Mesoporous Silica Nanoparticles for Drug Delivery: Cur

Molecules 23, 47

DOI: 10.3390/molecules23010047

Citation Report

#	Article	IF	CITATIONS
1	pH-sensitive release of insulin-loaded mesoporous silica particles and its coordination mechanism. European Journal of Pharmaceutical Sciences, 2018, 119, 1-12.	1.9	13
2	Factors Affecting Intracellular Delivery and Release of Hydrophilic Versus Hydrophobic Cargo from Mesoporous Silica Nanoparticles on 2D and 3D Cell Cultures. Pharmaceutics, 2018, 10, 237.	2.0	10
3	Mesoporous Silica Materials as Drug Delivery: "The Nightmare―of Bacterial Infection. Pharmaceutics, 2018, 10, 279.	2.0	70
4	Dealing with Skin and Blood-Brain Barriers: The Unconventional Challenges of Mesoporous Silica Nanoparticles. Pharmaceutics, 2018, 10, 250.	2.0	35
5	Mesoporeâ€Induced Aggregation of Cobalt Protoporphyrin for Photoacoustic Imaging and Antioxidant Protection of Stem Cells. Advanced Functional Materials, 2018, 28, 1804497.	7.8	21
6	Chemoresponsive smart mesoporous silica systems – An emerging paradigm for cancer therapy. International Journal of Pharmaceutics, 2018, 553, 310-326.	2.6	14
7	Drug Delivery and Bone Infection. The Enzymes, 2018, 44, 35-59.	0.7	7
8	Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent progress and perspectives. Expert Opinion on Drug Delivery, 2018, 15, 881-892.	2.4	55
9	Perspectives of nanotechnology in male fertility and sperm function. International Journal of Veterinary Science and Medicine, 2018, 6, 265-269.	0.8	68
10	Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules, 2018, 23, 2021.	1.7	106
11	Functionalization of mesoporous silica surface with carboxylic groups by Meldrum's acid and its application for sorption of proteins. Journal of Porous Materials, 2019, 26, 291-300.	1.3	28
12	Nanomaterials as Promising Alternative in the Infection Treatment. International Journal of Molecular Sciences, 2019, 20, 3806.	1.8	128
13	Multidisciplinary Role of Mesoporous Silica Nanoparticles in Brain Regeneration and Cancers: From Crossing the Blood–Brain Barrier to Treatment. Particle and Particle Systems Characterization, 2019, 36, 1900195.	1.2	45
14	Functionalization and cancer-targeting design of ruthenium complexes for precise cancer therapy. Chemical Communications, 2019, 55, 9904-9914.	2.2	100
15	Concanavalin A-targeted mesoporous silica nanoparticles for infection treatment. Acta Biomaterialia, 2019, 96, 547-556.	4.1	55
16	Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. European Journal of Medicinal Chemistry, 2019, 181, 111557.	2.6	20
17	Construction of pH responsive periodic mesoporous organosilica with histidine framework (His-PMO) for drug delivery. Journal of Solid State Chemistry, 2019, 277, 761-768.	1.4	10
18	Artemisinin-Based Smart Nanomedicines with Self-Supply of Ferrous Ion to Enhance Oxidative Stress for Specific and Efficient Cancer Treatment. ACS Applied Materials & Interfaces, 2019, 11, 29490-29497.	4.0	46

#	Article	IF	CITATIONS
19	Enhancement of the therapeutic efficacy of praziquantel in murine Schistosomiasis mansoni using silica nanocarrier. Parasitology Research, 2019, 118, 3519-3533.	0.6	15
20	Silica-based nanosystems for therapeuticÂapplications in the skin. Nanomedicine, 2019, 14, 2243-2267.	1.7	17
21	Dynamic Hybrid Colloidosomes via Electrostatic Interactions for pH-Balanced Low Premature Leakage and Ultrafast Cargo Release. Nano Letters, 2019, 19, 6065-6071.	4.5	20
22	Ferritin nanovehicle for targeted delivery of cytochrome C to cancer cells. Scientific Reports, 2019, 9, 11749.	1.6	44
23	An Effective Strategy to Obtain Highly Porous Alumina Powders Having Robust and Designable Extra-Large Pores. Bulletin of the Chemical Society of Japan, 2019, 92, 1859-1866.	2.0	6
24	Advances in nanoparticle development for improved therapeutics delivery: nanoscale topographical aspect. Journal of Tissue Engineering, 2019, 10, 204173141987752.	2.3	64
25	Microneedle-based drug delivery: materials of construction. Journal of Chemical Sciences, 2019, 131, 1.	0.7	73
26	Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chemical Communications, 2019, 55, 2731-2740.	2.2	68
27	Bioceramics: from bone substitutes to nanoparticles for drug delivery. Pure and Applied Chemistry, 2019, 91, 687-706.	0.9	21
28	Enhanced dissolution of valsartan-vanillin binary co-amorphous system loaded in mesoporous silica particles. Journal of Microencapsulation, 2019, 36, 10-20.	1.2	11
29	Fabrication of a nanoparticle-containing 3D porous bone scaffold with proangiogenic and antibacterial properties. Acta Biomaterialia, 2019, 86, 441-449.	4.1	46
30	Cell adherence and drug delivery from particle based mesoporous silica films. RSC Advances, 2019, 9, 17745-17753.	1.7	9
31	<p>Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 3389-3401.	3.3	103
32	New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. International Journal of Pharmaceutics, 2019, 564, 379-409.	2.6	90
33	Pharmacotherapy options and drug development in managing periprosthetic joint infections in the elderly. Expert Opinion on Pharmacotherapy, 2019, 20, 1109-1121.	0.9	4
34	Phenazine-1-carboxamide functionalized mesoporous silica nanoparticles as antimicrobial coatings on silicone urethral catheters. Scientific Reports, 2019, 9, 6198.	1.6	35
35	Use of Confinement Effects in Mesoporous Materials to Build Tailored Nanoarchitectures. , 2019, , 331-348.		8
36	Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 419-433.	3.3	151

_

#	Article	IF	CITATIONS
37	Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opinion on Drug Delivery, 2019, 16, 415-439.	2.4	124
38	Use of Materials Based on Polymeric Silica as Bone-Targeted Drug Delivery Systems for Metronidazole. International Journal of Molecular Sciences, 2019, 20, 1311.	1.8	22
39	Influence of bridged monomer on porosity and sorption properties of mesoporous silicas functionalized with diethylenetriamine groups. Adsorption, 2019, 25, 575-589.	1.4	8
40	Sulfonate-Functionalized Mesoporous Silica Nanoparticles as Carriers for Controlled Herbicide Diquat Dibromide Release through Electrostatic Interaction. International Journal of Molecular Sciences, 2019, 20, 1330.	1.8	36
41	Albumin-MnO2 gated hollow mesoporous silica nanosystem for modulating tumor hypoxia and synergetic therapy of cervical carcinoma. Colloids and Surfaces B: Biointerfaces, 2019, 179, 250-259.	2.5	43
42	Cancer cell targeting and therapeutic delivery of silver nanoparticles by mesoporous silica nanocarriers: insights into the action mechanisms using quantitative proteomics. Nanoscale, 2019, 11, 4531-4545.	2.8	46
43	Influence of Mesoporous Silica Functionalization and Pore Size on Resveratrol Release Profiles. Proceedings (mdpi), 2019, 29, .	0.2	0
44	Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 5776.	1.8	166
45	Targeting microRNAs as a Therapeutic Strategy to Reduce Oxidative Stress in Diabetes. International Journal of Molecular Sciences, 2019, 20, 6358.	1.8	29
46	Recent Advances in Magnetite Nanoparticle Functionalization for Nanomedicine. Nanomaterials, 2019, 9, 1791.	1.9	81
47	Sol–gel derived silica/polyethylene glycol hybrids as potential oligonucleotide vectors. Journal of Materials Research, 2019, 34, 3787-3797.	1.2	11
48	Design Rules for Mesoporous Silica toward the Nanosize: A Systematic Study. ACS Applied Materials & Interfaces, 2019, 11, 47237-47246.	4.0	14
49	Hydrotalcite-gated hollow mesoporous silica delivery system for controlled drug release. Microporous and Mesoporous Materials, 2019, 274, 304-312.	2.2	36
50	Mesoporous silica nanoparticles: Synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chemical Engineering Journal, 2019, 359, 684-705.	6.6	159
51	Preparation and Study of the Antibacterial Applications and Oxidative Stress Induction of Copper Maleamate-Functionalized Mesoporous Silica Nanoparticles. Pharmaceutics, 2019, 11, 30.	2.0	39
52	Mixed-charge pseudo-zwitterionic mesoporous silica nanoparticles with low-fouling and reduced cell uptake properties. Acta Biomaterialia, 2019, 84, 317-327.	4.1	63
53	Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomedicine and Pharmacotherapy, 2019, 110, 319-341.	2.5	60
54	Ibuprofen loading into mesoporous silica nanoparticles using Co-Spray drying: A multi-scale study. Microporous and Mesoporous Materials, 2020, 291, 109689.	2.2	15

#	Article	IF	CITATIONS
55	The effects of nickel oxide nanoparticles on structural changes, heme degradation, aggregation of hemoglobin and expression of apoptotic genes in lymphocytes. Journal of Biomolecular Structure and Dynamics, 2020, 38, 3676-3686.	2.0	10
56	Copper-functionalized nanostructured silica-based systems: Study of the antimicrobial applications and ROS generation against gram positive and gram negative bacteria. Journal of Inorganic Biochemistry, 2020, 203, 110912.	1.5	15
57	Multifaceted roles of TAK1 signaling in cancer. Oncogene, 2020, 39, 1402-1413.	2.6	43
58	Compartment-restricted and rate-controlled dual drug delivery system using a biosilica-enveloped ferritin cage. Journal of Industrial and Engineering Chemistry, 2020, 81, 367-374.	2.9	25
59	Mesoporous silica pellets – A promising oral drug delivery system?. Journal of Drug Delivery Science and Technology, 2020, 56, 101491.	1.4	2
60	A general method to produce mesoporous oxide spherical particles through an aerosol method from aqueous solutions. Journal of Sol-Gel Science and Technology, 2020, 94, 195-204.	1.1	6
61	Therapeutic Potential of Polymer-Coated Mesoporous Silica Nanoparticles. Applied Sciences (Switzerland), 2020, 10, 289.	1.3	21
62	Magnetically-oriented type I collagen-SiO2@Fe3O4 rods composite hydrogels tuning skin cell growth. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110597.	2.5	24
63	Galactose Functionalized Mesoporous Silica Nanoparticles As Delivery Vehicle in the Treatment of Hepatitis C Infection. ACS Applied Bio Materials, 2020, 3, 7598-7610.	2.3	17
64	Redox-sensitive nanoscale drug delivery systems for cancer treatment. International Journal of Pharmaceutics, 2020, 589, 119882.	2.6	65
65	Functionalized Fluorescent Silica Nanoparticles for Bioimaging of Cancer Cells. Sensors, 2020, 20, 5590.	2.1	5
66	Size dependent influence of contact line pinning on wetting of nano-textured/patterned silica surfaces. Nanoscale, 2020, 12, 21376-21391.	2.8	11
67	Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators. Accounts of Chemical Research, 2020, 53, 1545-1556.	7.6	128
68	Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. Journal of Controlled Release, 2020, 326, 544-555.	4.8	75
69	Nanoparticles Coated with Cell Membranes for Biomedical Applications. Biology, 2020, 9, 406.	1.3	42
70	Empty mesoporous silica particles significantly delay disease progression and extend survival in a mouse model of ALS. Scientific Reports, 2020, 10, 20675.	1.6	7
71	An Immunological Approach to the Biocompatibility of Mesoporous SiO2-CaO Nanospheres. International Journal of Molecular Sciences, 2020, 21, 8291.	1.8	17
72	Novel zwitterionic vectors: Multi-functional delivery systems for therapeutic genes and drugs. Computational and Structural Biotechnology Journal, 2020, 18, 1980-1999.	1.9	44

#	Article	IF	CITATIONS
73	Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. Applied Sciences (Switzerland), 2020, 10, 5194.	1.3	114
74	A Review of Nanomaterials and Technologies for Enhancing the Antibiofilm Activity of Natural Products and Phytochemicals. ACS Applied Nano Materials, 2020, 3, 8537-8556.	2.4	33
75	Interplay of Adsorption, Supersaturation and the Presence of an Absorptive Sink on Drug Release from Mesoporous Silica-Based Formulations. Pharmaceutical Research, 2020, 37, 163.	1.7	12
76	The diffusion of doxorubicin drug molecules in silica nanoslits is non-Gaussian, intermittent and anticorrelated. Physical Chemistry Chemical Physics, 2020, 22, 27955-27965.	1.3	55
77	One-pot synthesis of acid-degradable polyphosphazene prodrugs for efficient tumor chemotherapy. Journal of Materials Chemistry B, 2020, 8, 10540-10548.	2.9	20
78	Manipulating the physical states of confined ibuprofen in SBA-15 based drug delivery systems obtained by solid-state loading: Impact of the loading degree. Journal of Chemical Physics, 2020, 153, 154506.	1.2	17
79	Trends in Degradable Mesoporous Organosilica-Based Nanomaterials for Controlling Drug Delivery: A Mini Review. Materials, 2020, 13, 3668.	1.3	23
80	Mesoporous Silica Platforms with Potential Applications in Release and Adsorption of Active Agents. Molecules, 2020, 25, 3814.	1.7	62
81	Anti-Melanoma Activity of Indomethacin Incorporated into Mesoporous Silica Nanoparticles. Pharmaceutical Research, 2020, 37, 172.	1.7	14
82	Applications of Mesoporous Silica-Encapsulated Gold Nanorods Loaded Doxorubicin in Chemo-photothermal Therapy. ACS Omega, 2020, 5, 20231-20237.	1.6	16
83	Emerging Nanopharmaceuticals and Nanonutraceuticals in Cancer Management. Biomedicines, 2020, 8, 347.	1.4	39
84	Biomimetic Amorphous Titania Nanoparticles as Ultrasound Responding Agents to Improve Cavitation and ROS Production for Sonodynamic Therapy. Applied Sciences (Switzerland), 2020, 10, 8479.	1.3	14
85	Design of Polymeric and Biocompatible Delivery Systems by Dissolving Mesoporous Silica Templates. International Journal of Molecular Sciences, 2020, 21, 9573.	1.8	9
86	The Design of Anionic Surfactant-Based Amino-Functionalized Mesoporous Silica Nanoparticles and their Application in Transdermal Drug Delivery. Pharmaceutics, 2020, 12, 1035.	2.0	28
87	Molecular dynamics simulations study of the structure and dynamics of nimodipine confined in an ordered mesoporous silica matrix. Chemical Physics, 2020, 536, 110819.	0.9	2
88	Anti-inflammatory Cotton Fabrics and Silica Nanoparticles with Potential Topical Medical Applications. ACS Applied Materials & Interfaces, 2020, 12, 25658-25675.	4.0	20
89	Visible Light Photocleavable Ruthenium-Based Molecular Gates to Reversibly Control Release from Mesoporous Silica Nanoparticles. Nanomaterials, 2020, 10, 1030.	1.9	9
90	Physical triggering strategies for drug delivery. Advanced Drug Delivery Reviews, 2020, 158, 36-62.	6.6	55

#	Article	IF	CITATIONS
91	Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents. Drug Discovery Today, 2020, 25, 1513-1520.	3.2	83
92	Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics, 2020, 12, 527.	2.0	40
93	Mesoporous Silica Nanoparticles for Co-Delivery of Drugs and Nucleic Acids in Oncology: A Review. Pharmaceutics, 2020, 12, 526.	2.0	65
94	Zeolites for theranostic applications. Journal of Materials Chemistry B, 2020, 8, 5992-6012.	2.9	45
95	Nanoengineered Lightâ€Activatable Polybubbles for Onâ€Demand Therapeutic Delivery. Advanced Functional Materials, 2020, 30, 2003579.	7.8	8
96	Curcumin's Nanomedicine Formulations for Therapeutic Application in Neurological Diseases. Journal of Clinical Medicine, 2020, 9, 430.	1.0	116
97	Tunable Effect of the Calcination of the Silanol Groups of KIT-6 and SBA-15 Mesoporous Materials. Applied Sciences (Switzerland), 2020, 10, 970.	1.3	18
98	Biocompatible MIL-101(Fe) as a Smart Carrier with High Loading Potential and Sustained Release of Curcumin. Inorganic Chemistry, 2020, 59, 3570-3578.	1.9	88
99	Multifunctional, CD44v6-Targeted ORMOSIL Nanoparticles Enhance Drugs Toxicity in Cancer Cells. Nanomaterials, 2020, 10, 298.	1.9	10
100	Mesoporous Phosphate-Based Glasses Prepared via Sol–Gel. ACS Biomaterials Science and Engineering, 2020, 6, 1428-1437.	2.6	17
101	Biodegradable theranostic nanoplatforms of albumin-biomineralized nanocomposites modified hollow mesoporous organosilica for photoacoustic imaging guided tumor synergistic therapy. Chemical Engineering Journal, 2020, 388, 124253.	6.6	37
102	Nanoantioxidant–Based Silica Particles as Flavonoid Carrier for Drug Delivery Applications. Pharmaceutics, 2020, 12, 302.	2.0	26
103	The Effect of Nanosystems on ATP-Binding Cassette Transporters: Understanding the Influence of Nanosystems on Multidrug Resistance Protein-1 and P-glycoprotein. International Journal of Molecular Sciences, 2020, 21, 2630.	1.8	9
104	Mesoporous zirconia nanoparticles as drug delivery systems: Drug loading, stability and release. Journal of Drug Delivery Science and Technology, 2021, 61, 102189.	1.4	7
105	Engineering in Medicine To Address the Challenge of Cancer Drug Resistance: From Micro- and Nanotechnologies to Computational and Mathematical Modeling. Chemical Reviews, 2021, 121, 3352-3389.	23.0	41
106	Spray drying as an efficient route for synthesis of silica nanoparticles-sodium alginate biohybrid drug carrier of doxorubicin. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111445.	2.5	24
107	Design and fabrication of cell-targeted, dual drug-loaded nanoparticles with pH-controlled drug release and near-infrared light-induced photothermal effects. Materials and Design, 2021, 197, 109230.	3.3	10
108	Emerging Strategies in Anticancer Combination Therapy Employing Silicaâ€Based Nanosystems. Biotechnology Journal, 2021, 16, e1900438.	1.8	6

#	Article	IF	CITATIONS
109	Impact of the antibiotic-cargo from MSNs on gram-positive and gram-negative bacterial biofilms. Microporous and Mesoporous Materials, 2021, 311, 110681.	2.2	20
110	Exploiting mesoporous silica nanoparticles as versatile drug carriers for several routes of administration. Microporous and Mesoporous Materials, 2021, 312, 110774.	2.2	40
111	On the importance of the linking chemistry for the PEGylation of mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 2021, 589, 453-461.	5.0	29
112	Irreversible Adsorption of Serum Proteins onto Nanoparticles. Particle and Particle Systems Characterization, 2021, 38, .	1.2	4
113	Microfluidic preparation of PLGA composite microspheres with mesoporous silica nanoparticles for finely manipulated drug release. International Journal of Pharmaceutics, 2021, 593, 120173.	2.6	23
115	Integrating gold nanoclusters, folic acid and reduced graphene oxide for nanosensing of glutathione based on "turn-off―fluorescence. Scientific Reports, 2021, 11, 2375.	1.6	29
116	Nanoparticulate systems and their translation potential for breast cancer therapeutics. , 2021, , 299-318.		1
117	Chapter 14. Smart Porous Silica–Polymer Nanomaterials for Theranostics. RSC Soft Matter, 2021, , 363-391.	0.2	0
118	Mesoporous silica nanoparticles for drug combination delivery in cancer therapy. , 2021, , 119-162.		2
119	Diagnostic and Therapeutic Nanomedicine. Advances in Experimental Medicine and Biology, 2021, 1310, 401-447.	0.8	7
120	Nanomaterial-based delivery vehicles for therapeutic cancer vaccine development. Cancer Biology and Medicine, 2021, 18, 352-371.	1.4	22
121	How Molecular Mobility, Physical State, and Drug Distribution Influence the Naproxen Release Profile from Different Mesoporous Silica Matrices. Molecular Pharmaceutics, 2021, 18, 898-914.	2.3	3
122	Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics, 2021, 13, 143.	2.0	30
123	Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomaterials Science, 2021, 9, 4541-4567.	2.6	24
124	Fast and very fast MAS solid state NMR studies of pharmaceuticals. Annual Reports on NMR Spectroscopy, 2021, , 97-189.	0.7	6
125	Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. Journal of Materials Chemistry B, 2021, 9, 2756-2784.	2.9	32
126	Recent advances in bone-targeting nanoparticles for biomedical applications. Materials Chemistry Frontiers, 2021, 5, 6735-6759.	3.2	10
128	Endostatin Genetically Engineered Placental Mesenchymal Stromal Cells Carrying Doxorubicin-Loaded Mesoporous Silica Nanoparticles for Combined Chemo- and Antiangiogenic Therapy. Pharmaceutics, 2021, 13, 244.	2.0	3

#	Article	IF	Citations
т 129	Exploring the role of mesoporous silica nanoparticle in the development of novel drug delivery systems. Drug Delivery and Translational Research, 2022, 12, 105-123.	3.0	34
130	Orienting the Pore Morphology of Core-Shell Magnetic Mesoporous Silica with the Sol-Gel Temperature. Influence on MRI and Magnetic Hyperthermia Properties. Molecules, 2021, 26, 971.	1.7	19
131	Simulations of the IR and Raman spectra of water confined in amorphous silica slit pores. Journal of Chemical Physics, 2021, 154, 104503.	1.2	10
132	Biological and Medical Applications of Calcium Phosphate Nanoparticles. Chemistry - A European Journal, 2021, 27, 7471-7488.	1.7	57
133	Guest-protein incorporation into solvent channels of a protein host crystal (hostal). Acta Crystallographica Section D: Structural Biology, 2021, 77, 471-485.	1.1	1
134	Mesoporous Silica Nanoparticles as pH-Responsive Carrier for the Immune-Activating Drug Resiquimod Enhance the Local Immune Response in Mice. ACS Nano, 2021, 15, 4450-4466.	7.3	94
135	Mesoporous silica decorated with gold nanoparticles as a promising nanoprobe for effective CT X-ray attenuation and potential drug delivery. Nano Structures Nano Objects, 2021, 26, 100712.	1.9	20
136	Encapsulation of tamoxifen citrate in functionalized mesoporous silica and investigation of its release. Journal of Drug Delivery Science and Technology, 2021, 62, 102406.	1.4	4
137	Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review. Journal of Molecular Liquids, 2021, 328, 115417.	2.3	34
138	Magnetic Characterization and Moderate Cytotoxicity of Magnetic Mesoporous Silica Nanocomposite for Drug Delivery of Naproxen. Nanomaterials, 2021, 11, 901.	1.9	8
139	Gene-Directed Enzyme Prodrug Therapy by Dendrimer-Like Mesoporous Silica Nanoparticles against Tumor Cells. Nanomaterials, 2021, 11, 1298.	1.9	6
140	Albumin-Coated Mesoporous Silica Nanoparticles of Docetaxel: Preparation, Characterization, and Pharmacokinetic Evaluation. Assay and Drug Development Technologies, 2021, 19, 226-236.	0.6	11
141	Stimuli-responsive mesoporous silica nanoparticles: A custom-tailored next generation approach in cargo delivery. Materials Science and Engineering C, 2021, 124, 112084.	3.8	27
142	Mapping of Guest Localization in Mesoporous Silica Particles by Solid-State NMR and <i>Ab Initio</i> Modeling: New Insights into Benzoic Acid and <i>p</i> -Fluorobenzoic Acid Embedded in MCM-41 via Ball Milling. Journal of Physical Chemistry C, 2021, 125, 10096-10109.	1.5	16
143	Cerium and gallium containing mesoporous bioactive glass nanoparticles for bone regeneration: Bioactivity, biocompatibility and antibacterial activity. Materials Science and Engineering C, 2021, 124, 112050.	3.8	75
144	A critical review of ferritin as a drug nanocarrier: Structure, properties, comparative advantages and challenges. Particuology, 2022, 64, 65-84.	2.0	14
145	Silica-based nanomaterials as drug delivery tools for skin cancer (melanoma) treatment. Emergent Materials, 2021, 4, 1067-1092.	3.2	14
146	New advances in gated materials of mesoporous silica for drug controlled release. Chinese Chemical Letters, 2021, 32, 3696-3704.	4.8	59

#	Article	IF	CITATIONS
147	Osteoporosis Remission and New Bone Formation with Mesoporous Silica Nanoparticles. Advanced Science, 2021, 8, e2101107.	5.6	53
148	Optical Properties of Doxorubicin Hydrochloride Load and Release on Silica Nanoparticle Platform. Molecules, 2021, 26, 3968.	1.7	19
149	Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. Plants, 2021, 10, 1238.	1.6	30
150	Nanotherapeutic approaches to overcome distinct drug resistance barriers in models of breast cancer. Nanophotonics, 2021, 10, 3063-3073.	2.9	9
151	Nanoparticle dispersion in porous media: Effects of array geometry and flow orientation. Physical Review E, 2021, 104, 015102.	0.8	4
152	Feasibility Study of Mesoporous Silica MCM-41 Functionalization by Electron-Beam Irradiation. Journal of Testing and Evaluation, 2022, 50, 441-453.	0.4	0
153	Multi-functional silica-based mesoporous materials for simultaneous delivery of biologically active ions and therapeutic biomolecules. Acta Biomaterialia, 2021, 129, 1-17.	4.1	87
154	Rice Husk-Derived Mesoporous Silica as a Promising Platform for Chemotherapeutic Drug Delivery. Waste and Biomass Valorization, 2022, 13, 241-254.	1.8	5
155	Diatom-like silica–protein nanocomposites for sustained drug delivery of ruthenium polypyridyl complexes. Journal of Inorganic Biochemistry, 2021, 221, 111489.	1.5	9
156	Alternative Activation of Macrophages through Interleukin-13-Loaded Extra-Large-Pore Mesoporous Silica Nanoparticles Suppresses Experimental Autoimmune Encephalomyelitis. ACS Biomaterials Science and Engineering, 2021, 7, 4446-4453.	2.6	6
157	Nanomaterials as a Successor of Antibiotics in Antibiotic-Resistant, Biofilm Infected Wounds?. Antibiotics, 2021, 10, 941.	1.5	12
158	Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. Beilstein Journal of Nanotechnology, 2021, 12, 808-862.	1.5	22
159	Nanotechnology-Based Strategies to Overcome Current Barriers in Gene Delivery. International Journal of Molecular Sciences, 2021, 22, 8537.	1.8	29
160	Biosafety of mesoporous silica nanoparticles: a combined experimental and literature study. Journal of Materials Science: Materials in Medicine, 2021, 32, 102.	1.7	8
161	pH-responsive mesoporous silica drug delivery system, its biocompatibility and co-adsorption/co-release of 5-Fluorouracil and Naproxen. Applied Surface Science, 2021, 561, 150011.	3.1	28
162	Novel kaempferol delivery systems based on Mg-containing MCM-41 mesoporous silicas. Journal of Solid State Chemistry, 2021, 301, 122323.	1.4	7
163	Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules, 2021, 26, 5905.	1.7	388
164	A versatile multicomponent mesoporous silica nanosystem with dual antimicrobial and osteogenic effects. Acta Biomaterialia, 2021, 136, 570-581.	4.1	13

#	Article	IF	Citations
165	Synthesis and Characterization of Mesoporous Mg- and Sr-Doped Nanoparticles for Moxifloxacin Drug Delivery in Promising Tissue Engineering Applications. International Journal of Molecular Sciences, 2021, 22, 577.	1.8	28
166	Incorporation of nanogels within calcite single crystals for the storage, protection and controlled release of active compounds. Chemical Science, 2021, 12, 9839-9850.	3.7	12
167	Solid Lipid Particles for Lung Metastasis Treatment. Pharmaceutics, 2021, 13, 93.	2.0	8
168	Biomaterials against Bone Infection. Advanced Healthcare Materials, 2020, 9, e2000310.	3.9	75
169	Antioxidant activity and modified release profiles of morin and hesperetin flavonoids loaded in Mg- or Ag-modified SBA-16 carriers. Materials Today Communications, 2020, 24, 101198.	0.9	10
170	Role of mesoporous silica nanoparticles for the drug delivery applications. Materials Research Express, 2020, 7, 102002.	0.8	18
171	Lipid surface modifications increase mesoporous silica nanoparticle labeling properties in mesenchymal stem cells. International Journal of Nanomedicine, 2018, Volume 13, 7711-7725.	3.3	27
172	Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. Current Topics in Medicinal Chemistry, 2019, 19, 74-97.	1.0	16
173	Limitations of Current Cancer Theranostics. Nanotechnology in the Life Sciences, 2021, , 305-332.	0.4	0
174	Confinement of molecular materials using a solid-state loading method: a route for exploring new physical states and their subsequent transformation highlighted by caffeine confined to SBA-15 pores. RSC Advances, 2021, 11, 34564-34571.	1.7	2
175	Hollow mesoporous silica nanoparticles for co-delivery of hydrophobic and hydrophilic molecules: mechanism of drug loading and release. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	5
176	Anti-inflammatory and antibacterial activities of cerium-containing mesoporous bioactive glass nanoparticles for drug-free biomedical applications. Materials Today Bio, 2021, 12, 100150.	2.6	24
177	In vivo study of light-driven naproxen release from gated mesoporous silica drug delivery system. Scientific Reports, 2021, 11, 20191.	1.6	25
178	Luminescent core–shell Ca2MoO5:Eu3+-MCM-41 structure for sustained drug release. Materials Today Chemistry, 2021, 22, 100581.	1.7	3
179	Effective reduction of biofilm through photothermal therapy by gold core@shell based mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 2021, 328, 111489.	2.2	22
180	Glutathione and pH serial responsive functional mesoporous silica nanoparticles for drug delivery. Micro and Nano Letters, 2020, 15, 291-295.	0.6	3
181	Facile synthesis of cetyltrimethylammonium bromide-loaded mesoporous silica nanoparticles for efficient inhibition of hepatocellular carcinoma cell proliferation. Materials Research Express, 2020, 7, 085008.	0.8	5
182	Evaluation of the Effect of Inactivated Transmissible Gastroenteritis Virus Vaccine with Nano Silicon on the Phenotype and Function of Porcine Dendritic Cells, Viruses, 2021, 13, 2158	1.5	3

#	Article	IF	CITATIONS
183	Silicaâ€Based Nanoparticles as Drug Delivery Vehicles for Prostate Cancer Treatment. Chemical Record, 2021, 21, 1535-1568.	2.9	12
184	Nanomedicines and Nanodrug Delivery Systems: Trends and Perspectives. , 2020, , 99-141.		3
185	Multifunctional Mesoporous Silica Nanoparticles for Biomedical Applications. , 2020, , 213-235.		0
186	Pyromellitic diamide-diacid bridged mesoporous organosilica nanospheres with controllable morphologies: A novel PMO for the facile and expeditious synthesis of imidazole derivatives. Nanoscale Advances, 0, , .	2.2	13
187	Biomimetic Nanoparticles Coated with Bacterial Outer Membrane Vesicles as a New-Generation Platform for Biomedical Applications. Pharmaceutics, 2021, 13, 1887.	2.0	30
188	Cellular interactions of nanoparticles within the vasculature. , 2022, , 247-263.		0
189	Bioceramic nanoparticles in tissue engineering and drug delivery. , 2022, , 727-742.		0
190	Modulating Osteoimmune Responses by Mesoporous Silica Nanoparticles. ACS Biomaterials Science and Engineering, 2022, 8, 4110-4122.	2.6	17
191	Mild Microfluidic Approaches to Oxide Nanoparticles Synthesis. Chemistry - A European Journal, 2022, 28, .	1.7	4
192	Advanced Nanoengineering Approach for Targetâ€Specific, Spatiotemporal, and Ratiometric Delivery of Gemcitabine–Cisplatin Combination for Improved Therapeutic Outcome in Pancreatic Cancer. Small, 2022, 18, e2104449.	5.2	18
193	Role of Mesoporous Silica Nanoparticles as Drug Carriers: Evaluation of Diverse Mesoporous Material Nanoparticles as Potential Host for Various Applications. Engineering Materials, 2022, , 205-234.	0.3	1
194	Nanoantibiotics Based in Mesoporous Silica Nanoparticles: New Formulations for Bacterial Infection Treatment. Pharmaceutics, 2021, 13, 2033.	2.0	11
195	Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature. International Journal of Nanomedicine, 2021, Volume 16, 7891-7941.	3.3	41
196	Modulating microRNAs in cancer: Next-generation therapies. Cancer Biology and Medicine, 2021, , 1-1.	1.4	9
198	Chapter 4. Diagnostic and Theranostic Applications of Inorganic Materials. Inorganic Materials Series, 2021, , 194-241.	0.5	0
199	Assessing Genotoxicity of Ten Different Engineered Nanomaterials by the Novel Semi-Automated FADU Assay and the Alkaline Comet Assay. Nanomaterials, 2022, 12, 220.	1.9	9
200	Skin interaction, permeation, and toxicity of silica nanoparticles: Challenges and recent therapeutic and cosmetic advances. International Journal of Pharmaceutics, 2022, 614, 121439.	2.6	22
201	Triple Surfactant Assisted Synthesis of Novel Core-Shell Mesoporous Silica Nanoparticles with High Surface Area for Drug Delivery for Prostate Cancer. Bulletin of the Chemical Society of Japan, 2022, 95, 331-340.	2.0	11

		CITATION RE	PORT	
#	Article		IF	CITATIONS
202	Peptide Hydrogels Assembled from Enzyme-Adsorbed Mesoporous Silica Nanostructure Thermoresponsive Doxorubicin Release. ACS Applied Nano Materials, 2022, 5, 120-125.		2.4	14
203	Bacteria and cells as alternative nano-carriers for biomedical applications. Expert Opinio Delivery, 2022, 19, 103-118.	n on Drug	2.4	7
204	Superparamagnetic Iron Oxide Nanoparticles Decorated Mesoporous Silica Nanosystem Antibiofilm Therapy. Pharmaceutics, 2022, 14, 163.	ı for Combined	2.0	19
205	Recent advances of chitosan-based nanoparticles for biomedical and biotechnological a International Journal of Biological Macromolecules, 2022, 203, 379-388.	pplications.	3.6	71
206	Nanostructures and their associated challenges for drug delivery. , 2022, , 1-26.			0
207	Fluorogenic Detection of Human Serum Albumin Using Curcumin-Capped Mesoporous Nanoparticles. Molecules, 2022, 27, 1133.	Silica	1.7	6
208	Structure of Water at Hydrophilic and Hydrophobic Interfaces: Raman Spectroscopy of Confined in Periodic Mesoporous (Organo)Silicas. Journal of Physical Chemistry C, 2022		1.5	11
209	Biomacromolecule-Functionalized Nanoparticle-Based Conjugates for Potentiation of A Therapy. Current Cancer Drug Targets, 2022, 22, 31-48.	nticancer	0.8	2
210	Drug loaded nanomaterials for hematological malignancies diagnosis and enhanced targ , 2022, , 383-398.	geted therapy.		1
211	Drug delivery systems for oral disease applications. Journal of Applied Oral Science, 202 e20210349.	2, 30,	0.7	10
212	Synthesis of mesoporous silica nanoparticles (MSNs)/silver nanoparticles (AgNPs): pron materials for detection of breast cancer cells. Journal of Materials Science: Materials in E 2022, 33, 7515-7527.	iising hybrid Electronics,	1.1	5
213	Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Applied Bio Materials, 2022, 5, 971-1012.	Review. ACS	2.3	133
214	Glutathione-Sensitive Mesoporous Organosilica-Coated Gold Nanorods as Drug Delivery Photothermal Therapy-Enhanced Precise Chemotherapy. Frontiers in Chemistry, 2022, 1		1.8	3
215	Structure-Property Relationship for Different Mesoporous Silica Nanoparticles and its D Applications: A Review. Frontiers in Chemistry, 2022, 10, 823785.	rug Delivery	1.8	25
216	Targeted Drug Delivery for Chronic Lymphocytic Leukemia. Pharmaceutical Research, 20)22, 39, 441-461.	1.7	8
217	Detection of viruses by probe-gated silica nanoparticles directly from swab samples. Tal 246, 123429.	anta, 2022,	2.9	5
218	Protein encapsulation in mesoporous silica: Influence of the mesostructured and pore w properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 64		2.3	4
219	Effective adsorption of doxorubicin hydrochloride on zirconium metal-organic framewor Equilibrium, kinetic and thermodynamic studies. Journal of Molecular Structure, 2022, 1		1.8	72

#	Article	IF	CITATIONS
220	Recent trends in mesoporous silica nanoparticles of rode-like morphology for cancer theranostics: A review. Journal of Molecular Structure, 2022, 1261, 132922.	1.8	27
221	Anti-cancer activity of sustained release capsaicin formulations. , 2022, 238, 108177.		25
222	Chronology of Global Success: 20 Years of Prof Vallet-RegÃ-Solving Questions. Pharmaceutics, 2021, 13, 2179.	2.0	2
223	Mesoporous Silica Nanoparticles Functionalized with Amino Groups for Biomedical Applications. ChemistryOpen, 2021, 10, 1251-1259.	0.9	15
224	Recent Advances in the Local Drug Delivery Systems for Improvement of Anticancer Therapy. Current Drug Delivery, 2022, 19, 560-586.	0.8	3
226	From inert silica carrier derivatives to a source of bioavailable silicium in the field of cosmetic, pharmaceutical, luxury, and food industries. , 2022, , 525-544.		0
227	Gentamicin loaded mesoporous silica nano particles for topical treatment of bacterial infections. Indian Journal of Pharmacy and Pharmacology, 2022, 9, 39-46.	0.1	0
228	Mesoporous Silica-Based Nanoparticles as Non-Viral Gene Delivery Platform for Treating Retinitis Pigmentosa. Journal of Clinical Medicine, 2022, 11, 2170.	1.0	8
229	Applications of Metal-Organic Frameworks as Drug Delivery Systems. International Journal of Molecular Sciences, 2022, 23, 4458.	1.8	64
230	A comprehensive review on nanotechnological approaches for enhanced delivery of nutraceuticals in the management of osteoporosis. Drug Delivery Letters, 2022, 12, .	0.2	Ο
231	Controlled Drug Delivery Systems. Advances in Bioinformatics and Biomedical Engineering Book Series, 2022, , 184-204.	0.2	0
232	Evaluation of Tensile Bond Strength between Self-Adhesive Resin Cement and Surface-Pretreated Zirconia. Materials, 2022, 15, 3089.	1.3	5
233	Preparation and characterization of ketoprofen and pentoxifylline agents based layered double hydroxides-chitosan nanohybride and its releasing control. Digest Journal of Nanomaterials and Biostructures, 2022, 17, 527-540.	0.3	1
234	Craft of Co-encapsulation in Nanomedicine: A Struggle To Achieve Synergy through Reciprocity. ACS Pharmacology and Translational Science, 2022, 5, 278-298.	2.5	9
235	Nanoparticle dispersion in porous media: Effects of attractive particle-media interactions. Physical Review E, 2022, 105, .	0.8	1
236	Nanoparticle combination for precise stroma modulation and improved delivery for pancreatic cancer. Journal of Controlled Release, 2022, 347, 425-434.	4.8	11
237	Current Researches on Nanodrug Delivery Systems in Bladder Cancer Intravesical Chemotherapy. Frontiers in Oncology, 2022, 12, .	1.3	5
238	Development and Characterizations of Pullulan and Maltodextrin-Based Oral Fast-Dissolving Films Employing a Box–Behnken Experimental Design. Materials, 2022, 15, 3591.	1.3	5

#	Article	IF	CITATIONS
239	Effect of (3-aminopropyl)triethoxysilane on dissolution of silica nanoparticles synthesized <i>via</i> reverse micro emulsion. Nanoscale, 2022, 14, 9021-9030.	2.8	4
240	Tissue engineering using scaffolds for bone reconstruction: a review of sol-gel silica materials for bone morphogenetic proteins (BMP) encapsulation and release. Journal of Sol-Gel Science and Technology, 0, , .	1.1	0
241	Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies. Analytical Chemistry, 2022, 94, 9656-9664.	3.2	13
242	Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Medicine in Drug Discovery, 2022, 15, 100134.	2.3	39
243	Water Dynamics in Competitive Solvation Assisted Loading of Colloidal Curcumin Nanoparticles onto Mesoporous Silica Nanostructures. Particle and Particle Systems Characterization, 0, , 2200062.	1.2	1
244	Insight on the Dependence of the Drug Delivery Applications of Mesoporous Silica Nanoparticles on Their Physical Properties. Silicon, 2023, 15, 61-70.	1.8	3
245	Efficient delivery of abciximab using mesoporous silica nanoparticles: In-vitro assessment for targeted and improved antithrombotic activity. Colloids and Surfaces B: Biointerfaces, 2022, 218, 112697.	2.5	3
246	Nanotechnologyâ€facilitated vaccine development during the coronavirus disease 2019 (COVIDâ€19) pandemic. Exploration, 2022, 2, .	5.4	22
247	Mesoporous Materials as Elements of Modern Drug Delivery Systems for Anti-Inflammatory Agents: A Review of Recent Achievements. Pharmaceutics, 2022, 14, 1542.	2.0	5
248	Cefazolin-Loaded Double-Shelled Hollow Mesoporous Silica Nanoparticles/Polycaprolactone Nanofiber Composites: A Delivery Vehicle for Regenerative Purposes. Advanced Pharmaceutical Bulletin, 2023, 13, 328-338.	0.6	2
249	Novel Drug and Gene Delivery System and Imaging Agent Based on Marine Diatom Biosilica Nanoparticles. Marine Drugs, 2022, 20, 480.	2.2	8
250	Curcumin-Loaded Silica Nanoparticles: Applications in Infectious Disease and Food Industry. Nanomaterials, 2022, 12, 2848.	1.9	7
251	A review on functionalized silica nanoparticle amendment on plant growth and development under stress. Plant Growth Regulation, 2022, 98, 421-437.	1.8	10
252	Impact of PEGylation on the degradation and pore organization in mesoporous silica nanoparticles: A study of the inner mesoporous structure in physiologically relevant ionic conditions. Colloids and Surfaces B: Biointerfaces, 2022, 219, 112797.	2.5	5
253	Amino-functionalized mesoporous silica nanoparticles (NH2-MSiNPs) impair the embryonic development of the sea urchin Paracentrotus lividus. Environmental Toxicology and Pharmacology, 2022, 95, 103956.	2.0	2
254	Cartilage targeting therapy with reactive oxygen species-responsive nanocarrier for osteoarthritis. Journal of Nanobiotechnology, 2022, 20, .	4.2	15
255	Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. Journal of Drug Delivery Science and Technology, 2022, 76, 103729.	1.4	44
256	Immunomodulation of MiRNA-223-based nanoplatform for targeted therapy in retinopathy of prematurity. Journal of Controlled Release, 2022, 350, 789-802.	4.8	6

#	Article	IF	CITATIONS
257	On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. Applied Materials Today, 2022, 29, 101631.	2.3	40
258	Efficient toxic doxorubicin hydrochloride removal from aqueous solutions using facial alumina nanorods. Journal of Molecular Structure, 2023, 1272, 134187.	1.8	38
259	Radionanotheranostics for breast cancer diagnosis and therapy: recent advances and future opportunities. , 2022, , 465-508.		4
260	Surface Biofunctionalization of Tissue Engineered for the Development of Biological Heart Valves: A Review. Coatings, 2022, 12, 1322.	1.2	4
261	Bioavailability of Celecoxib Formulated with Mesoporous Magnesium Carbonate—An In Vivo Evaluation. Molecules, 2022, 27, 6188.	1.7	1
263	Mesoporous silica nanostructure modified with azo gatekeepers for colon targeted delivery of 5â€fluorouracil. AICHE Journal, 2022, 68, .	1.8	7
264	Non-Viral Delivery of CRISPR/Cas Cargo to the Retina Using Nanoparticles: Current Possibilities, Challenges, and Limitations. Pharmaceutics, 2022, 14, 1842.	2.0	15
265	Design of Mesoporous Silica Nanoparticles for the Treatment of Amyotrophic Lateral Sclerosis (ALS) with a Therapeutic Cocktail Based on Leptin and Pioglitazone. ACS Biomaterials Science and Engineering, 2022, 8, 4838-4849.	2.6	8
266	Theoretical modelling of electrostatic interactions in pH-dependent drug loading and releasing by functionalized mesoporous silica nanoparticles. Chemical Papers, 2023, 77, 1507-1518.	1.0	2
267	Sex-Specific Silica Nanoparticle Protein Corona Compositions Exposed to Male and Female BALB/c Mice Plasmas. ACS Bio & Med Chem Au, 2023, 3, 62-73.	1.7	6
268	Controlled drug release and drug delivery applications from mesoporous nanoparticles. , 2023, , 405-435.		1
269	A systemic review on development of mesoporous nanoparticles as a vehicle for transdermal drug delivery. Nanotheranostics, 2023, 7, 70-89.	2.7	18
270	Formulation Development & Evaluation of Controlled Drug Delivery System: An Overview. , 2022, 2, 274-280.		0
271	Chromate-Free Corrosion Protection Strategies for Magnesium Alloys—A Review: Part II—PEO and Anodizing. Materials, 2022, 15, 8515.	1.3	14
272	Development of Biodegradable GQDs-hMSNs for Fluorescence Imaging and Dual Cancer Treatment via Photodynamic Therapy and Drug Delivery. International Journal of Molecular Sciences, 2022, 23, 14931.	1.8	1
273	Overcoming Cytosolic Delivery Barriers of Proteins Using Denatured Protein-Conjugated Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 2023, 15, 432-451.	4.0	5
274	Unexpected Factors Affecting the Kinetics of Guest Molecule Release from Investigation of Binary Chemical Systems Trapped in a Single Void of Mesoporous Silica Particles. ChemPhysChem, 2023, 24, .	1.0	2
275	Synergistically Enhancing the Therapeutic Effect on Cancer, via Asymmetric Bioinspired Materials. Molecules, 2022, 27, 8543.	1.7	1

#	Article	IF	CITATIONS
276	Nanoparticles: a promising vehicle for the delivery of therapeutic enzymes. International Nano Letters, 2023, 13, 209-221.	2.3	3
277	Synthesis and characterization of hollow mesoporous silica nanocomposites containing phosphorescent pigment and doxycycline. Nano Select, 0, , .	1.9	0
278	Multifunctional Aerogels: A comprehensive review on types, synthesis and applications of aerogels. Journal of Sol-Gel Science and Technology, 2023, 105, 324-336.	1.1	20
279	Recent Advances in Mesoporous Silica Nanoparticle-Mediated Drug Delivery for Breast Cancer Treatment. Pharmaceutics, 2023, 15, 227.	2.0	9
280	Engineered nanomedicines for augmenting the efficacy of colorectal cancer immunotherapy. Nanomedicine, 0, , .	1.7	0
281	Natural Biopolymers as Smart Coating Materials of Mesoporous Silica Nanoparticles for Drug Delivery. Pharmaceutics, 2023, 15, 447.	2.0	13
282	Biological Use of Nanostructured Silica-Based Materials Functionalized with Metallodrugs: The Spanish Perspective. International Journal of Molecular Sciences, 2023, 24, 2332.	1.8	5
283	Milling-Assisted Loading of Drugs into Mesoporous Silica Carriers: A Green and Simple Method for Obtaining Tunable Customized Drug Delivery. Pharmaceutics, 2023, 15, 390.	2.0	0
284	Unlocking the holy grail of sustainable and scalable mesoporous silica using computational modelling. , 2023, 1, 432-438.		0
285	Stimuliâ€Responsive Silica Silanol Conjugates: Strategic Nanoarchitectonics in Targeted Drug Delivery. Small, 0, , .	5.2	10
286	Nanoparticles coated by chloramphenicol in hydrogels as a useful tool to increase the antibiotic release and antibacterial activity in dermal drug delivery. Pharmacological Reports, 0, , .	1.5	0
287	Mesoporous silica nanoparticles: Their potential as drug delivery carriers and nanoscavengers in Alzheimer's and Parkinson's diseases. Saudi Pharmaceutical Journal, 2023, 31, 417-432.	1.2	5
288	Mesoporous Bioactive Nanoparticles for Bone Tissue Applications. International Journal of Molecular Sciences, 2023, 24, 3249.	1.8	7
289	Enhancing Anti-Tumorigenic Efficacy of Eugenol in Human Colon Cancer Cells Using Enzyme-Responsive Nanoparticles. Cancers, 2023, 15, 1145.	1.7	6
290	Recent advances in nanoâ€scaffolds for tissue engineering applications: Toward natural therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	6
291	Mesoporous silica nanoparticles: Synthesis and multifaceted functionalization for controlled drug delivery. Journal of Drug Delivery Science and Technology, 2023, 81, 104305.	1.4	8
292	Stability of mesoporous silica using ricinoleic methyl ester as a template with the addition of HCl and application of Cd ²⁺ adsorption optimized by Box–Behnken design. RSC Advances, 2023, 13, 7329-7338.	1.7	1
294	Bacterial Membrane Vesicles as Smart Drug Delivery and Carrier Systems: A New Nanosystems Tool for Current Anticancer and Antimicrobial Therapy. Pharmaceutics, 2023, 15, 1052.	2.0	5

IF CITATIONS ARTICLE # A highly therapeutic and selective delivery system for curcumin based on nanocellulose and folic 295 2.4 0 acid. Cellulose, 0, , . Biomaterials-based anti-inflammatory treatment strategies for Alzheimer's disease. Neural Regeneration Research, 2024, 19, 100-115. 1.6 Photocleavable <i>Ortho</i>-Nitrobenzyl-Protected DNA Architectures and Their Applications. 297 23.0 15 Chemical Reviews, 2023, 123, 6839-6887. Advanced Technologies in Health and Neurodegenerative Diseases., 2023, , 629-653. 309 Nanoparticles for triggering gene expression and osteoconductivity., 2023,, 477-496. 314 0 A Magnetically Actuated Diatom-Biohybrid Microrobot as a Drug Delivery Capsule. Lecture Notes in Computer Science, 2023, , 471-481. 1.0 Combinations with Antimicrobial Chemotherapy., 2023, , 251-273. 324 0 Study of the Stability of Zeolites in Model Biological Environments. Glass Physics and Chemistry, 2023, 49, 706-708.

CITATION REPORT