Three-step three-party quantum secure direct commun

Science China: Physics, Mechanics and Astronomy 61, 1

DOI: 10.1007/s11433-018-9224-5

Citation Report

#	Article	IF	CITATIONS
1	Construction of quantum gates for concatenated Greenberger–Horne–Zeilinger-type logic qubit. Quantum Information Processing, 2018, 17, 1.	1.0	0
2	Purification of the concatenated Greenberger–Horne–Zeilinger state with linear optics. Quantum Information Processing, 2018, 17, 1.	1.0	8
3	Asymmetrical Bell state analysis for photon-atoms hybrid system. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1 .	2.0	4
4	A quantum handshake method based on quantum dialogue and wireless network. , 2019, , .		O
5	Quantum dialogue protocol based on Grover's search algorithms. Modern Physics Letters A, 2019, 34, 1950169.	0.5	6
6	Entanglement purification and concentration based on hybrid spin entangled states of separate nitrogen-vacancy centers. Europhysics Letters, 2019, 126, 40006.	0.7	7
7	High-Efficiency Three-Party Quantum Key Agreement Protocol with Quantum Dense Coding and Bell States. International Journal of Theoretical Physics, 2019, 58, 2834-2846.	0.5	11
8	A quantum secure direct communication protocol using entangled beam pairs. Europhysics Letters, 2019, 127, 50006.	0.7	23
9	Direct measurement of the concurrence of hybrid entangled state based on parity check measurements. Chinese Physics B, 2019, 28, 010301.	0.7	10
10	Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state. Quantum Information Processing, 2019, 18, 1.	1.0	11
11	Dissipative preparation of Bell states with parallel quantum Zeno dynamics. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	19
12	Measurement-device-independent quantum key distribution with hyper-encoding. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	92
13	Quantum private query: A new kind of practical quantum cryptographic protocol. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	106
14	Multiparty Quantum Computation for Summation and Multiplication with Mutually Unbiased Bases. International Journal of Theoretical Physics, 2019, 58, 2872-2882.	0.5	18
15	Quantum error rejection for faithful quantum communication over noise channels. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	12
16	Cyclic Controlled Quantum Teleportation Using Three-Dimensional Hyper-Entangled State. International Journal of Theoretical Physics, 2019, 58, 3036-3048.	0.5	16
17	Privacy-preserving Quantum Sealed-bid Auction Based on Grover's Search Algorithm. Scientific Reports, 2019, 9, 7626.	1.6	18
18	Error-heralded generation and self-assisted complete analysis of two-photon hyperentangled Bell states through single-sided quantum-dot-cavity systems. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	13

#	Article	IF	CITATIONS
19	Implementation of SWAP test for two unknown states in photons via cross-Kerr nonlinearities under decoherence effect. Scientific Reports, 2019, 9, 6167.	1.6	19
20	Lower bound of local quantum uncertainty for high-dimensional bipartite quantum systems. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	8
21	Long-distance measurement-device–independent quantum secure direct communication. Europhysics Letters, 2019, 125, 40004.	0.7	61
22	Generation of Entangled and Hyperentangled Bell States on Photon Systems Assisted by Diamond Nitrogen-Vacancy Centers Coupled with Whispering-Gallery-Mode Microresonators. International Journal of Theoretical Physics, 2019, 58, 2200-2212.	0.5	2
23	Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear-optical elements. Scientific Reports, 2019, 9, 4663.	1.6	16
24	Enhancing entanglement detection of quantum optical frequency combs via stimulated emission. Scientific Reports, 2019, 9, 5090.	1.6	0
25	Entanglement Purification on Separate Atoms in an Error-Detected Pattern. International Journal of Theoretical Physics, 2019, 58, 1404-1417.	0.5	2
26	Efficient travelling-mode quantum key agreement against participant's attacks. Scientific Reports, 2019, 9, 16421.	1.6	5
27	New Fair Multiparty Quantum Key Agreement Secure against Collusive Attacks. Scientific Reports, 2019, 9, 17177.	1.6	7
28	Complete and Nondestructive Atomic Greenberger–Horne–Zeilingerâ€6tate Analysis Assisted by Invariantâ€8ased Inverse Engineering. Annalen Der Physik, 2019, 531, 1800447.	0.9	9
29	Entanglement purification for memory nodes in a quantum network. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	21
30	Device-independent quantum secure direct communication against collective attacks. Science Bulletin, 2020, 65, 12-20.	4.3	198
31	Optimizing High-Efficiency Quantum Memory with Quantum Machine Learning for Near-Term Quantum Devices. Scientific Reports, 2020, 10, 135.	1.6	30
32	Fast and high-fidelity generation of photonic Greenberger-Horne-Zeilinger states in circuit QED. Communications in Theoretical Physics, 2020, 72, 015102.	1.1	1
33	Efficient and secure semi-quantum secure direct communication protocol against double CNOT attack. Quantum Information Processing, 2020, 19, 1.	1.0	12
34	Error-detected N-photon cluster state generation based on the controlled-phase gate using a quantum dot in an optical microcavity. Frontiers of Physics, 2020, 15, 1.	2.4	4
35	Security analysis of measurement-device-independent quantum secure direct communication. Quantum Information Processing, 2020, $19, 1$.	1.0	15
36	High-capacity measurement-device-independent quantum secure direct communication. Quantum Information Processing, 2020, $19,1.$	1.0	30

3

#	ARTICLE	IF	Citations
37	Optimizing the scheme of bidirectional controlled quantum teleportation with a genuine five-qubit entangled state. Modern Physics Letters A, 2020, 35, 2050301.	0.5	8
38	A Quantum Dialogue Protocol in Discrete-time Quantum Walk Based on Hyperentangled States. International Journal of Theoretical Physics, 2020, 59, 3491-3507.	0.5	12
39	Performance analysis of quantum channels. Quantum Engineering, 2020, 2, e35.	1.2	18
40	Deterministic Secure Quantum Communication on the BB84 System. Entropy, 2020, 22, 1268.	1.1	8
41	Cyclic quantum teleportation via GHZ-like state. Modern Physics Letters A, 2020, 35, 2050333.	0.5	13
42	Measurement-device–independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator. Europhysics Letters, 2020, 131, 60001.	0.7	12
43	Entanglement-assisted noiseless linear amplification for arbitrary two-photon polarization–time-bin hyperentanglement. Quantum Information Processing, 2020, 19, 1.	1.0	5
44	Experimental realization of controlled quantum teleportation of arbitrary qubit states via cluster states. Scientific Reports, 2020, 10, 13608.	1.6	33
45	Satellite quantum repeaters for a quantum Internet. Quantum Engineering, 2020, 2, e55.	1.2	19
46	Quantum secure direct communication with entanglement source and single-photon measurement. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	37
47	Information leakage in protection of quantum dialogue affected by quantum field. Quantum Information Processing, 2020, $19, 1$.	1.0	1
48	Measurement-device–independent quantum secure direct communication of multiple degrees of freedom of a single photon. Europhysics Letters, 2020, 131, 40005.	0.7	37
49	Authenticated QKD Protocol Based on Single-Photon Interference. IEEE Access, 2020, 8, 135357-135370.	2.6	1
50	Error-Detected Generation of High-Fidelity Photonic Hyperentanglement in Polarization-Spatial-Time Three Degrees of Freedom Assisted by Quantum-Dot Spins. International Journal of Theoretical Physics, 2020, 59, 4025-4039.	0.5	2
51	Deterministic measurement-device-independent quantum secret sharing. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	44
52	Two single-state semi-quantum secure direct communication protocols based on single photons. International Journal of Modern Physics B, 2020, 34, 2050106.	1.0	9
53	The Study of Security During Quantum Dense Coding in High-Dimensions. International Journal of Theoretical Physics, 2020, 59, 1957-1965.	0.5	5
54	Efficient quantum arithmetic operation circuits for quantum image processing. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1 .	2.0	58

#	Article	IF	CITATIONS
55	Insecurity of Jiang et al.'s quantum cryptography protocol. Modern Physics Letters B, 2020, 34, 2050305.	1.0	0
56	Semi-Quantum Secure Direct Communication Using Entanglement. International Journal of Theoretical Physics, 2020, 59, 1807-1819.	0.5	20
57	Complete hyperentangled Bell state analysis assisted by hyperentanglement. Laser Physics Letters, 2020, 17, 075203.	0.6	7
58	Controlled bidirectional quantum secure direct communication protocol based on Grover's algorithm. Modern Physics Letters A, 2020, 35, 2050228.	0.5	4
59	Evaluation of Entanglement Measures for Hypergraph States up to Four Qubits. International Journal of Theoretical Physics, 2020, 59, 2582-2588.	0.5	2
60	Analyzing and Improving the Secure Quantum Dialogue Protocol Based on Four-Qubit Cluster State. International Journal of Theoretical Physics, 2020, 59, 2120-2126.	0.5	10
61	Quantum secure direct communication with an untrusted Charlie using imperfect measurement devices. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	14
62	Security proof of the two-way quantum secure direct communication with channel loss and noise. Europhysics Letters, 2020, 129, 10004.	0.7	13
63	Quantum teleportation of particles in an environment. Chinese Physics B, 2020, 29, 060301.	0.7	26
64	General Quantum Entanglement Purification Protocol using a Controlledâ€Phaseâ€Flip Gate. Annalen Der Physik, 2020, 532, 2000011.	0.9	7
65	Quantum secure direct communication based on single-photon Bell-state measurement. New Journal of Physics, 2020, 22, 063017.	1.2	77
66	Measurement of the concurrence of arbitrary two-photon six-qubit hyperentangled state. Europhysics Letters, 2020, 129, 50004.	0.7	8
67	Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Frontiers of Physics, 2021, 16 , 1 .	2.4	29
68	Fourier's Quantum Information Processing. SN Computer Science, 2021, 2, 1.	2.3	10
69	Mediated semi-quantum secure direct communication. Quantum Information Processing, 2021, 20, 1.	1.0	18
70	A Novel Practical Quantum Secure Direct Communication Protocol. International Journal of Theoretical Physics, 2021, 60, 1159-1163.	0.5	7
71	Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity*. Chinese Physics B, 2021, 30, 030304.	0.7	5
72	Comment on "protection of quantum dialogue affected by quantum field― Quantum Information Processing, 2021, 20, 1.	1.0	0

#	Article	IF	CITATIONS
73	Controlled Cyclic Remote Preparation of an Arbitrary Single-Qudit State by Using a Seven-Qudit Cluster State as the Quantum Channel. International Journal of Theoretical Physics, 2021, 60, 1635-1649.	0.5	2
74	Practical amplification for a single photon qudit encoded in three degrees of freedom. Laser Physics Letters, 2021, 18, 055203.	0.6	1
75	Effect of noise on remote preparation of an arbitrary singleâ€qubit state. Quantum Engineering, 2021, 3, e64.	1.2	9
76	Controlled Deterministic Secure Semi-Quantum Communication. International Journal of Theoretical Physics, 2021, 60, 1767-1782.	0.5	4
78	Feasible noiseless linear amplification for single-photon qudit and two-photon hyperentanglement encoded in three degrees of freedom. Quantum Information Processing, 2021, 20, 1.	1.0	1
79	Feasible high-dimensional measurement-device-independent quantum key distribution. Laser Physics Letters, 2021, 18, 075204.	0.6	6
80	Measurement-device-independent quantum dialogue. Chinese Physics B, 2021, 30, 100303.	0.7	4
81	Measurement-based entanglement purification for entangled coherent states. Frontiers of Physics, 2022, 17, 1.	2.4	18
82	Remote preparation of a general single-photon hybrid state. Results in Physics, 2021, 27, 104497.	2.0	5
83	Measurement-device-independent quantum dialogue based on hyperentanglement. Quantum Information Processing, 2021, 20, 1 .	1.0	4
84	A 15-user quantum secure direct communication network. Light: Science and Applications, 2021, 10, 183.	7.7	114
85	Remote implementation of single-qubit operations via hyperentangled states with cross-Kerr nonlinearity. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 867.	0.9	9
86	Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement. Optics Express, 2019, 27, 8994.	1.7	27
87	Asymmetrical hyperentanglement concentration for entanglement of polarization and orbital angular momentum. Optics Express, 2019, 27, 13172.	1.7	6
88	Efficient quantum key distribution against collective noise using polarization and transverse spatial mode of photons. Optics Express, 2020, 28, 4611.	1.7	15
89	Comment on "controlled quantum secure direct communication with authentication protocol based on five-particle cluster state and classical XOR operation". Quantum Information Processing, 2021, 20, 1.	1.0	0
90	Effect of noise on deterministic remote preparation of an arbitrary two-qudit state by using a four-qudit ‡-type state as the quantum channel. International Journal of Quantum Information, 2020, 18, 2050028.	0.6	1
91	Practical decoy-state quantum secure direct communication. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	39

#	Article	IF	CITATIONS
92	One-step quantum secure direct communication. Science Bulletin, 2022, 67, 367-374.	4.3	165
93	Efficient quantum secure direct communication with complete Bellâ€state measurement. Quantum Engineering, 2021, 3, e83.	1.2	19
94	Technique for twoâ€dimensional nearest neighbour realisation of quantum circuits using weighted lookâ€ahead. IET Computers and Digital Techniques, 2020, 14, 281-289.	0.9	3
95	Free-space quantum secure direct communication based on decoherence-free space. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3028.	0.9	6
96	Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system. Frontiers of Physics, 2022, 17, 1.	2.4	11
97	Deterministic secure quantum communication with practical devices. Quantum Engineering, 2021, 3, e86.	1.2	5
98	Bi-directional semi-quantum secure direct communication protocol based on high-dimensional single-particle states. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 130304.	0.2	3
99	Deterministic Remote Preparation of an Arbitrary Single-Qudit State with High-Dimensional Spatial-Mode Entanglement via Linear-Optical Elements. International Journal of Theoretical Physics, 2022, 61, 1.	0.5	10
100	Three-Party Quantum Secure Direct Communication Protocol with Adaptive Capacity. International Journal of Theoretical Physics, 2022, 61, .	0.5	2
101	Sender-controlled measurement-device-independent multiparty quantum communication. Frontiers of Physics, 2022, 17, 1.	2.4	4
102	One-step device-independent quantum secure direct communication. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	77
103	Benchmarking of quantum protocols. Scientific Reports, 2022, 12, 5298.	1.6	4
104	Free electrons can induce entanglement between photons. Npj Quantum Information, 2022, 8, .	2.8	21
105	Universal Quantum Multiâ€Qubit Entangling Gates with Auxiliary Spaces. Advanced Quantum Technologies, 2022, 5, .	1.8	14
106	Entanglement, nonlocal features, quantum teleportation of two-mode squeezed vacuum states with superposition of photon-pair addition and subtraction operations. Optik, 2022, 257, 168744.	1.4	8
107	Efficient generation protocol for the three-level logical entangled states. Quantum Information Processing, 2022, 21, 1.	1.0	0
108	Measurement-device-independent quantum secret sharing with hyper-encoding. Chinese Physics B, 2022, 31, 100302.	0.7	22
109	Measurement device–independent quantum secure direct communication with user authentication. Quantum Information Processing, 2022, 21, .	1.0	8

#	ARTICLE	IF	CITATIONS
110	Protecting high-dimensional entanglement from decoherence via quantum weak measurement and reversal. Modern Physics Letters A, 2022, 37, .	0.5	6
111	Single-state multi-party semiquantum key agreement protocol based on multi-particle GHZ entangled states. Quantum Information Processing, 2022, 21, .	1.0	13
112	Quantum key secure communication protocol via enhanced superdense coding. Optical and Quantum Electronics, 2023, 55, .	1.5	6
113	Fiber-based quantum secure direct communication without active polarization compensation. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	25
114	Quantum direct communication protocol using recurrence in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> -cycle quantum walks. Physical Review A, 2023, 107, .	1.0	6
115	Hierarchical controlled remote preparation of an arbitrary m-qudit state with four-qudit cluster states. Quantum Information Processing, 2023, 22, .	1.0	8
116	Quantum identity authentication using a Hadamard gate based on a GHZ state. Journal of Physics B: Atomic, Molecular and Optical Physics, 2023, 56, 075502.	0.6	2
117	Free-Space Quantum Secure Direct Communication: Basics, Progress, and Outlook. Advanced Devices & Instrumentation, 2023, 4, .	4.0	12
118	Measurement-Device-Independent Three-party Quantum Secure Direct Communication Based on Entanglement Swapping., 2022,,.		0
119	Rough Entanglement: Not Enough Fourier. Advanced Quantum Technologies, 2023, 6, .	1.8	O