The Aging of Iron Man

Frontiers in Aging Neuroscience 10, 65 DOI: 10.3389/fnagi.2018.00065

Citation Report

CITATIC	ODT	

#	Article	IF	CITATIONS
1	Rusty Microglia: Trainers of Innate Immunity in Alzheimer's Disease. Frontiers in Neurology, 2018, 9, 1062.	2.4	25
2	Brain Chemistry: Overview. , 2018, , 332-332.		0
3	Unraveling the Role of Heme in Neurodegeneration. Frontiers in Neuroscience, 2018, 12, 712.	2.8	42
4	Disturbed Red Blood Cell Structure and Function: An Exploration of the Role of Red Blood Cells in Neurodegeneration. Frontiers in Medicine, 2018, 5, 198.	2.6	13
5	G proteinâ€coupled oestrogen receptor stimulation ameliorates iron―and ovariectomyâ€induced memory impairments through the <scp>cAMP</scp> / <scp>PKA</scp> / <scp>CREB</scp> signalling pathway. Journal of Neuroendocrinology, 2019, 31, e12780.	2.6	17
6	Matching ex vivo MRI With Iron Histology: Pearls and Pitfalls. Frontiers in Neuroanatomy, 2019, 13, 68.	1.7	23
7	Update on Restless Legs Syndrome: from Mechanisms to Treatment. Current Neurology and Neuroscience Reports, 2019, 19, 54.	4.2	56
8	The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Frontiers in Aging Neuroscience, 2019, 11, 143.	3.4	41
9	The Contribution of Iron to Protein Aggregation Disorders in the Central Nervous System. Frontiers in Neuroscience, 2019, 13, 15.	2.8	63
10	Preserving Lysosomal Function in the Aging Brain: Insights from Neurodegeneration. Neurotherapeutics, 2019, 16, 611-634.	4.4	52
11	Brain iron transport. Biological Reviews, 2019, 94, 1672-1684.	10.4	68
12	Multi-targeted ChEI-copper chelating molecules as neuroprotective agents. European Journal of Medicinal Chemistry, 2019, 174, 216-225.	5.5	18
13	Iron in Neurodegeneration – Cause or Consequence?. Frontiers in Neuroscience, 2019, 13, 180.	2.8	204
14	Deciphering the Iron Side of Stroke: Neurodegeneration at the Crossroads Between Iron Dyshomeostasis, Excitotoxicity, and Ferroptosis. Frontiers in Neuroscience, 2019, 13, 85.	2.8	96
15	Low Cerebrospinal Fluid Levels of Melanotransferrin Are Associated With Conversion of Mild Cognitively Impaired Subjects to Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 181.	2.8	8
16	Urinary ionomic analysis reveals new relationship between minerals and longevity in a Han Chinese population. Journal of Trace Elements in Medicine and Biology, 2019, 53, 69-75.	3.0	9
17	Pattern of Altered Plasma Elemental Phosphorus, Calcium, Zinc, and Iron in Alzheimer's Disease. Scientific Reports, 2019, 9, 3147.	3.3	25
18	Hypoxia-induced disruption of neural vascular barrier is mediated by the intracellular induction of Fe(II) ion. Experimental Cell Research, 2019, 379, 166-171.	2.6	9

#	Article	IF	CITATIONS
19	Iron Redox Speciation Analysis Using Capillary Electrophoresis Coupled to Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). Frontiers in Chemistry, 2019, 7, 136.	3.6	32
20	Iron treatment inhibits Aβ42 deposition inÂvivo and reduces Aβ42/Aβ40 ratio. Biochemical and Biophysical Research Communications, 2019, 512, 653-658.	2.1	6
21	Regional Distributions of Iron, Copper and Zinc and Their Relationships With Glia in a Normal Aging Mouse Model. Frontiers in Aging Neuroscience, 2019, 11, 351.	3.4	43
22	Age-related microstructural and physiological changes in normal brain measured by MRI γ-metrics derived from anomalous diffusion signal representation. NeuroImage, 2019, 188, 654-667.	4.2	17
23	Nanomaterial-induced ferroptosis for cancer specific therapy. Coordination Chemistry Reviews, 2019, 382, 160-180.	18.8	122
24	When safeguarding goes wrong: Impact of oxidative stress on protein homeostasis in health and neurodegenerative disorders. Advances in Protein Chemistry and Structural Biology, 2019, 114, 221-264.	2.3	13
25	A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer's and Parkinson's diseases. Molecular Diversity, 2019, 23, 509-526.	3.9	50
26	Hepcidin and its therapeutic potential in neurodegenerative disorders. Medicinal Research Reviews, 2020, 40, 633-653.	10.5	43
27	The application of bathophenanthroline for the determination of free iron in parallel with hROS in microdialysis samples. Journal of Neuroscience Methods, 2020, 331, 108530.	2.5	4
28	Contribution of Ferroptosis to Aging and Frailty. Rejuvenation Research, 2020, 23, 434-438.	1.8	8
29	The roles of iron and HFE genotype in neurological diseases. Molecular Aspects of Medicine, 2020, 75, 100867.	6.4	27
30	The aging brain: impact of heavy metal neurotoxicity. Critical Reviews in Toxicology, 2020, 50, 801-814.	3.9	47
31	Modulation of the Neuroprotective and Anti-inflammatory Activities of the Flavonol Fisetin by the Transition Metals Iron and Copper. Antioxidants, 2020, 9, 1113.	5.1	21
32	Spotlight on Ferroptosis: Iron-Dependent Cell Death in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 196.	3.4	47
33	Age-Related Changes and Sex-Related Differences in Brain Iron Metabolism. Nutrients, 2020, 12, 2601.	4.1	32
34	Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases. Journal of Alzheimer's Disease, 2021, 82, S109-S126.	2.6	75
35	Low Cerebrospinal Fluid Levels of Hemopexin Are Associated With Increased Alzheimer's Pathology, Hippocampal Hypometabolism, and Cognitive Decline. Frontiers in Molecular Biosciences, 2020, 7, 590979.	3.5	7
36	A venous mechanism of ventriculomegaly shared between traumatic brain injury and normal ageing. Brain, 2020, 143, 1843-1856.	7.6	31

#	Article	IF	CITATIONS
37	α-Synuclein Regulates Iron Homeostasis via Preventing Parkin-Mediated DMT1 Ubiquitylation in Parkinson's Disease Models. ACS Chemical Neuroscience, 2020, 11, 1682-1691.	3.5	27
38	Classical and Nonclassical Intercellular Communication in Senescence and Ageing. Trends in Cell Biology, 2020, 30, 628-639.	7.9	109
39	NRF2 pathway activation by KEAP1 inhibition attenuates the manifestation of aging phenotypes in salivary glands. Redox Biology, 2020, 36, 101603.	9.0	20
40	Plasma transferrin and hemopexin are associated with altered Aβ uptake and cognitive decline in Alzheimer's disease pathology. Alzheimer's Research and Therapy, 2020, 12, 72.	6.2	19
41	Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer's disease: Evidence of ferroptosis. Redox Biology, 2020, 32, 101494.	9.0	154
42	Cysteine Toxicity Drives Age-Related Mitochondrial Decline by Altering Iron Homeostasis. Cell, 2020, 180, 296-310.e18.	28.9	134
43	The study of levels from redox-active elements in cerebrospinal fluid of amyotrophic lateral sclerosis patients carrying disease-related gene mutations shows potential copper dyshomeostasis. Metallomics, 2020, 12, 668-681.	2.4	14
44	Mitophagy and iron: two actors sharing the stage in age-associated neuronal pathologies. Mechanisms of Ageing and Development, 2020, 188, 111252.	4.6	15
45	Hepcidin attenuates the iron-mediated secondary neuronal injury after intracerebral hemorrhage in rats. Translational Research, 2021, 229, 53-68.	5.0	19
46	Effects of free soluble iron on thermal aggregation of hemoglobin. Biophysical Chemistry, 2021, 269, 106527.	2.8	4
47	The role of transferrins and iron-related proteins in brain iron transport: applications to neurological diseases. Advances in Protein Chemistry and Structural Biology, 2021, 123, 133-162.	2.3	14
48	Inflaming the Brain with Iron. Antioxidants, 2021, 10, 61.	5.1	49
49	The biological pathways of Alzheimer disease: a review. AIMS Neuroscience, 2021, 8, 86-132.	2.3	111
50	Treadmill Exercise Alleviates Brain Iron Dyshomeostasis Accelerating Neuronal Amyloid-β Production, Neuronal Cell Death, and Cognitive Impairment in Transgenic Mice Model of Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 3208-3223.	4.0	27
51	Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Research, 2021, 1752, 147234.	2.2	64
52	The Role of Butyrylcholinesterase and Iron in the Regulation of Cholinergic Network and Cognitive Dysfunction in Alzheimer's Disease Pathogenesis. International Journal of Molecular Sciences, 2021, 22, 2033.	4.1	22
53	Alteration of Iron Concentration in Alzheimer's Disease as a Possible Diagnostic Biomarker Unveiling Ferroptosis. International Journal of Molecular Sciences, 2021, 22, 4479.	4.1	18
54	Senescent Microglia: The Key to the Ageing Brain?. International Journal of Molecular Sciences, 2021, 22, 4402.	4.1	30

#	Article	IF	CITATIONS
55	Role of iron and ironâ€related proteins in mesenchymal stem cells: Cellular and clinical aspects. Journal of Cellular Physiology, 2021, 236, 7266-7289.	4.1	21
56	Musculoskeletal complications associated with pathological iron toxicity and its molecular mechanisms. Biochemical Society Transactions, 2021, 49, 747-759.	3.4	17
57	Comparative Analysis of Multiple Neurodegenerative Diseases Based on Advanced Epigenetic Aging Brain. Frontiers in Genetics, 2021, 12, 657636.	2.3	6
58	Role of Iron in the Molecular Pathogenesis of Diseases and Therapeutic Opportunities. ACS Chemical Biology, 2021, 16, 945-972.	3.4	21
59	Alterations of Striato-Thalamic Metabolism in Normal Aging Human Brain—An MR Metabolic Imaging Study. Metabolites, 2021, 11, 371.	2.9	1
60	Emerging Applications for Quantitative Susceptibility Mapping in the Detection of Traumatic Brain Injury Pathology. Neuroscience, 2021, 467, 218-236.	2.3	5
61	The iron chelator, PBT434, modulates transcellular iron trafficking in brain microvascular endothelial cells. PLoS ONE, 2021, 16, e0254794.	2.5	6
62	Role of metals in Alzheimer's disease. Metabolic Brain Disease, 2021, 36, 1627-1639.	2.9	62
63	Regular Physical Exercise Modulates Iron Homeostasis in the 5xFAD Mouse Model of Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 8715.	4.1	10
64	Effects of Iron and Zinc on Mitochondria: Potential Mechanisms of Glaucomatous Injury. Frontiers in Cell and Developmental Biology, 2021, 9, 720288.	3.7	14
65	Hypertension-related risk for dementia: A summary review with future directions. Seminars in Cell and Developmental Biology, 2021, 116, 82-89.	5.0	13
66	Myeloid-specific deletion of ferroportin impairs macrophage bioenergetics but is disconnected from systemic insulin action in adult mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E376-E391.	3.5	11
67	Quantitative MRI susceptibility mapping reveals cortical signatures of changes in iron, calcium and zinc in malformations of cortical development in children with drug-resistant epilepsy. NeuroImage, 2021, 238, 118102.	4.2	11
68	The calcium–iron connection in ferroptosis-mediated neuronal death. Free Radical Biology and Medicine, 2021, 175, 28-41.	2.9	35
69	Micronutrients in Ageing and Longevity. Healthy Ageing and Longevity, 2021, , 63-83.	0.2	2
70	Parkinson's Disease Dementia: Synergistic Effects of Alpha-Synuclein, Tau, Beta-Amyloid, and Iron. Frontiers in Aging Neuroscience, 2021, 13, 743754.	3.4	12
71	Novel Hydroxytyrosol-Donepezil Hybrids as Potential Antioxidant and Neuroprotective Agents. Frontiers in Chemistry, 2021, 9, 741444.	3.6	15
73	The Effects of Treadmill Exercise on Iron Accumulation and Microglia Activation in the Brain of APP-C105 Transgenic Mice of Alzheimer's Disease. Exercise Science, 2019, 28, 409-418.	0.3	Ο

# 74	ARTICLE Iron homeostasis and organismal aging. Ageing Research Reviews, 2021, 72, 101510.	lF 10.9	Citations
75	Iron Metabolism in the Human Body and Setting its Hygienic Limits for Drinking Water. Review. Part 2. Gigiena I Sanitariia, 2020, 99, 504-508.	0.5	1
76	Iron Metabolism in the Human Body and Setting its Hygienic Limits for Drinking Water. Review. Part 2. Gigiena I Sanitariia, 2020, 99, 504-508.	0.5	0
78	Inhibition of ferroptosis processes ameliorates cognitive impairment in kainic acid-induced temporal lobe epilepsy in rats. American Journal of Translational Research (discontinued), 2019, 11, 875-884.	0.0	22
79	Offâ€resonance saturation as an MRI method to quantify mineral―iron in the postâ€mortem brain. Magnetic Resonance in Medicine, 2021, , .	3.0	4
80	Iron Homeostasis Disorder and Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 12442.	4.1	66
81	Organelle dysfunction and its contribution to metabolic impairments in aging and age-related diseases. Current Opinion in Systems Biology, 2022, 30, 100416.	2.6	1
82	The key roles of organelles and ferroptosis in Alzheimer's disease. Journal of Neuroscience Research, 2022, 100, 1257-1280.	2.9	9
87	Ironâ€induced cellular in vitro neurotoxic responses in rat <scp>C6</scp> cell line. Environmental Toxicology, 2022, 37, 1968-1978.	4.0	4
88	Iron overload and neurodegenerative diseases: What can we learn from <i>Caenorhabditis elegans</i> ?. Toxicology Research and Application, 2022, 6, 239784732210918.	0.6	2
89	Review about Powerful Combinations of Advanced and Hyphenated Sample Introduction Techniques with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for Elucidating Trace Element Species in Pathologic Conditions on a Molecular Level. International Journal of Molecular Sciences, 2022, 23, 6109.	4.1	10
90	The Role of Microglia in Alzheimer's Disease From the Perspective of Immune Inflammation and Iron Metabolism. Frontiers in Aging Neuroscience, 0, 14, .	3.4	24
91	Age-Associated Molecular Changes in Human Hippocampus Subfields as Determined by Quantitative Proteomics. OMICS A Journal of Integrative Biology, 2022, 26, 382-391.	2.0	4
92	Susceptibility networks reveal independent patterns of brain iron abnormalities in multiple sclerosis. Neurolmage, 2022, 261, 119503.	4.2	1
93	Spatial-temporal changes of iron deposition and iron metabolism after traumatic brain injury in mice. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	11
94	Decreased brain noradrenaline in minimal hepatic encephalopathy is associated with cognitive impairment in rats. Brain Research, 2022, 1793, 148041.	2.2	2
95	Melatonin: Potential avenue for treating iron overload disorders. Ageing Research Reviews, 2022, 81, 101717.	10.9	13
96	Nano-mediated Strategies for Metal Ion–Induced Neurodegenerative Disorders: Focus on Alzheimer's and Parkinson's Diseases. Current Pharmacology Reports, 2022, 8, 450-463.	3.0	3

#	Article	IF	Citations
97	Biological elemental analysis: A cuteâ€meet of microfluidic device to inductively coupled plasma mass spectrometry. View, 2023, 4, .	5.3	2
98	The Treatment of Parkinson's Disease with Sodium Oxybate. Current Molecular Pharmacology, 2023, 16, .	1.5	1
99	Attenuated initial serum ferritin concentration in critically ill coronavirus disease 2019 geriatric patients with comorbid psychiatric conditions. Frontiers in Psychiatry, 0, 13, .	2.6	2
100	Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. , 2022, 13, 1664.		0
101	Iron-Calcium Crosstalk in Neurodegenerative Diseases. , 2023, , 109-137.		0
102	The Critical Roleplay of Iron Neurochemistry in Progression of Parkinson's Disease. , 2023, , 87-108.		0
103	Unscrambling the Role of Redox-Active Biometals in Dopaminergic Neuronal Death and Promising Metal Chelation-Based Therapy for Parkinson's Disease. International Journal of Molecular Sciences, 2023, 24, 1256.	4.1	3
104	Intraperitoneal injection of iron dextran induces peripheral iron overload and mild neurodegeneration in the nigrostriatal system in C57BL/6 mice. Life Sciences, 2023, 320, 121508.	4.3	2
105	Ferrodifferentiation regulates neurodevelopment via ROS generation. Science China Life Sciences, 2023, 66, 1841-1857.	4.9	3
106	Brain iron content and cognitive function in patients with β-thalassemia. Therapeutic Advances in Hematology, 2023, 14, 204062072311670.	2.5	1
107	Iron and Ferroptosis More than a Suspect: Beyond the Most Common Mechanisms of Neurodegeneration for New Therapeutic Approaches to Cognitive Decline and Dementia. International Journal of Molecular Sciences, 2023, 24, 9637.	4.1	6
108	Apolipoprotein E is required for brain iron homeostasis in mice. Redox Biology, 2023, 64, 102779.	9.0	2
109	Brain metabolism in Alzheimer's disease: biological mechanisms of exercise. Translational Neurodegeneration, 2023, 12, .	8.0	6
110	The association between intermediate-term sulfur dioxide exposure and outpatient visits for Parkinson's disease: a time-series study in southwestern China. Environmental Science and Pollution Research, 0, , .	5.3	0
111	Neuroprotective responses of quercetin in regulation of biochemical, structural, and neurobehavioral effects in 28-day oral exposure of iron in rats. Toxicology Mechanisms and Methods, 2024, 34, 57-71.	2.7	0
112	A blood-based, metabolite and demographic characteristicÂmarkers panel for the diagnosis of Alzheimer's disease. Bioanalysis, 2023, 15, 1247-1258.	1.5	0
114	Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells, 2023, 12, 2824.	4.1	1
115	Intracellular iron accumulation facilitates mycobacterial infection in old mouse macrophages. GeroScience, 2024, 46, 2739-2754.	4.6	1

#	Article	IF	CITATIONS
116	Empirically derived formulae for calculation of age- and region-related levels of iron, copper and zinc in the adult C57BL/6 mouse brain. Neurobiology of Aging, 2024, 136, 34-43.	3.1	0
117	Evaluation of brain iron deposition in different cerebral arteries of acute ischaemic stroke patients using quantitative susceptibility mapping. Clinical Radiology, 2024, 79, e592-e598.	1.1	Ο
118	Cardiometabolic risk factors and neurodegeneration: a review of the mechanisms underlying diabetes, obesity and hypertension in Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 0, , jnnp-2023-332661.	1.9	0
119	Synthesising Brain Iron Maps fromÂQuantitative Magnetic Resonance Images Using Interpretable Generative Adversarial Networks. Lecture Notes in Computer Science, 2023, , 214-226.	1.3	Ο
120	A high fat diet potentiates neonatal iron overload-induced memory impairments in rats. European Journal of Nutrition, 0, , .	3.9	0
121	The Iron Metabolism with a Specific Focus on the Functioning of the Nervous System. Biomedicines, 2024, 12, 595.	3.2	Ο