Pilot-Scale Anaerobic Co-Digestion of the OFMSW: Impostartup

Sustainability

10, 1939

DOI: 10.3390/su10061939

Citation Report

#	Article	IF	CITATIONS
1	A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Disposal & Sustainable Energy, 2019, 1, 151-167.	1.1	118
2	Anaerobic Digestion of Food Waste with Unconventional Co-Substrates for Stable Biogas Production at High Organic Loading Rates. Sustainability, 2019, 11, 3875.	1.6	55
3	Performance of Anaerobic Digestion of Chicken Manure Under Gradually Elevated Organic Loading Rates. International Journal of Environmental Research and Public Health, 2019, 16, 2239.	1.2	32
4	Sustainable Italian Cities: The Added Value of Biomethane from Organic Waste. Applied Sciences (Switzerland), 2019, 9, 2221.	1.3	36
5	Anaerobic Digestion Technology for Methane Production Using Deer Manure Under Different Experimental Conditions. Energies, 2019, 12, 1819.	1.6	27
6	Feasibility Analysis of Bio-Methane Production in a Biogas Plant: A Case Study. Energies, 2019, 12, 473.	1.6	24
7	The effect of flue gas explosive decompression pretreatment on methane recovery from bioethanol production waste. Industrial Crops and Products, 2019, 127, 66-72.	2.5	17
8	Biogas optimisation processes and effluent quality: A review. Biomass and Bioenergy, 2020, 133, 105449.	2.9	41
9	Continuous Anaerobic Co-Digestion of Biowaste with Crude Glycerol under Mesophilic Conditions. Sustainability, 2020, 12, 9512.	1.6	2
10	Techno-economic analysis and environmental aspects of food waste management., 2020,, 325-342.		2
11	Assessment of organic loading rate by using a water tank digester for biogas production in Bangladesh. Journal of Cleaner Production, 2020, 265, 121688.	4.6	7
12	Used disposable nappies and expired food products co-digestion: A pilot-scale system assessment. Renewable Energy, 2021, 165, 109-117.	4.3	7
13	Global Strategy, Local Action with Biogas Production for Rural Energy Climate Change Impact Reduction., 2021,, 1381-1399.		0
14	Bioenergy recovery from Southern Tunisia $\hat{a} \in \mathbb{N}$ s organic wastes: analysis and kinetic modeling study of biomethane production. Biomass Conversion and Biorefinery, 0, , 1.	2.9	3
15	An advanced approach towards sustainable paper industries through simultaneous recovery of energy and trapped water from paper sludge. Journal of Environmental Chemical Engineering, 2021, 9, 105471.	3.3	10
16	Biomethanation Potential (BMP) Study of Mesophilic Anaerobic Co-Digestion of Abundant Bio-Wastes in Southern Regions of Tunisia. Processes, 2021, 9, 48.	1.3	10
17	Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence. Processes, 2021, 9, 1875.	1.3	2
18	Comparison and optimization of different fuel processing options for biogas-fed solid-oxide fuel cell plants. International Journal of Hydrogen Energy, 2022, 47, 551-564.	3.8	13

#	Article	IF	CITATIONS
19	Global Strategy, Local Action with Biogas Production for Rural Energy Climate Change Impact Reduction., 2020,, 1-19.		1
20	Anaerobic Digestion in Europe: Key to Waste Management, Challenges, and Perspectives., 2020,, 73-95.		0
22	Optimization of Biogas Production from Sewage Sludge: Impact of Combination with Bovine Dung and Leachate from Municipal Organic Waste. Sustainability, 2022, 14, 4380.	1.6	5
23	Determining the appropriate mixing ratio in a multi-substrate anaerobic digestion of organic solid wastes employing Taguchi method. Journal of Environmental Health Science & Engineering, 2022, 20, 545-554.	1.4	2
24	Anaerobic Digestion as a Component of Circular Bioeconomyâ€"Case Study Approach. Energies, 2023, 16, 140.	1.6	7
25	Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples. Energies, 2023, 16, 798.	1.6	7
26	ADPMDesign: The use of a Participatory Methodology to design a dry anaerobic digestion power plant for municipal solid waste treatment. Energy for Sustainable Development, 2023, 74, 173-184.	2.0	1