Critical Biofilm Growth throughout Unmodified Carbor Bioelectrochemical Chain Elongation from CO2 up to Ca

Frontiers in Energy Research

6,

DOI: 10.3389/fenrg.2018.00007

Citation Report

#	Article	IF	CITATIONS
1	Waterâ€Based Synthesis of Hydrophobic Ionic Liquids [N ₈₈₈₈][oleate] and [P _{666,14}][oleate] and their Bioprocess Compatibility. ChemistryOpen, 2018, 7, 878-884.	0.9	4
2	Expanding the product spectrum of value added chemicals in microbial electrosynthesis through integrated process design—A review. Bioresource Technology, 2018, 269, 503-512.	4.8	65
3	Sulfate-Reducing ElectroAutotrophs and Their Applications in Bioelectrochemical Systems. Frontiers in Energy Research, 2018, 6, .	1.2	45
4	Bioelectrochemical synthesis of caproate through chain elongation as a complementary technology to anaerobic digestion. Biofuels, Bioproducts and Biorefining, 2018, 12, 966-977.	1.9	34
5	Electrochemically mediated CO2 reduction for bio-methane production: a review. Reviews in Environmental Science and Biotechnology, 2018, 17, 531-551.	3.9	29
6	Biorefinery for heterogeneous organic waste using microbial electrochemical technology. Bioresource Technology, 2019, 292, 121943.	4.8	15
7	Enhanced selectivity to butyrate and caproate above acetate in continuous bioelectrochemical chain elongation from CO2: Steering with CO2 loading rate and hydraulic retention time. Bioresource Technology Reports, 2019, 7, 100284.	1.5	47
8	Bioelectrochemical Syntheses. , 2019, , 327-358.		3
9	Capacitive biocathodes driving electrotrophy towards enhanced CO2 reduction for microbial electrosynthesis of fatty acids. Bioresource Technology, 2019, 294, 122181.	4.8	22
10	Syngas-aided anaerobic fermentation for medium-chain carboxylate and alcohol production: the case for microbial communities. Applied Microbiology and Biotechnology, 2019, 103, 8689-8709.	1.7	35
12	Activated Carbon Mixed with Marine Sediment is Suitable as Bioanode Material for Spartina anglica Sediment/Plant Microbial Fuel Cell: Plant Growth, Electricity Generation, and Spatial Microbial Community Diversity. Water (Switzerland), 2019, 11, 1810.	1.2	26
13	Niches for bioelectrochemical systems on the recovery of water, carbon and nitrogen in wastewater treatment plants. Biomass and Bioenergy, 2019, 130, 105380.	2.9	12
14	Unravelling the factors that influence the bio-electrorecycling of carbon dioxide towards biofuels. Green Chemistry, 2019, 21, 684-691.	4.6	29
15	Branched Medium Chain Fatty Acids: Iso-Caproate Formation from Iso-Butyrate Broadens the Product Spectrum for Microbial Chain Elongation. Environmental Science & Technology, 2019, 53, 7704-7713.	4.6	40
16	Continuous n-valerate formation from propionate and methanol in an anaerobic chain elongation open-culture bioreactor. Biotechnology for Biofuels, 2019, 12, 132.	6.2	40
17	Carbon dioxide capture and bioenergy production using biological system – A review. Renewable and Sustainable Energy Reviews, 2019, 110, 143-158.	8.2	152
18	Marine Sediment Mixed With Activated Carbon Allows Electricity Production and Storage From Internal and External Energy Sources: A New Rechargeable Bio-Battery With Bi-Directional Electron Transfer Properties. Frontiers in Microbiology, 2019, 10, 934.	1.5	7
19	Bioelectrochemical Systems for the Valorization of Organic Residues. , 2019, , 511-534.		3

#	Article	IF	CITATIONS
20	Accelerated H2 Evolution during Microbial Electrosynthesis with Sporomusa ovata. Catalysts, 2019, 9, 166.	1.6	28
21	Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode. Bioelectrochemistry, 2019, 128, 83-93.	2.4	67
22	Isolation of Novel CO Converting Microorganism Using Zero Valent Iron for a Bioelectrochemical System (BES). Biotechnology and Bioprocess Engineering, 2019, 24, 232-239.	1.4	23
23	Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. Water Research, 2019, 149, 42-55.	5.3	191
24	Microbial electrosynthesis from CO2: forever a promise?. Current Opinion in Biotechnology, 2020, 62, 48-57.	3.3	232
25	Impact of applied cell voltage on the performance of a microbial electrolysis cell fully catalysed by microorganisms. International Journal of Hydrogen Energy, 2020, 45, 2557-2568.	3.8	50
26	Downstream of the bioreactor: advancements in recovering fuels and commodity chemicals. Current Opinion in Biotechnology, 2020, 62, 189-195.	3.3	17
27	Techno-economic assessment of microbial electrosynthesis from CO2 and/or organics: An interdisciplinary roadmap towards future research and application. Applied Energy, 2020, 279, 115775.	5.1	58
28	Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source. Npj Biofilms and Microbiomes, 2020, 6, 40.	2.9	45
29	Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chemical Reviews, 2020, 120, 12903-12993.	23.0	227
30	Bioelectrochemical Chain Elongation of Shortâ€Chain Fatty Acids Creates Steering Opportunities for Selective Formation of <i>nâ€</i> Butyrate, <i>nâ€</i> Valerate or <i>nâ€</i> Caproate. ChemistrySelect, 2020, 5, 9127-9133.	0.7	16
31	Constraints on the Efficiency of Engineered Electromicrobial Production. Joule, 2020, 4, 2101-2130.	11.7	42
32	Methanol-Based Chain Elongation with Acetate to n-Butyrate and Isobutyrate at Varying Selectivities Dependent on pH. ACS Sustainable Chemistry and Engineering, 2020, 8, 8184-8194.	3.2	28
33	Remediation of chromium contaminated soil by microbial electrochemical technology. International Journal of Electrochemical Science, 2020, , 6143-6154.	0.5	4
34	Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nature Catalysis, 2020, 3, 274-288.	16.1	245
35	Medium chain fatty acids production by microbial chain elongation: Recent advances. Advances in Bioenergy, 2020, 5, 63-99.	0.5	7
36	Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy. Bioresource Technology, 2020, 302, 122863.	4.8	188
37	Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide. Accounts of Chemical Research, 2020, 53, 311-321.	7.6	69

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	Responseâ€Surfaceâ€Optimized and Scaledâ€Up Microbial Electrosynthesis of Chiral Alcohols. ChemSusChem, 2020, 13, 1808-1816.	3.6	6
39	Conductive Magnetite Nanoparticles Enhance the Microbial Electrosynthesis of Acetate from CO ₂ while Diverting Electrons away from Methanogenesis. Fuel Cells, 2020, 20, 98-106.	1.5	18
40	Recent developments and key barriers to microbial CO2 electrobiorefinery. Bioresource Technology, 2021, 320, 124350.	4.8	40
41	Improved robustness of microbial electrosynthesis by adaptation of a strict anaerobic microbial catalyst to molecular oxygen. Science of the Total Environment, 2021, 754, 142440.	3.9	17
42	The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial electrosynthesis. Applied Energy, 2021, 283, 116310.	5.1	31
43	Carboxylic acids production and electrosynthetic microbial community evolution under different CO2 feeding regimens. Bioelectrochemistry, 2021, 137, 107686.	2.4	41
44	Microbial electrosynthesis: Towards sustainable biorefineries for production of green chemicals from CO2 emissions. Biotechnology Advances, 2021, 46, 107675.	6.0	110
45	Direct utilization of industrial carbon dioxide with low impurities for acetate production via microbial electrosynthesis. Bioresource Technology, 2021, 320, 124289.	4.8	55
46	Power-to-gas for methanation. , 2021, , 187-221.		6
47	Microbial electrosynthesis: Recovery of high-value volatile fatty acids from CO2. , 2021, , 123-142.		3
48	Enhanced bio-production from CO ₂ by microbial electrosynthesis (MES) with continuous operational mode. Faraday Discussions, 2021, 230, 344-359.	1.6	8
49	The occurrence and ecology of microbial chain elongation of carboxylates in soils. ISME Journal, 2021, 15, 1907-1918.	4.4	33
50	A framework based on fundamental biochemical principles to engineer microbial community dynamics. Current Opinion in Biotechnology, 2021, 67, 111-118.	3.3	8
51	Application of TiO2 and Rh as cathode catalyst to boost the microbial electrosynthesis of organic		37
	compounds through CO2 sequestration. Process Biochemistry, 2021, 101, 237-246.	1.8	37
52		1.8	9
52 53	compounds through CO2 sequestration. Process Biochemistry, 2021, 101, 237-246. Electrodeposited Hybrid Biocathode-Based CO2 Reduction via Microbial Electro-Catalysis to Biofuels.		
	 compounds through CO2 sequestration. Process Biochemistry, 2021, 101, 237-246. Electrodeposited Hybrid Biocathode-Based CO2 Reduction via Microbial Electro-Catalysis to Biofuels. Membranes, 2021, 11, 223. Gas diffusion electrodes modified with binary doped polyaniline for enhanced CO2 conversion during 	1.4	9

		CITATION REPORT		
#	Article	I	IF	CITATIONS
56	Microbial Electrosynthesis: Where Do We Go from Here?. Trends in Biotechnology, 202	1, 39, 359-369.	4.9	100
57	Catalytic Cooperation between a Copper Oxide Electrocatalyst and a Microbial Commu Microbial Electrosynthesis. ChemPlusChem, 2021, 86, 763-777.	hity for	1.3	5
58	A General Model for Biofilm-Driven Microbial Electrosynthesis of Carboxylates From CO2 in Microbiology, 2021, 12, 669218.	2. Frontiers	1.5	19
59	Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions. Wate 2021, 197, 117120.	r Research,	5.3	43
60	Microbial Electrosynthesis for Producing Medium Chain Fatty Acids. Engineering, 2022,	16, 141-153.	3.2	23
61	Open Culture Ethanol-Based Chain Elongation to Form Medium Chain Branched Carbox Alcohols. Frontiers in Bioengineering and Biotechnology, 2021, 9, 697439.	ylates and	2.0	4
62	Steering bio-electro recycling of carbon dioxide towards target compounds through nov inoculation and feeding strategies. Journal of Environmental Chemical Engineering, 202	rel 1, 9, 105549.	3.3	6
63	Strategies to improve viability of a circular carbon bioeconomy-A techno-economic revie microbial electrosynthesis and gas fermentation. Water Research, 2021, 201, 117306.	w of	5.3	43
64	Bioplastic Production from the Microbial Electrosynthesis of Acetate through CO _{2 Reduction. Energy & Fuels, 2021, 35, 15978-15986.}	2	2.5	10
65	Cyclic Voltammetry is Invasive on Microbial Electrosynthesis. ChemElectroChem, 2021,	8, 3384-3396.	1.7	9
66	Bio-electro CO2 recycling platform based on two separated steps. Journal of Environme Engineering, 2021, 9, 105909.	ntal Chemical	3.3	15
67	Potential of microbial electrosynthesis for contributing to food production using CO2 d global agriculture-inhibiting disasters. Cleaner Engineering and Technology, 2021, 4, 10		2.1	4
68	Advances in technological control of greenhouse gas emissions from wastewater in the circular economy. Science of the Total Environment, 2021, 792, 148479.	context of	3.9	54
69	Acetate-to-bioproducts by chain elongation microbiome catalysis under applied voltage Energy Conversion and Management, 2021, 248, 114804.	regulation.	4.4	13
70	Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata. Chemosphere, 2022, 287, 132188.		4.2	20
71	Biofilm matrix and artificial mediator for efficient electron transport in CO2 microbial electrosynthesis. Chemical Engineering Journal, 2022, 427, 131885.		6.6	31
72	Prolonged lifetime of biological activated carbon filters through enhanced biodegradatic melamine. Journal of Hazardous Materials, 2022, 422, 126840.	on of	6.5	8
73	Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy Industrial Crops and Products, 2020, 153, 112568.	in China.	2.5	93

#	Article	IF	CITATIONS
74	Waste C1 Gases as Alternatives to Pure CO ₂ Improved the Microbial Electrosynthesis of C4 and C6 Carboxylates. ACS Sustainable Chemistry and Engineering, 2020, 8, 8773-8782.	3.2	32
75	Review—Microbial Electrosynthesis: A Way Towards The Production of Electro-Commodities Through Carbon Sequestration with Microbes as Biocatalysts. Journal of the Electrochemical Society, 2020, 167, 155510.	1.3	57
76	How to go beyond C ₁ products with electrochemical reduction of CO ₂ . Sustainable Energy and Fuels, 2021, 5, 5893-5914.	2.5	19
77	Coupling of microbial electrosynthesis with anaerobic digestion for waste valorization. Advances in Bioenergy, 2020, 5, 101-127.	0.5	7
78	Wastewater-powered high-value chemical synthesis in a hybrid bioelectrochemical system. IScience, 2021, 24, 103401.	1.9	7
79	Biological production of medium-chain carboxylates through chain elongation: An overview. Biotechnology Advances, 2022, 55, 107882.	6.0	75
80	Food Production in Space From CO ₂ Using Microbial Electrosynthesis. SSRN Electronic Journal, 0, , .	0.4	0
81	Bioprocesses for resource recovery from waste gases: Current trends and industrial applications. Renewable and Sustainable Energy Reviews, 2022, 156, 111926.	8.2	9
82	Extracellular Electrons Powered Microbial CO2 Upgrading: Microbial Electrosynthesis and Artificial Photosynthesis. Advances in Biochemical Engineering/Biotechnology, 2021, , .	0.6	0
83	Cathodic biofilms – A prerequisite for microbial electrosynthesis. Bioresource Technology, 2022, 348, 126788.	4.8	33
84	Microbial electrosynthesis systems toward carbon dioxide sequestration for the production of biofuels and biochemicals. , 2022, , 279-297.		0
85	Optimization of growth and electrosynthesis of PolyHydroxyAlkanoates by the thermophilic bacterium Kyrpidia spormannii. Bioresource Technology Reports, 2022, 17, 100949.	1.5	6
86	Advancement in electrode materials and membrane separators for scaling up of MES. , 2022, , 161-172.		1
87	Concentration-dependent effects of nickel doping on activated carbon biocathodes. Catalysis Science and Technology, 2022, 12, 2500-2518.	2.1	5
88	Effect of cathode properties on the thermophilic electrosynthesis of PolyHydroxyAlkanoates by Kyrpidia spormannii. Bioresource Technology Reports, 2022, 18, 101040.	1.5	2
89	Processing of municipal solid waste resources for a circular economy in China: An overview. Fuel, 2022, 317, 123478.	3.4	67
90	Designing a Selective <i>n</i> -Caproate Adsorption–Recovery Process with Granular Activated Carbon and Screening of Conductive Materials in Chain Elongation. ACS ES&T Engineering, 2022, 2, 54-64.	3.7	6
91	Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation. Bioresource Technology, 2022, 354, 127178.	4.8	19

CITATION REPORT

ARTICLE IF CITATIONS # The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon 93 18.7 32 dioxide. Chemical Society Reviews, 2022, 51, 4763-4785. Conversion of CO2 to formate using activated carbon fiber-supported g-C3N4-NiCoWO4 photoanode 94 6.6 in a microbial electrosynthesis system. Chemical Engineering Journal, 2022, 446, 137029. The oxygen dilemma: The challenge of the anode reaction for microbial electrosynthesis from CO2. 95 1.5 11 Frontiers in Microbiology, 0, 13, . Enhancing the selective synthesis of butyrate in microbial electrosynthesis system by gas diffusion membrane composite biocathode. Chemosphere, 2022, 308, 136088. Nickel-Coated ceramic hollow fiber cathode for fast enrichment of chemolithoautotrophs and efficient reduction of CO2 in microbial electrosynthesis. Chemical Engineering Journal, 2022, 450, 98 6.6 9 138230. Boosting Ethanol Production Rates from Carbon Dioxide in Mes Cells Under Optimal Solventogenic Conditions. SSRN Electronic Journal, 0, , . 99 0.4 Boosting ethanol production rates from carbon dioxide in MES cells under optimal solventogenic 100 3.9 3 conditions. Science of the Total Environment, 2023, 856, 159124. Nanomaterials Facilitating Conversion Efficiency Strategies for Microbial CO₂ Reduction. 1.7 Chemistry - A European Journal, 2022, 28, . Prospects and trends in bioelectrochemical systems: Transitioning from CO2 towards a low-carbon 102 4.8 1 circular bioeconomy. Bioresource Technology, 2022, 364, 128040. The effect of anode potential on electrogenesis, methanogenesis and sulfidogenesis in a simulated 5.3 sewer condition. Water Research, 2022, 226, 119229. Transition roadmap for thermophilic carbon dioxide microbial electrosynthesis: Testing with real exhaust gases and operational control for a scalable design. Bioresource Technology, 2022, 365, 104 3 4.8 128161. Insight in ethanethiol degradation kinetics at biocathodes. Journal of Environmental Chemical 3.3 Engineering, 2022, 10, 108825. Food production in space from CO2 using microbial electrosynthesis. Bioelectrochemistry, 2023, 149, 106 2.4 2 108320. Hybrid electron donors of ethanol and lactate stimulation chain elongation in microbial 4.3 electrosynthesis with different inoculants. Renewable Energy, 2023, 202, 942-951. Microbial electrosynthesis: carbonaceous electrode materials for CO₂ conversion. 108 6.4 9 Materials Horizons, 2023, 10, 292-312. Deciphering the role and mechanism of nano zero-valent iron on medium chain fatty acids production 109 from CO2 via chain elongation in microbial electrosynthesis. Science of the Total Environment, 2023, 3.9 863, 160898. Impacts of 2-bromoethanesulfonic sodium on methanogenesis: Methanogen metabolism and 110 5.34 community structure. Water Research, 2023, 230, 119527. Microbial photoelectrosynthesis: Feeding purple phototrophic bacteria electricity to produce bacterial biomass. Microbial Biotechnology, 2023, 16, 569-578.

CITATION REPORT

#	Article	IF	CITATIONS
112	Functionalised graphite felt anodes for enhanced power generation in membrane-less soil microbial fuel cells. , 2023, 1, 310-325.		1
113	Halophilic CO2-fixing microbial community as biocatalyst improves the energy efficiency of the microbial electrosynthesis process. Bioresource Technology, 2023, 371, 128637.	4.8	3
114	Challenges in the scale-up of MES for wastewater treatment. , 2023, , 257-276.		0
115	Biomass-specific rates as key performance indicators: A nitrogen balancing method for biofilm-based electrochemical conversion. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	2
116	Methodology for In Situ Microsensor Profiling of Hydrogen, pH, Oxidation–Reduction Potential, and Electric Potential throughout Three-Dimensional Porous Cathodes of (Bio)Electrochemical Systems. Analytical Chemistry, 2023, 95, 2680-2689.	3.2	2
117	Electrochemical synthesis of propionic acid from reduction of ethanol and carbon dioxide at various applied potentials. Biochemical Engineering Journal, 2023, 194, 108896.	1.8	1
118	Alternating direction of catholyte forced flow-through 3D-electrodes improves start-up time in microbial electrosynthesis at applied high current density. Chemical Engineering Journal, 2023, 464, 142599.	6.6	2
119	Microbial electrosynthesis of acetate from CO2 in three-chamber cells with gas diffusion biocathode under moderate saline conditions. Environmental Science and Ecotechnology, 2023, 16, 100261.	6.7	6
120	Caproic acid production from anaerobic fermentation of organic waste - Pathways and microbial perspective. Renewable and Sustainable Energy Reviews, 2023, 175, 113181.	8.2	12
121	Progress and perspectives on microbial electrosynthesis for valorisation of CO2 into value-added products. Journal of Environmental Management, 2023, 332, 117323.	3.8	4
122	Review and Perspectives of Emerging Green Technology for the Sequestration of Carbon Dioxide into Value-Added Products: An Intensifying Development. Energy & Fuels, 2023, 37, 3570-3589.	2.5	12
123	Hybrid synthesis of polyhydroxybutyrate bioplastics from carbon dioxide. Green Chemistry, 2023, 25, 3247-3255.	4.6	8
124	CO2 reduction and MES. , 2023, , 351-371.		1
125	Microbial Recycling of Bioplastics via Mixed-Culture Fermentation of Hydrolyzed Polyhydroxyalkanoates into Carboxylates. Materials, 2023, 16, 2693.	1.3	2
129	Microbial-Based Systems and Single-Cell Ingredients: Exploring Their Role in Sustainable Aquaculture Production. , 2023, , 209-249.		0
130	Methanogen-electrode/conductive material interactions for methane production from carbon dioxide. , 2023, , 237-270.		0
145	Microbial electrochemical cells for CO2 utilization from alternative CO2 sources. , 2024, , 57-91.		0