9
65	Extracellular signalâ€regulated kinase regulates microglial immune responses in Alzheimer's disease. Journal of Neuroscience Research, 2021, 99, 1704-1721.	2.9	43
66	Recent advances in pre-clinical diagnosis of Alzheimer's disease. Metabolic Brain Disease, 2021, , 1.	2.9	3
67	Cell-type-specific expression quantitative trait loci associated with Alzheimer disease in blood and brain tissue. Translational Psychiatry, 2021, 11, 250.	4.8	29
68	Microglia Specific Drug Targeting Using Natural Products for the Regulation of Redox Imbalance in Neurodegeneration. Frontiers in Pharmacology, 2021, 12, 654489.	3.5	24
69	SIRT1-Dependent Upregulation of BDNF in Human Microglia Challenged with Aβ: An Early but Transient Response Rescued by Melatonin. Biomedicines, 2021, 9, 466.	3.2	16
70	Unearthing of Key Genes Driving the Pathogenesis of Alzheimer's Disease via Bioinformatics. Frontiers in Genetics, 2021, 12, 641100.	2.3	7
71	Salvianolic Acids for Injection alleviates cerebral ischemia/reperfusion injury by switching M1/M2 phenotypes and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia in vivo and in vitro. Journal of Ethnopharmacology, 2021, 270, 113776.	4.1	46
73	Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiology of Disease, 2021, 152, 105290.	4.4	76

#	Article	IF	CITATIONS
74	Microglia: A Double-Edged Sword in Intracerebral Hemorrhage From Basic Mechanisms to Clinical Research. Frontiers in Immunology, 2021, 12, 675660.	4.8	29
75	Lipopolysaccharide influences the plasma and brain pharmacokinetics of subcutaneously-administered HsTX1[R14A], a KV1.3-blocking peptide. Toxicon, 2021, 195, 29-36.	1.6	5
76	Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatric Disease and Treatment, 2021, Volume 17, 1311-1339.	2.2	13
77	The effect of dipeptidyl peptidase IV on disease-associated microglia phenotypic transformation in epilepsy. Journal of Neuroinflammation, 2021, 18, 112.	7.2	13
79	Acute TBK1/IKK-ε Inhibition Enhances the Generation of Disease-Associated Microglia-Like Phenotype Upon Cortical Stab-Wound Injury. Frontiers in Aging Neuroscience, 2021, 13, 684171.	3.4	11
80	Role of TREM2 in Alzheimer's Disease: A Long Road Ahead. Molecular Neurobiology, 2021, 58, 5239-5252.	4.0	15
82	Diversity of transcriptomic microglial phenotypes in aging and Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 360-376.	0.8	46
83	Microglia: The Real Foe in HIV-1-Associated Neurocognitive Disorders?. Biomedicines, 2021, 9, 925.	3.2	9
84	Omics sciences for systems biology in Alzheimer's disease: State-of-the-art of the evidence. Ageing Research Reviews, 2021, 69, 101346.	10.9	74
85	Hippocampal glucose uptake as a surrogate of metabolic change of microglia in Alzheimer's disease. Journal of Neuroinflammation, 2021, 18, 190.	7.2	28
87	Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 736310.	3.7	30
88	Glial TDPâ€43 and TDPâ€43 induced glial pathology, focus on neurodegenerative proteinopathy syndromes. Glia, 2022, 70, 239-255.	4.9	14
89	Implications for microglial sex differences in tau-related neurodegenerative diseases. Neurobiology of Aging, 2021, 105, 340-348.	3.1	10
90	Innate Immune System Activation and Neuroinflammation in Down Syndrome and Neurodegeneration: Therapeutic Targets or Partners?. Frontiers in Aging Neuroscience, 2021, 13, 718426.	3.4	17
91	Metabolic Processes are Potential Biological Processes Distinguishing Nonischemic Dilated Cardiomyopathy from Ischemic Cardiomyopathy: A Clue from Serum Proteomics. Pharmacogenomics and Personalized Medicine, 2021, Volume 14, 1169-1184.	0.7	3
92	Roles of microglia in Alzheimer's disease and impact of new findings on microglial heterogeneity as a target for therapeutic intervention. Biochemical Pharmacology, 2021, 192, 114754.	4.4	24
93	Combinatorial analyses reveal cellular composition changes have different impacts on transcriptomic changes of cell type specific genes in Alzheimer's Disease. Scientific Reports, 2021, 11, 353.	3.3	13
94	ATP-sensitive Potassium Channel Subunits in Neuroinflammation: Novel Drug Targets in Neurodegenerative Disorders. CNS and Neurological Disorders - Drug Targets, 2022, 21, 130-149.	1.4	17

#	Article	IF	Citations
95	Identification of gene modules associated with survival of diffuse large B-cell lymphoma treated with CHOP-based chemotherapy. Pharmacogenomics Journal, 2020, 20, 705-716.	2.0	11
96	Kv1.3 inhibition attenuates neuroinflammation through disruption of microglial calcium signaling. Channels, 2021, 15, 67-78.	2.8	17
101	Identification of key modules and hub genes associated with lung function in idiopathic pulmonary fibrosis. PeerJ, 2020, 8, e9848.	2.0	8
102	Gene Ontology curation of the blood–brain barrier to improve the analysis of Alzheimer's and other neurological diseases. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	6
103	Microgliaâ€specific <scp>ApoE</scp> knockâ€out does not alter Alzheimer's disease plaque pathogenesis or gene expression. Glia, 2022, 70, 287-302.	4.9	20
104	Differential Stimulation of Pluripotent Stem Cell-Derived Human Microglia Leads to Exosomal Proteomic Changes Affecting Neurons. Cells, 2021, 10, 2866.	4.1	6
105	Cell type-specific potential pathogenic genes and functional pathways in Alzheimer's Disease. BMC Neurology, 2021, 21, 381.	1.8	21
106	TSPO PET Imaging as a Biomarker of Neuroinflammation in Neurodegenerative Disorders. Neuromethods, 2022, , 407-427.	0.3	2
108	Network Pharmacology-Based Study of the Underlying Mechanisms of Huangqi Sijunzi Decoction for Alzheimer's Disease. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-13.	1.2	5
109	DL0410 Alleviates Memory Impairment in D-Galactose-Induced Aging Rats by Suppressing Neuroinflammation via the TLR4/MyD88/NF-κB Pathway. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-31.	4.0	13
110	Integrated Network Analysis to Identify Key Modules and Potential Hub Genes Involved in Bovine Respiratory Disease: A Systems Biology Approach. Frontiers in Genetics, 2021, 12, 753839.	2.3	13
111	Microglial transcription profiles in mouse and human are driven by APOE4 and sex. IScience, 2021, 24, 103238.	4.1	9
114	Flow Cytometry Approach to Characterize Phagocytic Properties of Acutely-Isolated Adult Microglia and Brain Macrophages In Vitro. Journal of Visualized Experiments, 2020, , .	0.3	5
117	Blockade of Microglial Kv1.3 Potassium Channels by the Peptide HsTX1[R14A] Attenuates Lipopolysaccharide-mediated Neuroinflammation. Journal of Pharmaceutical Sciences, 2022, 111, 638-647.	3.3	9
118	Psychological Stress as a Risk Factor for Accelerated Cellular Aging and Cognitive Decline: The Involvement of Microglia-Neuron Crosstalk. Frontiers in Molecular Neuroscience, 2021, 14, 749737.	2.9	23
119	Microglia Polarization in Alzheimer's Disease: Mechanisms and a Potential Therapeutic Target. Frontiers in Aging Neuroscience, 2021, 13, 772717.	3.4	43
120	The semantics of microglia activation: neuroinflammation, homeostasis, and stress. Journal of Neuroinflammation, 2021, 18, 258.	7.2	198
121	Immunonutritional agonists in the neuroimmune response in AGE-Ing. , 2022, , 535-544.		0

#	Article	IF	CITATIONS
122	Immunopharmacology of Alzheimer's disease. , 2022, , 277-298.		0
123	Microglial Potassium Channels: From Homeostasis to Neurodegeneration. Biomolecules, 2021, 11, 1774.	4.0	8
124	Detection of molecular signatures and pathways shared by Alzheimer's disease and type 2 diabetes. Gene, 2022, 810, 146070.	2.2	11
125	Special Issue "Microglia Heterogeneity and Its Relevance for Translational Research― International Journal of Molecular Sciences, 2021, 22, 12350.	4.1	0
126	Dopamine and Neuroinflammation in Schizophrenia – Interpreting the Findings from Translocator Protein (18kDa) PET Imaging. Neuropsychiatric Disease and Treatment, 2021, Volume 17, 3345-3357.	2.2	2
127	Inflammation-dependent oxidative stress metabolites as a hallmark of amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2022, 178, 125-133.	2.9	26
128	Functional insight into LOAD-associated microglial response genes. Open Biology, 2022, 12, 210280.	3.6	5
130	Disease-associated microglial activation prevents photoreceptor degeneration by suppressing the accumulation of cell debris and neutrophils in degenerating rat retinas. Theranostics, 2022, 12, 2687-2706.	10.0	8
131	Research progress of the CXCR4 mechanism in Alzheimer's disease. , 2022, 8, 3-14.		9
132	A Mutant Variant of E2F4 Triggers Multifactorial Therapeutic Effects in 5xFAD Mice. Molecular Neurobiology, 2022, 59, 3016-3039.	4.0	3
133	Microglial VPS35 deficiency impairs Al² phagocytosis and Al²-induced disease-associated microglia, and enhances Al² associated pathology. Journal of Neuroinflammation, 2022, 19, 61.	7.2	12
134	ApoE Cascade Hypothesis in the pathogenesis of Alzheimer's disease and related dementias. Neuron, 2022, 110, 1304-1317.	8.1	120
135	Behavioral and Neuropathological Changes After Toxoplasma gondii Ocular Conjunctival Infection in BALB/c Mice. Frontiers in Cellular and Infection Microbiology, 2022, 12, 812152.	3.9	1
136	Transcriptional landscape of human microglia implicates age, sex, and <i>APOE</i> â€related immunometabolic pathway perturbations. Aging Cell, 2022, 21, e13606.	6.7	23
137	Microglia Heterogeneity in Alzheimer's Disease: Insights From Single-Cell Technologies. Frontiers in Synaptic Neuroscience, 2021, 13, 773590.	2.5	16
138	Therapeutic effects of carvacrol on betaâ€amyloidâ€induced impairments in in vitro and in vivo models of Alzheimer's disease. European Journal of Neuroscience, 2022, 56, 5714-5726. 	2.6	5
139	Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathologica, 2022, 143, 179-224.	7.7	82
140	Enriched environment priors to TET1 hippocampal administration for regulating psychiatric behaviors via glial reactivity in chronic cerebral hypoperfusion models. Journal of Affective Disorders, 2022, 310. 198-212.	4.1	6

#	Article	IF	CITATIONS
153	Microglia-Mediated Inflammation and Neural Stem Cell Differentiation in Alzheimer's Disease: Possible Therapeutic Role of KV1.3 Channel Blockade. Frontiers in Cellular Neuroscience, 2022, 16, 868842.	3.7	10
154	Adolescent Binge Alcohol Enhances Early Alzheimer's Disease Pathology in Adulthood Through Proinflammatory Neuroimmune Activation. Frontiers in Pharmacology, 2022, 13, 884170.	3.5	24
155	BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Molecular Neurodegeneration, 2022, 17, 33.	10.8	26
156	Multifunctional Anti-Alzheimer's Disease Effects of Natural Xanthone Derivatives: A Primary Structure-Activity Evaluation. Frontiers in Chemistry, 2022, 10, .	3.6	6
157	Microglia in the Neuroinflammatory Pathogenesis of Alzheimer's Disease and Related Therapeutic Targets. Frontiers in Immunology, 2022, 13, 856376.	4.8	38
158	Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. Journal of Neuroinflammation, 2022, 19, 112.	7.2	22
159	Reducing PDK1/Akt Activity: An Effective Therapeutic Target in the Treatment of Alzheimer's Disease. Cells, 2022, 11, 1735.	4.1	9
160	TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Molecular Neurodegeneration, 2022, 17, .	10.8	36
161	Single-Cell Sequencing Analysis of the db/db Mouse Hippocampus Reveals Cell-Type-Specific Insights Into the Pathobiology of Diabetes-Associated Cognitive Dysfunction. Frontiers in Endocrinology, 2022, 13, .	3.5	11
162	Antiretroviral therapy restores the homeostatic state of microglia in SIV-infected rhesus macaques. Journal of Leukocyte Biology, 2022, 112, 969-981.	3.3	7
163	Region-Specific Characteristics of Astrocytes and Microglia: A Possible Involvement in Aging and Diseases. Cells, 2022, 11, 1902.	4.1	10
164	Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulated in Exercise in a Mouse Model of Parkinson's Disease. Frontiers in Aging Neuroscience, 0, 14, .	3.4	4
165	Microglia: Friend and foe in tauopathy. Progress in Neurobiology, 2022, 216, 102306.	5.7	13
166	Effects of α5 <scp> GABA _A </scp> receptor modulation on social interaction, memory, and neuroinflammation in a mouse model of Alzheimer's disease. CNS Neuroscience and Therapeutics, 0, , .	3.9	4
167	What Is the Role of Microglial Metabolism in Inflammation and Neurodegeneration?. Neurology, 2022, 99, 99-105.	1.1	1
168	Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration. Cell Death and Disease, 2022, 13, .	6.3	21
169	Neuronal cell death mechanisms in Alzheimer's disease: An insight. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	36
170	Reenacting Neuroectodermal Exposure of Hematopoietic Progenitors Enables Scalable Production of Cryopreservable iPSC-Derived Human Microglia. Stem Cell Reviews and Reports, 0, , .	3.8	3

#	Article	IF	CITATIONS
171	Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer's disease. Journal of Neuroinflammation, 2022, 19, .	7.2	80
172	C5aR1 antagonism alters microglial polarization and mitigates disease progression in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2022, 10, .	5.2	14
173	Pathological tau signatures and nuclear alterations in neurons, astrocytes and microglia in Alzheimer's disease, progressive supranuclear palsy, and dementia with Lewy bodies. Brain Pathology, 2023, 33, .	4.1	14
174	All roads lead to heterogeneity: The complex involvement of astrocytes and microglia in the pathogenesis of Alzheimer's disease. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	10
175	Human microRNA-4433 (hsa-miR-4443) Targets 18 Genes to be a Risk Factor of Neurodegenerative Diseases. Current Alzheimer Research, 2022, 19, 511-522.	1.4	3
176	Aß Pathology and Neuron–Glia Interactions: A Synaptocentric View. Neurochemical Research, 2023, 48, 1026-1046.	3.3	12
177	Pathogenesis, therapeutic strategies and biomarker development based on "omics―analysis related to microglia in Alzheimer's disease. Journal of Neuroinflammation, 2022, 19, .	7.2	12
178	Microglial ion channels: Key players in non-cell autonomous neurodegeneration. Neurobiology of Disease, 2022, 174, 105861.	4.4	9
179	Kv1.3 K ⁺ Channel Physiology Assessed by Genetic and Pharmacological Modulation. Physiology, 2023, 38, 25-41.	3.1	8
180	The placenta epigenome–brain axis: placental epigenomic and transcriptomic responses that preprogram cognitive impairment. Epigenomics, 2022, 14, 897-911.	2.1	8
182	Recent Applications of Bioinformatics in Target Identification and Drug Discovery for Alzheimer's Disease. Current Topics in Medicinal Chemistry, 2022, 22, 2153-2175.	2.1	2
183	Different phenotypes of microglia in animal models of Alzheimer disease. Immunity and Ageing, 2022, 19,	4.2	11
184	Cross-Talk and Subset Control of Microglia and Associated Myeloid Cells in Neurological Disorders. Cells, 2022, 11, 3364.	4.1	4
185	The significance of glycolysis index and its correlations with immune infiltrates in Alzheimer's disease. Frontiers in Immunology, 0, 13, .	4.8	5
186	Neuroinflammation of microglia polarization in intracerebral hemorrhage and its potential targets for intervention. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	8
187	The effects and potential of microglial polarization and crosstalk with other cells of the central nervous system in the treatment of Alzheimer's disease. Neural Regeneration Research, 2023, 18, 947.	3.0	6
188	Omics-based biomarkers discovery for Alzheimer's disease. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	10
189	Long RNA Profiles of Human Brain Extracellular Vesicles Provide New Insights into the Pathogenesis of Alzheimer's Disease. , 2023, 14, 229.		4

#	Article	IF	CITATIONS
190	Isolation of Human Microglia from Neuropathologically Diagnosed Cases in the Single-Cell Era. Methods in Molecular Biology, 2023, , 43-62.	0.9	2
191	Neuroglia Cells Transcriptomic in Brain Development, Aging and Neurodegenerative Diseases. , 2023, 14, 63.		5
192	Sodium Butyrate Supplementation Modulates Neuroinflammatory Response Aggravated by Antibiotic Treatment in a Mouse Model of Binge-like Ethanol Drinking. International Journal of Molecular Sciences, 2022, 23, 15688.	4.1	4
193	Glial Contributions to Lafora Disease: A Systematic Review. Biomedicines, 2022, 10, 3103.	3.2	0
194	Spatial proteomics in three-dimensional intact specimens. Cell, 2022, 185, 5040-5058.e19.	28.9	28
195	Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	4
196	Increase of ALCAM and VCAM-1 in the plasma predicts the Alzheimer's disease. Frontiers in Immunology, 0, 13, .	4.8	1
197	Functional Potassium Channels in Macrophages. Journal of Membrane Biology, 0, , .	2.1	1
198	CD33/TREM2 Signaling Mediates Sleep Deprivation-Induced Memory Impairment by Regulating Microglial Phagocytosis. NeuroMolecular Medicine, 2023, 25, 255-271.	3.4	5
199	TREM2 signalling as a multifaceted player in brain homoeostasis and a potential target for Alzheimer's disease treatment. European Journal of Neuroscience, 2023, 57, 718-733.	2.6	5
200	3D in vitro modelling of human patient microglia: A focus on clinical translation and drug development in neurodegenerative diseases. Journal of Neuroimmunology, 2023, 375, 578017.	2.3	1
201	Microglia-Mediated Neurovascular Unit Dysfunction in Alzheimer's Disease. Journal of Alzheimer's Disease, 2023, 94, S335-S354.	2.6	7
203	Genetic models of cleavage-reduced and soluble TREM2 reveal distinct effects on myelination and microglia function in the cuprizone model. Journal of Neuroinflammation, 2023, 20, .	7.2	3
204	Machine Learning Selection of Most Predictive Brain Proteins Suggests Role of Sugar Metabolism in Alzheimer's Disease. Journal of Alzheimer's Disease, 2023, 92, 411-424.	2.6	9
205	The potential roles of ATF family in the treatment of Alzheimer's disease. Biomedicine and Pharmacotherapy, 2023, 161, 114544.	5.6	3
206	RNAseq Analysis of FABP4 Knockout Mouse Hippocampal Transcriptome Suggests a Role for WNT/β-Catenin in Preventing Obesity-Induced Cognitive Impairment. International Journal of Molecular Sciences, 2023, 24, 3381.	4.1	3
209	Brain injury accelerates the onset of a reversible age-related microglial phenotype associated with inflammatory neurodegeneration. Science Advances, 2023, 9, .	10.3	16
210	TGF-β1 signalling in Alzheimer's pathology and cytoskeletal reorganization: a specialized Tau perspective. Journal of Neuroinflammation, 2023, 20, .	7.2	16

#	Article	IF	CITATIONS
211	Role of microglia in HIV-1 infection. AIDS Research and Therapy, 2023, 20, .	1.7	2
212	An aging, pathology burden, and glial senescence build-up hypothesis for late onset Alzheimer's disease. Nature Communications, 2023, 14, .	12.8	26
213	The Skeletal Muscle Transcriptome Profile of Elderly Men with Metabolic Syndrome Based on Weighted Gene Co-Expression Network Analysis. Obesity Facts, 2023, 16, 264-272.	3.4	0
214	The role of signaling crosstalk of microglia in hippocampus on progression of ageing and Alzheimer's disease. Journal of Pharmaceutical Analysis, 2023, 13, 788-805.	5.3	2
215	Drug repositioning targeting glutaminase reveals drug candidates for the treatment of Alzheimer's disease patients. Journal of Translational Medicine, 2023, 21, .	4.4	2
216	Microglia degrade Tau oligomers deposit via purinergic P2Y12-associated podosome and filopodia formation and induce chemotaxis. Cell and Bioscience, 2023, 13, .	4.8	1
217	Innovations advancing our understanding of microglia in Alzheimer's disease: From in vitro to in vivo models. Journal of Neurochemistry, 2023, 166, 497-516.	3.9	3
219	Transcriptomic and glycomic analyses highlight pathway-specific glycosylation alterations unique to Alzheimer's disease. Scientific Reports, 2023, 13, .	3.3	6
220	Peripheral Administration of the Kv1.3-Blocking Peptide HsTX1[R14A] Improves Cognitive Performance in Senescence Accelerated SAMP8 Mice. Neurotherapeutics, 2023, 20, 1198-1214.	4.4	3
221	Crosstalk between peripheral immunity and central nervous system in Alzheimer's disease. Cellular Immunology, 2023, , 104743.	3.0	0
222	Exploring the Potential of Aptamers in Targeting Neuroinflammation and Neurodegenerative Disorders: Opportunities and Challenges. International Journal of Molecular Sciences, 2023, 24, 11780.	4.1	2
224	Neuronal γ-secretase regulates lipid metabolism, linking cholesterol to synaptic dysfunction in Alzheimer's disease. Neuron, 2023, 111, 3176-3194.e7.	8.1	5
225	Viruses - a major cause of amyloid deposition in the brain. Expert Review of Neurotherapeutics, 2023, 23, 775-790.	2.8	0
226	Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases. Nature Communications, 2023, 14, .	12.8	12
227	Analyzing the glial proteome in Alzheimer's disease. Expert Review of Proteomics, 2023, 20, 197-209.	3.0	1
228	Noteworthy perspectives on microglia in neuropsychiatric disorders. Journal of Neuroinflammation, 2023, 20, .	7.2	3
229	Chemistry and bioactivity of lindenane sesquiterpenoids and their oligomers. Natural Product Reports, 2024, 41, 25-58.	10.3	5
230	Human iPSC-derived glia models for the study of neuroinflammation. Journal of Neuroinflammation, 2023, 20, .	7.2	6

#	Article	IF	CITATIONS
231	Integrative single-nucleus multi-omics analysis prioritizes candidate cis and trans regulatory networks and their target genes in Alzheimer's disease brains. Cell and Bioscience, 2023, 13, .	4.8	1
232	Endothelial senescence alleviates cognitive impairment in a mouse model of <scp>Alzheimer</scp> 's disease. Glia, 0, , .	4.9	0
234	Structure of the voltage-gated potassium channel K _V 1.3: Insights into the inactivated conformation and binding to therapeutic leads. Channels, 2023, 17, .	2.8	4
235	Polysaccharides: potential bioactive macromolecules for Alzheimer's disease. Frontiers in Nutrition, 0, 10, .	3.7	1
236	Sijunzi Decoction Targets IL1B and TNF to Reduce Neutrophil Extracellular Traps (NETs) in Ulcerative Colitis: Evidence from Silicon Prediction and Experiment Validation. Drug Design, Development and Therapy, 0, Volume 17, 3103-3128.	4.3	1
237	APOE4-promoted gliosis and degeneration in tauopathy are ameliorated by pharmacological inhibition of HMGB1 release. Cell Reports, 2023, 42, 113252.	6.4	3
238	Oligodendrocyte progenitor cells in Alzheimer's disease: from physiology to pathology. Translational Neurodegeneration, 2023, 12, .	8.0	0
239	Cross species systems biology discovers glial DDR2, STOM, and KANK2 as therapeutic targets in progressive supranuclear palsy. Nature Communications, 2023, 14, .	12.8	1
240	Alzheimer's genes in microglia: a risk worth investigating. Molecular Neurodegeneration, 2023, 18, .	10.8	1
241	Identification ferroptosis-related hub genes and diagnostic model in Alzheimer's disease. Frontiers in Molecular Neuroscience, 0, 16, .	2.9	0
242	Advances in the study of the effects of gut microflora on microglia in Alzheimer's disease. Frontiers in Molecular Neuroscience, 0, 16, .	2.9	0
243	The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. , 2023, .		0
245	Exploring the Disease-Associated Microglia State in Amyotrophic Lateral Sclerosis. Biomedicines, 2023, 11, 2994.	3.2	0
246	Identification of State-Specific Proteomic and Transcriptomic Signatures of Microglia-Derived Extracellular Vesicles. Molecular and Cellular Proteomics, 2023, 22, 100678.	3.8	2
247	Atorvastatin Promotes Pro/anti-inflammatory Phenotypic Transformation of Microglia via Wnt/β-catenin Pathway in Hypoxic-Ischemic Neonatal Rats. Molecular Neurobiology, 0, , .	4.0	0
248	Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. International Journal of Molecular Sciences, 2023, 24, 17377.	4.1	0
249	The Impact of Dipyridamole on Disease-Associated Microglia Phenotypic Transformation in White Matter Lesions Induced by Chronic Cerebral Hypoperfusion. Neurochemical Research, 2024, 49, 744-757.	3.3	0
250	Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Frontiers in Immunology, 0, 14, .	4.8	0

#	Article	IF	CITATIONS
252	Genetic background variation impacts microglial heterogeneity and disease progression in amyotrophic lateral sclerosis model mice. IScience, 2024, 27, 108872.	4.1	0
253	The role of microglia in the pathogenesis of diabetic-associated cognitive dysfunction. Frontiers in Endocrinology, 0, 14, .	3.5	0
254	Aducanumab anti-amyloid immunotherapy induces sustained microglial and immune alterations. Journal of Experimental Medicine, 2024, 221, .	8.5	0
255	The molecular fingerprint of neuroinflammation in COVID-19: A comprehensive discussion on molecular mechanisms of neuroinflammation due to SARS-COV2 antigens. Behavioural Brain Research, 2024, 462, 114868.	2.2	0
257	Lactylation-driven FTO targets CDK2 to aggravate microvascular anomalies in diabetic retinopathy. EMBO Molecular Medicine, 2024, 16, 294-318.	6.9	0
258	Kv1.3 in the spotlight for treating immune diseases. Expert Opinion on Therapeutic Targets, 2024, 28, 67-82.	3.4	0
259	Basic Science of Neuroinflammation and Involvement of the Inflammatory Response in Disorders of the Nervous System. Magnetic Resonance Imaging Clinics of North America, 2024, 32, 375-384.	1.1	0
261	The role of microglia heterogeneity in synaptic plasticity and brain disorders: Will sequencing shed light on the discovery of new therapeutic targets?. , 2024, 255, 108606.		0
262	Advanced patient-specific microglia cell models for pre-clinical studies in Alzheimer's disease. Journal of Neuroinflammation, 2024, 21, .	7.2	0
263	BHLHE40/41 regulate microglia and peripheral macrophage responses associated with Alzheimer's disease and other disorders of lipid-rich tissues. Nature Communications, 2024, 15, .	12.8	0
264	Neuronal deletion of <i>Gtf2i</i> results in developmental microglial alterations in a mouse model related to Williams syndrome. Glia, 2024, 72, 1117-1135.	4.9	0
265	Microglial AT1R Conditional Knockout Ameliorates Hypoperfusive Cognitive Impairment by Reducing Microglial Inflammatory Responses. Neuroscience, 2024, 545, 125-140.	2.3	0
266	APOE4 genotype and aging impair injury-induced microglial behavior in brain slices, including toward Aβ, through P2RY12. Molecular Neurodegeneration, 2024, 19, .	10.8	0
267	The Neuro-Inflammatory Microenvironment: An Important Regulator of Stem Cell Survival in Alzheimer's Disease. Journal of Alzheimer's Disease, 2024, 98, 741-754.	2.6	0