Spectral Properties of Coniferous Forests: A Review of I Measurements

Remote Sensing 10, 207 DOI: 10.3390/rs10020207

Citation Report

#	Article	IF	CITATIONS
1	Recent Progress and Developments in Imaging Spectroscopy. Remote Sensing, 2018, 10, 1497.	4.0	2
2	Heritable variation in needle spectral reflectance of Scots pine (Pinus sylvestris L.) peaks in red edge. Remote Sensing of Environment, 2018, 219, 89-98.	11.0	9
3	Tree species classification using plant functional traits from LiDAR and hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 2018, 73, 207-219.	2.8	63
4	Individual Tree Crown Segmentation and Classification of 13 Tree Species Using Airborne Hyperspectral Data. Remote Sensing, 2018, 10, 1218.	4.0	117
5	Leaf Optical Properties in Different Wavelength Domains. , 2019, , 124-169.		4
6	Variation Due to Leaf Structural, Chemical, and Physiological Traits. , 2019, , 170-194.		3
7	Extraction of Leaf Traits. , 2019, , 320-356.		0
8	A Brief History of Leaf Color. , 2019, , 1-11.		0
9	Leaf Biophysics. , 2019, , 12-47.		0
10	Spectroscopy of Leaf Molecules. , 2019, , 48-73.		2
11	Measurement of Leaf Optical Properties. , 2019, , 74-123.		1
12	Variations Due to Leaf Abiotic and Biotic Factors. , 2019, , 195-228.		1
13	Comprehensive Reviews of Leaf Optical Properties Models. , 2019, , 229-264.		1
14	Modeling Leaf Optical Properties:prospect. , 2019, , 265-291.		1
15	Modeling Three-Dimensional Leaf Optical Properties:raytran. , 2019, , 292-319.		0
16	Applications of Leaf Optics. , 2019, , 357-403.		Ο
31	The potential of dual-wavelength terrestrial lidar in early detection of Ips typographus (L.) infestation – Leaf water content as a proxy. Remote Sensing of Environment, 2019, 231, 111264.	11.0	32
32	Reflectance Properties of Hemiboreal Mixed Forest Canopies with Focus on Red Edge and Near Infrared Spectral Regions. Remote Sensing, 2019, 11, 1717.	4.0	13

TION RE

CITATION REPORT

#	Article	IF	CITATIONS
33	Investigation of Spectral Variation of Pine Needles as an Indicator of Arsenic Content in Soils. Minerals (Basel, Switzerland), 2019, 9, 498.	2.0	6
34	Modelling Site Index in Forest Stands Using Airborne Hyperspectral Imagery and Bi-Temporal Laser Scanner Data. Remote Sensing, 2019, 11, 1020.	4.0	9
35	Tree Species Classification Using Hyperion and Sentinel-2 Data with Machine Learning in South Korea and China. ISPRS International Journal of Geo-Information, 2019, 8, 150.	2.9	32
36	Leaf Canopy Layers Affect Spectral Reflectance in Silver Birch. Remote Sensing, 2019, 11, 2884.	4.0	21
37	Detecting northern peatland vegetation patterns at ultraâ€high spatial resolution. Remote Sensing in Ecology and Conservation, 2020, 6, 457-471.	4.3	27
39	Analyzing Daily Estimation of Forest Gross Primary Production Based on Harmonized Landsat-8 and Sentinel-2 Product Using SCOPE Process-Based Model. Remote Sensing, 2020, 12, 3773.	4.0	6
40	Extending Estimates of Tree and Tree Species Presence-Absence through Space and Time Using Landsat Composites. Canadian Journal of Remote Sensing, 2020, 46, 567-584.	2.4	4
41	Simulation-Based Evaluation of the Estimation Methods of Far-Red Solar-Induced Chlorophyll Fluorescence Escape Probability in Discontinuous Forest Canopies. Remote Sensing, 2020, 12, 3962.	4.0	6
42	Empirical validation of photon recollision probability in single crowns of tree seedlings. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169, 57-72.	11.1	7
43	Potential Lidar Height, Intensity, and Ratio Parameters for Plot Dominant Species Discrimination and Volume Estimation. Remote Sensing, 2020, 12, 3266.	4.0	2
44	Modeling and simulation of the spectral reflectance for the natural environment: Area pester plateau. Computers and Electronics in Agriculture, 2020, 174, 105462.	7.7	3
45	Sentinel-2 Leaf Area Index Estimation for Pine Plantations in the Southeastern United States. Remote Sensing, 2020, 12, 1406.	4.0	14
46	Machine Learning for Tree Species Classification Using Sentinel-2 Spectral Information, Crown Texture, and Environmental Variables. Remote Sensing, 2020, 12, 2049.	4.0	12
47	Discrimination of Coniferous and Deciduous Leaves of Trees and Shrubs from Decorative and Artificial Materials by Optical Diffuse Reflectance Spectroscopy. Optics and Spectroscopy (English) Tj ETQq1 1 C).78 948 14 r	rgBō Overlo
48	Continuous Detection of Small-Scale Changes in Scots Pine Dominated Stands Using Dense Sentinel-2 Time Series. Remote Sensing, 2020, 12, 1298.	4.0	17
49	Water-related ecosystems' mapping and assessment based on remote sensing techniques and geospatial analysis: The SWOS national service case of the Greek Ramsar sites and their catchments. Remote Sensing of Environment, 2020, 245, 111795.	11.0	29
50	Monitoring of Canopy Stress Symptoms in New Zealand Kauri Trees Analysed with AISA Hyperspectral Data. Remote Sensing, 2020, 12, 926.	4.0	11
51	A Comparison of Linear-Mode and Single-Photon Airborne LiDAR in Species-Specific Forest Inventories. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	5

#	Article	IF	CITATIONS
52	Foliage Biophysical Trait Prediction from Laboratory Spectra in Norway Spruce Is More Affected by Needle Age Than by Site Soil Conditions. Remote Sensing, 2021, 13, 391.	4.0	8
53	Canopy Top, Height and Photosynthetic Pigment Estimation Using Parrot Sequoia Multispectral Imagery and the Unmanned Aerial Vehicle (UAV). Remote Sensing, 2021, 13, 705.	4.0	14
54	The Potential of Sentinel-2 Satellite Images for Land-Cover/Land-Use and Forest Biomass Estimation: A Review. , 0, , .		8
55	Evaluating the effect of stand properties and site conditions on the forest reflectance from Sentinel-2 time series. PLoS ONE, 2021, 16, e0248459.	2.5	11
56	Developing near infrared spectroscopy models for predicting chemistry and responses to stress in <i>Pinus radiata</i> (D. Don). Journal of Near Infrared Spectroscopy, 2021, 29, 245-256.	1.5	8
57	Effects of Incorporating Measured Leaf Optical Properties in Land Surface Models. Frontiers in Earth Science, 2021, 9, .	1.8	2
58	PREDICTING THE INFRARED UAV IMAGERY OVER THE COAST. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIII-B1-2021, 149-156.	0.2	0
59	Differing Fine-Scale Responses of Vegetation and Bare Soil to Moisture Variation in a Pinyon-Juniper Woodland Underlie Landscape-Scale Responses Observed from Remote Sensing. Environment and Natural Resources Research, 2021, 11, 1.	0.1	1
60	Aboveground Biomass Estimation in Short Rotation Forest Plantations in Northern Greece Using ESA's Sentinel Medium-High Resolution Multispectral and Radar Imaging Missions. Forests, 2021, 12, 902.	2.1	17
61	A review of major factors influencing the accuracy of mapping green-attack stage of bark beetle infestations using satellite imagery: Prospects to avoid data redundancy. Remote Sensing Applications: Society and Environment, 2021, 24, 100638.	1.5	8
62	Early detection of spruce vitality loss with hyperspectral data: Results of an experimental study in Bavaria, Germany. Remote Sensing of Environment, 2021, 266, 112676.	11.0	24
64	Changes of Norway Spruce Health in the BiaÅ,owieża Forest (CE Europe) in 2013–2019 during a Bark Beetle Infestation, Studied with Landsat Imagery. Forests, 2021, 12, 34.	2.1	7
65	Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest. Biogeosciences, 2020, 17, 4523-4544.	3.3	20
66	Unsupervised spectral-spatial processing of drone imagery for identification of pine seedlings. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183, 363-388.	11.1	10
67	Continuous Monitoring of Tree Responses to Climate Change for Smart Forestry: A Cybernetic Web of Trees. Managing Forest Ecosystems, 2022, , 361-398.	0.9	6
68	Tree Species Classification in a Temperate Mixed Mountain Forest Landscape Using Random Forest and Multiple Datasets. Remote Sensing, 2021, 13, 4657.	4.0	8
69	A Photon Force and Flow for Dissipative Structuring: Application to Pigments, Plants and Ecosystems. Entropy, 2022, 24, 76.	2.2	4
70	Leaf-level chlorophyll fluorescence and reflectance spectra of high latitude plants. Environmental Research Communications, 2022, 4, 035001.	2.3	2

CITATION REPORT

#	Article	IF	Citations
71	Mapping tree species in natural and planted forests using Sentinel-2 images. Remote Sensing Letters, 2022, 13, 544-555.	1.4	4
72	A spectral analysis of stem bark for boreal and temperate tree species. Ecology and Evolution, 2022, 12, e8718.	1.9	6
73	A Proposal for a Forest Digital Twin Framework and Its Perspectives. Forests, 2022, 13, 498.	2.1	17
74	An Integration of Linear Model and â€~Random Forest' Techniques for Prediction of Norway Spruce Vitality: A Case Study of the Hemiboreal Forest, Latvia. Remote Sensing, 2022, 14, 2122.	4.0	0
75	Forest canopy stratification based on fused, imbalanced and collinear LiDAR and Sentinel-2 metrics. Remote Sensing of Environment, 2022, 279, 113134.	11.0	4
76	Mapping the relative abundance of soil microbiome biodiversity from eDNA and remote sensing. Science of Remote Sensing, 2022, 6, 100065.	4.8	2
77	Imaging particulate matter exposed pine trees by vehicle exhaust experiment and hyperspectral analysis. Environmental Science and Pollution Research, 0, , .	5.3	0
78	A precise method unaffected by atmospheric reabsorption for ground-based retrieval of red and far-red sun-induced chlorophyll fluorescence. Agricultural and Forest Meteorology, 2022, 325, 109152.	4.8	2
79	Comparison between Artificial and Human Estimates in Urban Tree Canopy Assessments. Land, 2022, 11, 2325.	2.9	0
80	Bidirectional reflectance factor measurement of conifer needles with microscopic spectroscopy imaging. Agricultural and Forest Meteorology, 2023, 330, 109311.	4.8	2
81	Impact of potentially toxic elements on pines in a former ore processing mine: Exploitation of hyperspectral response from needle and canopy scales. Environmental Research, 2023, 227, 115747.	7.5	0
82	Multi-Feature-Based Identification of Subtropical Evergreen Tree Species Using Gaofen-2 Imagery and Algorithm Comparison. Forests, 2023, 14, 292.	2.1	3
83	Influence of phenology on waveform features in deciduous and coniferous trees in airborne LiDAR. Remote Sensing of Environment, 2023, 293, 113618.	11.0	3
84	Detection of susceptible Norway spruce to bark beetle attack using PlanetScope multispectral imagery. Frontiers in Forests and Clobal Change, 0, 6, .	2.3	8
85	Tree Species Diversity Mapping—Success Stories and Possible Ways Forward. Remote Sensing, 2023, 15, 3074.	4.0	2
86	Monitoring montane-subalpine forest ecotone in the Pyrenees through sequential forest inventories and Landsat imagery. Annals of Forest Science, 2023, 80, .	2.0	1

CITATION REPORT