Mapping annual urban dynamics (1985–2015) using ti

Remote Sensing of Environment 216, 674-683 DOI: 10.1016/j.rse.2018.07.030

Citation Report

#	Article	IF	CITATIONS
1	A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sensing of Environment, 2018, 219, 206-220.	4.6	193
2	Assessing Landscape Fire Hazard by Multitemporal Automatic Classification of Landsat Time Series Using the Google Earth Engine in West-Central Spain. Forests, 2019, 10, 518.	0.9	22
3	Mapping annual land use changes in China's poverty-stricken areas from 2013 to 2018. Remote Sensing of Environment, 2019, 232, 111285.	4.6	48
4	Learning from data: A post classification method for annual land cover analysis in urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154, 202-215.	4.9	26
5	Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI) Produced Time Series and Change Vector Analysis. Remote Sensing, 2019, 11, 2345.	1.8	220
6	Three-Fold Urban Expansion in Saudi Arabia from 1992 to 2013 Observed Using Calibrated DMSP-OLS Night-Time Lights Imagery. Remote Sensing, 2019, 11, 2266.	1.8	37
7	A New Time Series Change Detection Method for Landsat Land use and Land Cover Change. , 2019, , .		6
8	altimg="si1.gif" overflow="scroll"> <mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mr mathvariant="normal">NN</mr </mml:msub></mml:mrow></mml:msqrt> <mml:mo>=width="0.25em" /><mml:mtext>GeV</mml:mtext> with the STAR experiment. Nuclear</mml:mo>	nl:mrow>< l:mo> <mr< td=""><td>: mml:mi nl:mn>200</td></mr<>	: mml:mi nl:mn>200
9	Physics A, 2019, 982, 723-726. Small area estimation with subgroup analysis. Statistical Theory and Related Fields, 2019, 3, 129-135.	0.2	1
10	Mapping bamboo with regional phenological characteristics derived from dense Landsat time series using Google Earth Engine. International Journal of Remote Sensing, 2019, 40, 9541-9555.	1.3	34
11	An efficient approach to capture continuous impervious surface dynamics using spatial-temporal rules and dense Landsat time series stacks. Remote Sensing of Environment, 2019, 229, 114-132.	4.6	72
12	Performances of WorldView 3, Sentinel 2, and Landsat 8 data in mapping impervious surface. Remote Sensing Applications: Society and Environment, 2019, 15, 100246.	0.8	18
13	Spatiotemporal Patterns of Urban Land Use Change in Typical Cities in the Greater Mekong Subregion (GMS). Remote Sensing, 2019, 11, 801.	1.8	19
14	40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Science Bulletin, 2019, 64, 756-763.	4.3	319
15	Temporal variations of artificial nighttime lights and their implications for urbanization in the conterminous United States, 2013–2017. Remote Sensing of Environment, 2019, 225, 160-174.	4.6	71
16	Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Shared Socioeconomic Pathways. Earth's Future, 2019, 7, 351-362.	2.4	85
17	Characterizing the spatial pattern of annual urban growth by using time series Landsat imagery. Science of the Total Environment, 2019, 666, 274-284.	3.9	70
18	Assessment of the Impacts of Image Signal-to-Noise Ratios in Impervious Surface Mapping. Remote Sensing, 2019, 11, 2603.	1.8	1

#	Article	IF	CITATIONS
19	Preliminary Evaluation of the Consistency of Landsat 8 and Sentinel-2 Time Series Products in An Urban Area—An Example in Beijing, China. Remote Sensing, 2019, 11, 2957.	1.8	6
20	Impact Quantification of Decentralization in Urban Growth by Extracting Impervious Surfaces Using ISEI in Model Maker. Sustainability, 2020, 12, 380.	1.6	2
21	Urban air temperature model using GOES-16 LST and a diurnal regressive neural network algorithm. Remote Sensing of Environment, 2020, 237, 111495.	4.6	30
22	Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: A semantic segmentation solution. Remote Sensing of Environment, 2020, 251, 112096.	4.6	57
23	Influences of Environmental and Social Factors on Perceived Bio-Cultural Services and Disservices. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	14
24	Changes and Regional Differences in Urban Land Areas on Both Banks of the Strait of Malacca Based on Remote Sensing. Sustainability, 2020, 12, 9714.	1.6	1
25	Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and LandTrendr-Google Earth Engine Cloud Computing. Remote Sensing, 2020, 12, 2883.	1.8	42
26	Remote Sensing-Based Methodology for the Quick Update of the Assessment of the Population Exposed to Natural Hazards. Remote Sensing, 2020, 12, 3943.	1.8	4
27	Integrating Backdating and Transfer Learning in an Object-Based Framework for High Resolution Image Classification and Change Analysis. Remote Sensing, 2020, 12, 4094.	1.8	10
28	Monitoring Land Cover Change on a Rapidly Urbanizing Island Using Google Earth Engine. Applied Sciences (Switzerland), 2020, 10, 7336.	1.3	28
29	Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environmental Research Letters, 2020, 15, 094044.	2.2	240
30	Identification of waterlogging in Eastern China induced by mining subsidence: A case study of Google Earth Engine time-series analysis applied to the Huainan coal field. Remote Sensing of Environment, 2020, 242, 111742.	4.6	66
31	A multiscale analysis of the effect of urban expansion on PM2.5 concentrations in China: Evidence from multisource remote sensing and statistical data. Building and Environment, 2020, 174, 106778.	3.0	40
32	Estimating the Urban Fractional Vegetation Cover Using an Object-Based Mixture Analysis Method and Sentinel-2 MSI Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 341-350.	2.3	21
33	Developing a method to estimate building height from Sentinel-1 data. Remote Sensing of Environment, 2020, 240, 111705.	4.6	83
34	Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images. Remote Sensing of Environment, 2020, 239, 111665.	4.6	64
35	Indices based assessment of built-up density and urban expansion of fast growing Surat city using multi-temporal Landsat data sets. Geo Journal, 2021, 86, 1607-1623.	1.7	29
36	An automatic change detection method for monitoring newly constructed building areas using time-series multi-view high-resolution optical satellite images. Remote Sensing of Environment, 2020, 244, 111802.	4.6	79

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Urban expansion and its impacts on local temperature in San Salvador, El Salvador. Urban Climate, 2020, 32, 100617.	2.4	25
38	Quantifying highly dynamic urban landscapes: Integrating object-based image analysis with Landsat time series data. Landscape Ecology, 2021, 36, 1845-1861.	1.9	7
39	Urban Health and Wellbeing. Urban Book Series, 2021, , 259-280.	0.3	2
40	A 30 m resolution dataset of China's urban impervious surface area and green space, 2000–2018. Earth System Science Data, 2021, 13, 63-82.	3.7	59
41	Assessment of Annual Composite Images Obtained by Google Earth Engine for Urban Areas Mapping Using Random Forest. Remote Sensing, 2021, 13, 748.	1.8	13
42	Automatic Impervious Surface Area Detection Using Image Texture Analysis and Neural Computing Models with Advanced Optimizers. Computational Intelligence and Neuroscience, 2021, 2021, 1-17.	1.1	9
43	A novel approach for quantifying high-frequency urban land cover changes at the block level with scarce clear-sky Landsat observations. Remote Sensing of Environment, 2021, 255, 112293.	4.6	21
44	Evaluation of Light Pollution in Global Protected Areas from 1992 to 2018. Remote Sensing, 2021, 13, 1849.	1.8	31
45	Assessing cities growth-degrowth pulsing by emergy and fractals: A methodological proposal. Cities, 2021, 113, 103162.	2.7	5
46	Critical role of temporal contexts in evaluating urban cellular automata models. GIScience and Remote Sensing, 2021, 58, 799-811.	2.4	10
47	Consistent, accurate, high resolution, long time-series mapping of built-up land in the North China Plain. GIScience and Remote Sensing, 2021, 58, 982-998.	2.4	6
48	Monitoring long-term annual urban expansion (1986–2017) in the largest archipelago of China. Science of the Total Environment, 2021, 776, 146015.	3.9	21
49	Correlation Tensor Decomposition and Its Application in Spatial Imaging Data. Journal of the American Statistical Association, 2023, 118, 440-456.	1.8	3
50	Understanding Spatio-Temporal Patterns of Land Use/Land Cover Change under Urbanization in Wuhan, China, 2000–2019. Remote Sensing, 2021, 13, 3331.	1.8	76
51	Quantifying Urban Vegetation Dynamics from a Process Perspective Using Temporally Dense Landsat Imagery. Remote Sensing, 2021, 13, 3217.	1.8	5
52	A Deep Multitask Learning Framework Coupling Semantic Segmentation and Fully Convolutional LSTM Networks for Urban Change Detection. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 7651-7668.	2.7	58
53	A Fractal Approach to Urban Boundary Delineation Based on Raster Land Use Maps: A Case of Shanghai, China. Land, 2021, 10, 941.	1.2	7
54	A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities. Remote Sensing of Environment, 2021, 264, 112590.	4.6	62

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
55	Integrating multiple semantics data to assess the dynamic change of urban green space in Beijing, China. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102479.	1.4	9
56	Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model. Geoscience Frontiers, 2022, 13, 101141.	4.3	38
57	A Time-Series Approach to Detect Urbanized Areas Using Biophysical Indicators and Landsat Satellite Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 9210-9222.	2.3	9
58	An improved urban cellular automata model by using the trend-adjusted neighborhood. Ecological Processes, 2020, 9, .	1.6	27
59	Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data. Remote Sensing, 2019, 11, 51.	1.8	51
60	Quantification of Annual Settlement Growth in Rural Mining Areas Using Machine Learning. Remote Sensing, 2020, 12, 235.	1.8	16
61	Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth System Science Data, 2020, 12, 1217-1243.	3.7	170
62	Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth System Science Data, 2020, 12, 1625-1648.	3.7	161
63	A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States. Earth System Science Data, 2020, 12, 357-371.	3.7	31
64	Time-Series Landsat Data for 3D Reconstruction of Urban History. Remote Sensing, 2021, 13, 4339.	1.8	2
65	Cross-Border Urban Change Detection and Growth Assessment for Mexican-USA Twin Cities. Remote Sensing, 2021, 13, 4422.	1.8	3
66	Landsat-Derived Annual Maps of Agricultural Greenhouse in Shandong Province, China from 1989 to 2018. Remote Sensing, 2021, 13, 4830.	1.8	8
67	Automatic Framework of Mapping Impervious Surface Growth With Long-Term Landsat Imagery Based on Temporal Deep Learning Model. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	4
68	Combining Object-Based Machine Learning with Long-Term Time-Series Analysis for Informal Settlement Identification. Remote Sensing, 2022, 14, 1226.	1.8	9
69	Graph-based block-level urban change detection using Sentinel-2 time series. Remote Sensing of Environment, 2022, 274, 112993.	4.6	32
70	The Spatiotemporal Characteristics and Interactions between Urban Expansion and Tidal Flat Dynamics: A Case Study of Three Highly Urbanized Coastal Counties in the Southeastern United States. Earth, 2022, 3, 557-576.	0.9	2
71	GISD30: global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform. Earth System Science Data, 2022, 14, 1831-1856.	3.7	58
73	Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sensing, 2022, 14, 2330.	1.8	46

#	ARTICLE	IF	CITATIONS
74	Characterizing urban growth in Vientiane from 2000 to 2019 using time-series optical and SAR-based estimates of urban land. International Journal of Applied Earth Observation and Geoinformation, 2022, 109, 102798.	0.9	0
75	Mapping Annual Urban Evolution Process (2001–2018) at 250Âm: A normalized multi-objective deep learning regression. Remote Sensing of Environment, 2022, 278, 113088.	4.6	9
76	Peri-urban growth into natural hazard-prone areas: mapping exposure transformation of the built environment in Nairobi and Nyeri, Kenya, from 1948 to today. Natural Hazards, 0, , .	1.6	3
77	Urbanizing the floodplain: global changes of imperviousness in flood-prone areas. Environmental Research Letters, 2022, 17, 104024.	2.2	15
78	Highâ€resolution mapping of 33 years of material stock and population growth in Germany using Earth Observation data. Journal of Industrial Ecology, 2023, 27, 110-124.	2.8	5
79	Extracting physical urban areas of 81 major Chinese cities from high-resolution land uses. Cities, 2022, 131, 104061.	2.7	3
80	Satellite mapping of urban built-up heights reveals extreme infrastructure gaps and inequalities in the Global South. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
81	A full-level fused cross-task transfer learning method for building change detection using noise-robust pretrained networks on crowdsourced labels. Remote Sensing of Environment, 2023, 284, 113371.	4.6	12
82	Dynamical changes of land use/land cover and their impacts on ecological quality during China's reform periods: A case study of Quanzhou city, China. PLoS ONE, 2022, 17, e0278667.	1.1	4
83	Urban growth in peri-urban, rural and urban areas: Mexico City. Buildings and Cities, 2023, 4, 1-16.	1.1	2
84	Detecting Urban form Using Remote Sensing: Spatiotemporal Research Gaps for Sustainable Environment and Human Health. Atmosphere, Earth, Ocean & Space, 2023, , 185-217.	0.4	0
85	Quantitative Assessment of Deforestation and Forest Degradation in Margalla Hills National Park (MHNP): Employing Landsat Data and Socio-Economic Survey. Forests, 2023, 14, 201.	0.9	4
86	Dynamic simulation of land use and land cover and its effect on carbon storage in the Nanjing metropolitan circle under different development scenarios. Frontiers in Ecology and Evolution, 0, 11,	1.1	6
87	Influence of Pixel Quality, Land Cover, and Hydroclimatic Cycle on Moderate Resolution Imaging Spectroradiometer Inundation Monitoring Performance in the Pantanal, Brazil. Journal of Geoscience and Environment Protection, 2023, 11, 90-120.	0.2	0
88	Riverine organic pollution source and yield from the whole Changjiang river network: Effects of urbanization under changing hydrology. Journal of Hydrology, 2023, 620, 129544.	2.3	2