The Potential and Challenges of Using Soil Moisture Act Salinity to Monitor Arctic Ocean Freshwater Changes

Remote Sensing 10, 869 DOI: 10.3390/rs10060869

Citation Report

#	Article	IF	CITATIONS
1	Assessing Coastal SMAP Surface Salinity Accuracy and Its Application to Monitoring Gulf of Maine Circulation Dynamics. Remote Sensing, 2018, 10, 1232.	4.0	26
2	Editorial for the Special Issue "Sea Surface Salinity Remote Sensingâ€: Remote Sensing, 2019, 11, 1300.	4.0	1
3	Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast. Remote Sensing, 2019, 11, 1964.	4.0	32
4	Adequacy of the Ocean Observation System for Quantifying Regional Heat and Freshwater Storage and Change. Frontiers in Marine Science, 2019, 6, .	2.5	19
5	Sea Surface Salinity Distribution in the Southern Ocean as Observed From Space. Journal of Geophysical Research: Oceans, 2019, 124, 3186-3205.	2.6	10
6	Variability of Spacebased Sea Surface Salinity and Freshwater Contents in the Hudson Bay. , 2019, , .		0
7	Automatic Detection and Identification of RFI Sources for SMAP Satellite Polarized Data Based on IDL. , 2019, , .		0
8	Estimation of Surface Freshwater Fluxes in the Arctic Ocean Using Satellite-Derived Salinity. Remote Sensing in Earth Systems Sciences, 2019, 2, 247-259.	1.8	6
9	Evaluation and Intercomparison of SMOS, Aquarius, and SMAP Sea Surface Salinity Products in the Arctic Ocean. Remote Sensing, 2019, 11, 3043.	4.0	37
10	Arctic Sea Surface Salinity Retrieval from Smos Measures. , 2019, , .		0
11	New insights into SMOS sea surface salinity retrievals in the Arctic Ocean. Remote Sensing of Environment, 2020, 249, 112027.	11.0	31
12	Variability and Uncertainty of Satellite Sea Surface Salinity in the Subpolar North Atlantic (2010–2019). Remote Sensing, 2020, 12, 2092.	4.0	8
13	Salinity effects on egg production, hatching, and survival of Eurytemora affinis (Copepoda,) Tj ETQq0 0 0 rgBT /C)verlock 10 0.3	0 Tf 50 262 T
14	Sea Surface Salinity as a Proxy for Arctic Ocean Freshwater Changes. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016110.	2.6	22
15	The Multifrequency Future for Remote Sensing of Sea Surface Salinity from Space. Remote Sensing, 2020, 12, 1381.	4.0	17
16	Statistical Assessment of Sea-Surface Salinity from SMAP: Arabian Sea, Bay of Bengal and a Promising Red Sea Application. Remote Sensing, 2020, 12, 447.	4.0	18
17	The Potential of Space-Based Sea Surface Salinity on Monitoring the Hudson Bay Freshwater Cycle. Remote Sensing, 2020, 12, 873.	4.0	9
18	Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019). Remote Sensing of Environment, 2020, 242, 111769.	11.0	120

CITATION REPORT

#	Article	IF	CITATIONS
19	Sensitivity of Wide Bandwidth Radiometer for Remote Sensing of Ocean Salinity. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	6.3	3
20	Error Characterization of Satellite SSS Products Based on Extended Collocation Analysis. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	1
21	Using Saildrones to Validate Arctic Sea-Surface Salinity from the SMAP Satellite and from Ocean Models. Remote Sensing, 2021, 13, 831.	4.0	20
22	Properties of surface water masses in the Laptev and the East Siberian seas in summer 2018 from in situ and satellite data. Ocean Science, 2021, 17, 221-247.	3.4	18
23	Revisiting the Global Patterns of Seasonal Cycle in Sea Surface Salinity. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016789.	2.6	13
24	Objective Analysis of SMOS and SMAP Sea Surface Salinity to Reduce Large-Scale and Time-Dependent Biases from Low to High Latitudes. Journal of Atmospheric and Oceanic Technology, 2021, 38, 405-421.	1.3	11
25	Freshwater Variability and Transport in the Labrador Sea From In Situ and Satellite Observations. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016751.	2.6	5
26	Surface Freshwater Fluxes in the Arctic and Subarctic Seas during Contrasting Years of High and Low Summer Sea Ice Extent. Remote Sensing, 2021, 13, 1570.	4.0	5
27	Heat flux, water temperature and discharge from 15 northern Canadian rivers draining to Arctic Ocean and Hudson Bay. Global and Planetary Change, 2021, 204, 103577.	3.5	14
28	Study on direction dependence of the fully polarimetric wind-induced ocean emissivity at L-band using a semi-theoretical approach for Aquarius and SMAP observations. Remote Sensing of Environment, 2021, 265, 112661.	11.0	4
29	River Freshwater Flux to the Arctic Ocean. , 2021, , 703-738.		30
30	Wide Bandwidth Radiometer Sensitivity for Remote Sensing of Ocean Salinity. , 2021, , .		1
31	Satelliteâ€Based Sea Surface Salinity Designed for Ocean and Climate Studies. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017676.	2.6	29
32	An Empirical Algorithm for Mitigating the Sea Ice Effect in SMAP Radiometer for Sea Surface Salinity Retrieval in the Arctic Seas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 11986-11997.	4.9	3
33	A new genus of frenulates (Annelida: Siboglinidae) from shallow waters of the Yenisey River estuary, Kara Sea. Invertebrate Systematics, 2021, 35, 857-875.	1.3	7
34	An Empirical Sea Ice Correction Algorithm for SMAP SSS Retrieval in the Arctic Ocean. , 2020, , .		1
36	Influence of Nonseasonal River Discharge on Sea Surface Salinity and Height. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	4
37	Sea Surface Salinity Variability in the Bering Sea in 2015–2020. Remote Sensing, 2022, 14, 758.	4.0	6

CITATION REPORT

#	Article	IF	CITATIONS
38	Direct Observations of the Role of Lateral Advection of Sea Ice Meltwater in the Onset of Autumn Freeze Up. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	1
39	An Algorithm to Bias-Correct and Transform Arctic SMAP-Derived Skin Salinities into Bulk Surface Salinities. Remote Sensing, 2022, 14, 1418.	4.0	1
40	SMAP Salinity Retrievals near the Sea-Ice Edge Using Multi-Channel AMSR2 Brightness Temperatures. Remote Sensing, 2021, 13, 5120.	4.0	4
41	Structure and Inter-Annual Variability of the Freshened Surface Layer in the Laptev and East-Siberian Seas During Ice-Free Periods. Frontiers in Marine Science, 2021, 8, .	2.5	16
42	Recognizing Salinity Threats in the Climate Crisis. Integrative and Comparative Biology, 2022, 62, 441-460.	2.0	16
43	Validating Salinity from SMAP and HYCOM Data with Saildrone Data during EUREC4A-OA/ATOMIC. Remote Sensing, 2022, 14, 3375.	4.0	1
44	The Contribution of the Vendée Globe Race to Improved Ocean Surface Information: A Validation of the Remotely Sensed Salinity in the Sub-Antarctic Zone. Journal of Marine Science and Engineering, 2022, 10, 1078.	2.6	0
45	Sea surface salinity variability in the western subpolar North Atlantic based on satellite observations. Remote Sensing of Environment, 2022, 281, 113257.	11.0	5
46	Deviations of satellite-measured sea surface salinity caused by environmental factors and their regional dependence. Remote Sensing of Environment, 2023, 285, 113411.	11.0	3
47	Coastal Summer Freshening and Meltwater Input off West Greenland from Satellite Observations. Remote Sensing, 2022, 14, 6069.	4.0	2
48	Meltwater Lenses Over the Chukchi and the Beaufort Seas During Summer 2019: From In Situ to Synoptic View. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	7
49	Simulation Framework and Case Studies for the Design of Sea Surface Salinity Remote Sensing Missions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 1321-1334.	4.9	2
50	The Role of the Russian Shelf in Seasonal and Interannual Variability of Arctic Sea Surface Salinity and Freshwater Content. Journal of Geophysical Research: Oceans, 2023, 128, .	2.6	4
51	Impact of Giant Iceberg A68A on the Physical Conditions of the Surface South Atlantic, Derived Using Remote Sensing. Geophysical Research Letters, 2023, 50, .	4.0	0
52	Observed oceanic response to Tropical Cyclone Amphan (2020) from a subsurface mooring in the Bay of Bengal. Progress in Oceanography, 2023, 219, 103148.	3.2	0
53	Temperature gradient of the natural water surface thermal radiation. E3S Web of Conferences, 2023, 457, 02006.	0.5	0
54	Interannual Variability of Salinity in the Chukchi Sea and Its Relationships with the Dynamics of the East Siberian Current during 1993–2020. Remote Sensing, 2023, 15, 5648.	4.0	0
55	Technological Oceanography. Journal of Marine Science and Engineering, 2024, 12, 175.	2.6	Ο

ARTICLE

IF CITATIONS

SMAP Sea Surface Salinity Improvement in the Arctic Region Using Machine Learning Approaches.
Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta,) Tj ETQq0 0 0 rgBT /Oxerlock 10 Tf 50 73

57	Contribution of satellite sea surface salinity to the estimation of liquid freshwater content in the Beaufort Sea. Ocean Science, 2024, 20, 279-291.	3.4	0
58	Improved sea surface salinity data for the Arctic Ocean derived from SMAP satellite data using machine learning approaches. Frontiers in Marine Science, 0, 11, .	2.5	0
59	Drivers of Laptev Sea interannual variability in salinity and temperature. Ocean Science, 2024, 20, 341-367.	3.4	Ο