Surface Defect Engineering in 2D Nanomaterials for Pho

Advanced Functional Materials 28, 1801983 DOI: 10.1002/adfm.201801983

Citation Report

#	Article	IF	CITATIONS
1	Controllable construction of oxygen vacancies by anaerobic catalytic combustion of dichloromethane over metal oxides for enhanced solar-to-hydrogen conversion. Sustainable Energy and Fuels, 2019, 3, 2742-2752.	2.5	2
2	High Quantum Efficiency Achieved on BiVO ₄ Photoanode for Efficient Solar Water Oxidation. Solar Rrl, 2019, 3, 1900301.	3.1	13
3	(TiO ₂ (B) Nanosheet)/(Metallic Phase MoS ₂) Hybrid Nanostructures: An Efficient Catalyst for Photocatalytic Hydrogen Evolution. Solar Rrl, 2019, 3, 1900323.	3.1	18
4	Multifunctional Optoelectronics via Harnessing Defects in Layered Black Phosphorus. Advanced Functional Materials, 2019, 29, 1901991.	7.8	97
5	Efficient photocatalytic hydrogen evolution mediated by defect-rich 1T-PtS ₂ atomic layer nanosheet modified mesoporous graphitic carbon nitride. Journal of Materials Chemistry A, 2019, 7, 18906-18914.	5.2	44
6	Bismuth Vacancy-Tuned Bismuth Oxybromide Ultrathin Nanosheets toward Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2019, 11, 30786-30792.	4.0	140
7	Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy. Nanoscale, 2019, 11, 15685-15708.	2.8	74
8	Defects Engineering in Photocatalytic Water Splitting Materials. ChemCatChem, 2019, 11, 6177-6189.	1.8	90
9	An overview of photocatalysis facilitated by 2D heterojunctions. Nanotechnology, 2019, 30, 502002.	1.3	66
10	Machine Learning for Accelerated Discovery of Solar Photocatalysts. ACS Catalysis, 2019, 9, 11774-11787.	5.5	100
11	Ultrathin oxygen-vacancy abundant WO3 decorated monolayer Bi2WO6 nanosheet: A 2D/2D heterojunction for the degradation of Ciprofloxacin under visible and NIR light irradiation. Journal of Colloid and Interface Science, 2019, 556, 557-567.	5.0	89
12	Defect Engineering in Photocatalytic Nitrogen Fixation. ACS Catalysis, 2019, 9, 9739-9750.	5.5	286
13	Creating ultrathin amorphous metal hydroxide and oxide nanosheet libraries. Journal of Materials Chemistry A, 2019, 7, 4383-4388.	5.2	34
14	Ultrafine silver nanoparticles deposited on sodium-doped graphitic carbon nitride towards enhanced photocatalytic degradation of dyes and antibiotics under visible light irradiation. Applied Surface Science, 2019, 476, 741-748.	3.1	24
15	Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production. Chinese Journal of Catalysis, 2019, 40, 867-874.	6.9	73
16	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution over Monolayer Layered Double Hydroxide under Irradiation above 600â€nm. Angewandte Chemie, 2019, 131, 11986-11993.	1.6	47
17	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution over Monolayer Layered Double Hydroxide under Irradiation above 600â€nm. Angewandte Chemie - International Edition, 2019, 58, 11860-11867.	7.2	224
18	Ultrathin structured photocatalysts: A versatile platform for CO2 reduction. Applied Catalysis B: Environmental, 2019, 256, 117788.	10.8	94

#	Article	IF	CITATIONS
19	A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum Disulfide: From Growth to Interfacial Activities. Small, 2019, 15, e1900578.	5.2	69
20	An overview of advanced methods for the characterization of oxygen vacancies in materials. TrAC - Trends in Analytical Chemistry, 2019, 116, 102-108.	5.8	315
21	Bismuthâ€Based Photocatalysts for Solar Photocatalytic Carbon Dioxide Conversion. ChemSusChem, 2019, 12, 3671-3701.	3.6	139
22	Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chemistry, 2019, 21, 2852-2867.	4.6	121
23	Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Research, 2019, 12, 1625-1630.	5.8	96
24	Charge redistribution of Co on cobalt (II) oxide surface for enhanced oxygen evolution electrocatalysis. Nano Energy, 2019, 61, 267-274.	8.2	35
25	Photo(electro)catalytic Nitrogen Fixation: Problems and Possibilities. Advanced Materials Interfaces, 2019, 6, 1900091.	1.9	76
26	Structureâ€Activity Relationship of Defective Metalâ€Based Photocatalysts for Water Splitting: Experimental and Theoretical Perspectives. Advanced Science, 2019, 6, 1900053.	5.6	206
27	Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting. Chemical Reviews, 2019, 119, 5192-5247.	23.0	551
28	Glucose-Induced Formation of Oxygen Vacancy and Bi-Metal Comodified Bi ₅ O ₇ Br Nanotubes for Efficient Performance Photocatalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 5784-5791.	3.2	72
29	Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2019, 7, 5875-5897.	5.2	252
30	Synthesis of 42-faceted bismuth vanadate microcrystals for enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2019, 542, 207-212.	5.0	27
31	BiOCl/BiOBr Heterojunction with Rich Oxygen Vacancies Induced by Ultraviolet and Its Enhanced Photocatalytic Performance. European Journal of Inorganic Chemistry, 2019, 2019, 4887-4893.	1.0	12
32	Switching charge kinetics from type-I to <i>Z</i> -scheme for g-C ₃ N ₄ and ZnIn ₂ S ₄ by defective engineering for efficient and durable hydrogen evolution. Sustainable Energy and Fuels, 2019, 3, 3422-3429.	2.5	21
33	Freestanding ultrathin bismuth-based materials for diversified photocatalytic applications. Journal of Materials Chemistry A, 2019, 7, 25203-25226.	5.2	90
34	Synergetic promotional effect of oxygen vacancy-rich ultrathin TiO2 and photochemical induced highly dispersed Pt for photoreduction of CO2 with H2O. Applied Catalysis B: Environmental, 2019, 244, 919-930.	10.8	123
35	Photocatalyst design based on two-dimensional materials. Materials Today Chemistry, 2019, 11, 197-216.	1.7	103
36	2D and 3D Metal–Organic Framework at the Oil/Water Interface: A Case Study of Copper Benzenedicarboxylate, Advanced Materials Interfaces, 2019, 6, 1801139	1.9	25

#	Article	IF	CITATIONS
37	Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chemical Engineering Journal, 2020, 382, 122812.	6.6	155
38	Controllable fabrication of Bi2O3 nanoparticles by atomic layer deposition on TiO2 films and application in photodegradation. Solar Energy Materials and Solar Cells, 2020, 204, 110218.	3.0	11
39	Production of Hydrogen Peroxide by Photocatalytic Processes. Angewandte Chemie - International Edition, 2020, 59, 17356-17376.	7.2	615
40	Photocatalytic producing dihydroxybenzenes from phenol enabled by gathering oxygen vacancies in ultrathin porous ZnO nanosheets. Applied Surface Science, 2020, 505, 144580.	3.1	30
41	Produktion von Wasserstoffperoxid durch photokatalytische Prozesse. Angewandte Chemie, 2020, 132, 17508-17529.	1.6	29
42	Macroscopic 3D boron nitride monolith for efficient adsorptive desulfurization. Fuel, 2020, 261, 116448.	3.4	34
43	Photoelectrochemical Conversion of Carbon Dioxide (CO ₂) into Fuels and Value-Added Products. ACS Energy Letters, 2020, 5, 486-519.	8.8	361
44	Regulation of surface plasmon resonance and oxygen vacancy defects in chlorine doped Bi–BiO _{2â^x} for imidacloprid photocatalytic degradation. New Journal of Chemistry, 2020, 44, 1090-1096.	1.4	12
45	Defect-induced abnormal enhanced upconversion luminescence in BiOBr:Yb ³⁺ /Er ³⁺ ultrathin nanosheets and its influence on visible-NIR light photocatalysis. Inorganic Chemistry Frontiers, 2020, 7, 519-528.	3.0	36
46	Hybrid 0D/2D Ni2P quantum dot loaded TiO2(B) nanosheet photothermal catalysts for enhanced hydrogen evolution. Applied Surface Science, 2020, 505, 144099.	3.1	47
47	In situ no-slot joint integration of half-metallic C(CN)3 cocatalyst into g-C3N4 scaffold: An absolute metal-free in-plane heterosystem for efficient and selective photoconversion of CO2 into CO. Applied Catalysis B: Environmental, 2020, 264, 118470.	10.8	41
48	Lipophilic decavanadate supported by three-dimensional porous carbon nitride catalyst for aerobic oxidative desulfurization. Molecular Catalysis, 2020, 483, 110709.	1.0	12
49	Emerging layered BiO _{2â^'x} for photocatalysis: status, challenges, and outlook. Sustainable Energy and Fuels, 2020, 4, 5378-5386.	2.5	19
50	Modifications of heterogeneous photocatalysts for hydrocarbon C–H bond activation and selective conversion. Chemical Communications, 2020, 56, 13918-13932.	2.2	32
51	Biâ€based photocatalysts for <scp>lightâ€driven</scp> environmental and energy applications: Structural tuning, reaction mechanisms, and challenges. EcoMat, 2020, 2, e12047.	6.8	79
52	Synthesis of a novel one-dimensional Bi ₂ O ₂ CO ₃ –BiOCl heterostructure and its enhanced photocatalytic activity. CrystEngComm, 2020, 22, 6822-6830.	1.3	8
53	Atomic-level active sites steering in ultrathin photocatalysts to trigger high efficiency nitrogen fixation. Chemical Engineering Journal, 2020, 402, 126208.	6.6	40
54	CeO2/BiOIO3 heterojunction with oxygen vacancies and Ce4+/Ce3+ redox centers synergistically enhanced photocatalytic removal heavy metal. Applied Surface Science, 2020, 530, 147116.	3.1	88

#	Article	IF	Citations
55	0D/2D MXene Quantum Dot/Ni-MOF Ultrathin Nanosheets for Enhanced N ₂ Photoreduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 17791-17799.	3.2	74
56	Electrons in Oxygen Vacancies and Oxygen Atoms Activated by Ce ³⁺ /Ce ⁴⁺ Promote High-Sensitive Electrochemical Detection of Pb(II) over Ce-Doped α-MoO ₃ Catalysts. Analytical Chemistry, 2020, 92, 16089-16096.	3.2	40
57	Surface engineered 2D materials for photocatalysis. Chemical Communications, 2020, 56, 11000-11013.	2.2	61
58	Alkali Etching of Layered Double Hydroxide Nanosheets for Enhanced Photocatalytic N ₂ Reduction to NH ₃ . Advanced Energy Materials, 2020, 10, 2002199.	10.2	185
59	Recent advances in two-dimensional layered materials for photoelectrochemical sensing. TrAC - Trends in Analytical Chemistry, 2020, 133, 116089.	5.8	57
60	Defect engineering in photocatalysis: formation, chemistry, optoelectronics, and interface studies. Journal of Materials Chemistry A, 2020, 8, 18560-18604.	5.2	116
61	Role of Vacancies in Photocatalysis: A Review of Recent Progress. Chemistry - an Asian Journal, 2020, 15, 3599-3619.	1.7	67
62	Oxygen Defects in Nanostructured <scp>Metalâ€Oxide</scp> Gas Sensors: Recent Advances and Challenges ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1832-1846.	2.6	34
63	Bismuth-rich bismuth oxyhalides: a new opportunity to trigger high-efficiency photocatalysis. Journal of Materials Chemistry A, 2020, 8, 21434-21454.	5.2	84
64	Recent advances in two-dimensional nanomaterials for photocatalytic reduction of CO ₂ : insights into performance, theories and perspective. Journal of Materials Chemistry A, 2020, 8, 19156-19195.	5.2	101
65	2D Nanomaterials with Hierarchical Architecture for Flexible Sensor Application. ACS Symposium Series, 2020, , 93-116.	0.5	5
66	Harmonizing the Electronic Structures on BiOI with Active Oxygen Vacancies toward Facetâ€Đependent Antibacterial Photodynamic Therapy. Advanced Functional Materials, 2020, 30, 2004108.	7.8	56
67	Design and in-situ construct BiOI/Bi/TiO2 photocatalysts with metal-mediated heterostructures employing oxygen vacancies in TiO2 nanosheets. Green Energy and Environment, 2022, 7, 680-690.	4.7	14
68	Effect of Zn Vacancies in Zn ₃ In ₂ S ₆ Nanosheets on Boosting Photocatalytic N ₂ Fixation. ACS Applied Energy Materials, 2020, 3, 11275-11284.	2.5	49
69	Tailoring two-dimensional nanomaterials by structural engineering for chemical and biological sensing. Sensors and Actuators Reports, 2020, 2, 100024.	2.3	8
70	Seeded growth of ZnO nanowires in dye-containing solution: the submerged plant analogy and its application in photodegradation of dye pollutants. CrystEngComm, 2020, 22, 4154-4161.	1.3	8
71	Insight into photocatalytic nitrogen fixation on graphitic carbon nitride: Defect-dopant strategy of nitrogen defect and boron dopant. Chemical Engineering Journal, 2020, 396, 125395.	6.6	92
72	Modulating mesoporous Co3O4 hollow nanospheres with oxygen vacancies for highly efficient peroxymonosulfate activation. Chemical Engineering Journal, 2020, 400, 125869.	6.6	138

#	Article	IF	CITATIONS
73	P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate. APL Materials, 2020, 8, .	2.2	93
74	Layered double hydroxide nanosheets as efficient photocatalysts for NO removal: Band structure engineering and surface hydroxyl ions activation. Applied Catalysis B: Environmental, 2020, 277, 119200.	10.8	39
75	Novel BiOCl/BiCl ₃ Br–CTA Heterostructure Photocatalyst with Abundant Oxygen Vacancies and a Superoleophilic Surface for Promoting Selective Oxidation of Toluene. Industrial & Engineering Chemistry Research, 2020, 59, 11517-11526.	1.8	19
76	Tailoring the Surface Oxygen Vacancies in Nanoporous BiOCl _{0.8} 1 _{0.2} Nanoflowers for Photocathodic Sensing. ACS Applied Nano Materials, 2020, 3, 6423-6431.	2.4	9
77	Thin‣ayered Photocatalysts. Advanced Functional Materials, 2020, 30, 1910005.	7.8	117
78	Synthesis of graphitic carbon nitride—Nanostructured photocatalyst. , 2020, , 279-304.		1
79	Facile-controllable synthesis of SnS2 with sulfur vacancy for boosted Cr(VI) photoreduction performance. Journal of Alloys and Compounds, 2020, 845, 156155.	2.8	33
80	Defect and Interface Engineering on Twoâ€Ðimensional Nanosheets for the Photocatalytic Nitrogen Reduction Reaction. ChemPhotoChem, 2020, 4, 5322-5336.	1.5	12
81	Charge steering in ultrathin 2D nanomaterials for photocatalysis. Journal of Materials Chemistry A, 2020, 8, 12928-12950.	5.2	44
82	Defect engineering of the protection layer for photoelectrochemical devices. EnergyChem, 2020, 2, 100039.	10.1	15
83	Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: Evolution of reactive oxygen species and mechanism. Chemical Engineering Journal, 2020, 388, 124371.	6.6	115
84	The Role of Cation Vacancies in Electrode Materials for Enhanced Electrochemical Energy Storage: Synthesis, Advanced Characterization, and Fundamentals. Advanced Energy Materials, 2020, 10, 1903780.	10.2	138
85	Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction. Applied Catalysis B: Environmental, 2020, 270, 118849.	10.8	83
86	Defect and Dopant Mediated Thermoelectric Power Factor Tuning in βâ€Zn ₄ Sb ₃ . Advanced Electronic Materials, 2020, 6, 1901284.	2.6	14
87	Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chemical Engineering Journal, 2020, 395, 125030.	6.6	133
88	Synchronous construction of oxygen vacancies and phase junction in TiO2 hierarchical structure for enhancement of visible light photocatalytic activity. Journal of Alloys and Compounds, 2020, 830, 154649.	2.8	20
89	Atomically thin PdSeO ₃ nanosheets: a promising 2D photocatalyst produced by quaternary ammonium intercalation and exfoliation. Chemical Communications, 2020, 56, 5504-5507.	2.2	23
90	Recent progress in two-dimensional nanomaterials for photocatalytic carbon dioxide transformation into solar fuels. Materials Today Sustainability, 2020, 9, 100037.	1.9	29

#	Article	IF	CITATIONS
91	Facile synthesis of kermesinus BiOI with oxygen vacancy for efficient hydrogen generation. Chemical Engineering Journal, 2021, 420, 127607.	6.6	39
92	Perforated two-dimensional nanoarchitectures for next-generation batteries: Recent advances and extensible perspectives. Progress in Materials Science, 2021, 116, 100716.	16.0	30
93	Insideâ€∎ndâ€Out Semiconductor Engineering for CO ₂ Photoreduction: From Recent Advances to New Trends. Small Structures, 2021, 2, 2000061.	6.9	346
94	Boron nitride-based materials for water purification: Progress and outlook. Chemosphere, 2021, 263, 127970.	4.2	55
95	Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction. Journal of Energy Chemistry, 2021, 57, 1-9.	7.1	139
96	The Active Sites Engineering of Catalysts for CO 2 Activation and Conversion. Solar Rrl, 2021, 5, 2000443.	3.1	7
97	C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges. Journal of Materials Chemistry A, 2021, 9, 111-153.	5.2	320
98	Atomicâ€Level and Modulated Interfaces of Photocatalyst Heterostructure Constructed by External Defectâ€Induced Strategy: A Critical Review. Small, 2021, 17, e2004980.	5.2	63
99	Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances. Applied Catalysis B: Environmental, 2021, 285, 119785.	10.8	124
100	Interface engineering in low-dimensional bismuth-based materials for photoreduction reactions. Journal of Materials Chemistry A, 2021, 9, 2662-2677.	5.2	32
101	Site-exposed Ti ₃ C ₂ MXene anchored in N-defect g-C ₃ N ₄ heterostructure nanosheets for efficient photocatalytic N ₂ fixation. Catalysis Science and Technology, 2021, 11, 1027-1038.	2.1	34
102	Advances in recyclable and superior photocatalytic fibers: Material, construction, application and future perspective. Composites Part B: Engineering, 2021, 205, 108512.	5.9	82
103	Engineering Layered Double Hydroxide–Based Photocatalysts Toward Artificial Photosynthesis: Stateâ€ofâ€theâ€Art Progress and Prospects. Solar Rrl, 2021, 5, 2000535.	3.1	53
104	Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. Journal of Materiomics, 2021, 7, 388-418.	2.8	117
105	Twoâ€Dimensional Transition Metal Oxides and Chalcogenides for Advanced Photocatalysis: Progress, Challenges, and Opportunities. Solar Rrl, 2021, 5, 2000403.	3.1	28
106	Chemical reactions on surfaces for applications in catalysis, gas sensing, adsorption-assisted desalination and Li-ion batteries: opportunities and challenges for surface science. Physical Chemistry Chemical Physics, 2021, 23, 7541-7552.	1.3	13
107	Evidencing Interfacial Charge Transfer in 2D CdS/2D MXene Schottky Heterojunctions toward High‣fficiency Photocatalytic Hydrogen Production. Solar Rrl, 2021, 5, 2000414.	3.1	83
108	Oxygen vacancy-engineered surfaces of ZnO-decorated porous BiOI microspheres for strongly enhanced visible-light NO oxidation. Catalysis Science and Technology, 2021, 11, 4235-4244.	2.1	4

#	Article	IF	CITATIONS
109	Crystal facet and surface defect engineered low dimensional CeO ₂ (0D, 1D, 2D) based photocatalytic materials towards energy generation and pollution abatement. Materials Advances, 2021, 2, 6942-6983.	2.6	18
110	Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chemical Society Reviews, 2021, 50, 10116-10211.	18.7	140
111	Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: a mini review. Nanoscale, 2021, 13, 13593-13603.	2.8	133
112	Alkylamine-Grafted Organic Semiconductors with Plasma-Induced Defects as Electron Promoters of CO-Resistant Pd-Based Nanoparticles for Efficient Light-Driven On-Demand H₂ Generation . ACS Applied Energy Materials, 2021, 4, 704-713.	2.5	8
113	Crystal size-controlled growth of bismuth vanadate for highly efficient solar water oxidation. Sustainable Energy and Fuels, 2021, 5, 1129-1133.	2.5	3
114	Atomicâ€Level Charge Separation Strategies in Semiconductorâ€Based Photocatalysts. Advanced Materials, 2021, 33, e2005256.	11.1	215
115	Defect induced nitrogen reduction reaction of carbon nanomaterials. Sustainable Energy and Fuels, 2021, 5, 3765-3790.	2.5	9
116	Photocatalytic CO ₂ reduction to CH ₄ on iron porphyrin supported on atomically thin defective titanium dioxide. Catalysis Science and Technology, 2021, 11, 6103-6111.	2.1	13
117	Alloy-strain-output induced lattice dislocation in Ni ₃ FeN/Ni ₃ Fe ultrathin nanosheets for highly efficient overall water splitting. Journal of Materials Chemistry A, 2021, 9, 4036-4043.	5.2	54
118	Defective photocatalysts. , 2021, , 131-163.		0
119	MoC/MAPbI ₃ hybrid composites for efficient photocatalytic hydrogen evolution. Dalton Transactions, 2021, 50, 10860-10866.	1.6	10
120	Linking the enhanced deep NO oxidation of a ferroelectric K _{0.5} Bi _{0.5} TiO ₃ nanowire photocatalyst to its spontaneous polarization and oxygen vacancies. Inorganic Chemistry Frontiers, 2021, 8, 5065-5075.	3.0	3
121	Recent Progress on Photocatalytic CO ₂ Reduction with Ultrathin Nanostructures. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 3.	0.6	1
122	Effect of anisotropic conductivity of Ag ₂ S-modified Zn _{<i>m</i>} In ₂ S _{3+<i>m</i>} (<i>m</i> = 1, 5) on the photocatalytic properties in solar hydrogen evolution. RSC Advances, 2021, 11, 26908-26914.	1.7	4
123	Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50, 9817-9844.	18.7	245
124	600Ânm induced nearly 99% selectivity of CH4 from CO2 photoreduction using defect-rich monolayer structures. Cell Reports Physical Science, 2021, 2, 100322.	2.8	23
125	Steering Electron–Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. Angewandte Chemie - International Edition, 2021, 60, 8236-8242.	7.2	249

		CITATION REPORT		
# 128	ARTICLE 2D Nanomaterials for Effective Energy Scavenging. Nano-Micro Letters, 2021, 13, 82.		IF 14.4	CITATIONS
129	Enhanced Photocatalytic CO ₂ Reduction with Photothermal Effect by Coc of Oxygen Vacancy and Au Cocatalyst. ACS Applied Materials & Materials (1997) Applied Mate	operative Effect 13, 14221-14229.	4.0	57
130	Nanomaterials for adsorption and conversion of CO2 under gentle conditions. Material 50, 385-399.	s Today, 2021,	8.3	21
131	Cation Exchange Enabled Cu Dopants Location Tailoring and Photoelectric Properties CdS Nanosheets. Journal of Physical Chemistry Letters, 2021, 12, 3976-3982.	Regulation in	2.1	5
132	Charge separation dynamics in In2Se3/ZnO/Au ternary system for enhanced photocata of methylene blue under visible light. Journal of Photochemistry and Photobiology A: Cl 411, 113208.	lytic degradation nemistry, 2021,	2.0	6
133	One–pot synthesis of Bi4V2O11/BiVO4 heterostructure with enhanced photocatalyt degradation. Applied Surface Science, 2021, 544, 148921.	ic activity for dye	3.1	22
134	Recent Development in Defects Engineered Photocatalysts: An Overview of the Experir Theoretical Strategies. Energy and Environmental Materials, 2022, 5, 68-114.	nental and	7.3	81
135	Atomic Cobalt Vacancyâ€Cluster Enabling Optimized Electronic Structure for Efficient Advanced Functional Materials, 2021, 31, 2101797.	Water Splitting.	7.8	26
136	Energy band engineering and interface transfer strategies to optimize photocatalytic h evolution performance. Applied Surface Science, 2021, 546, 149137.	ydrogen	3.1	9
137	Defect Engineering in 2D Photocatalytic Materials for CO ₂ Reduction. Ch 2021, 7, 737-747.	emNanoMat,	1.5	9
138	Pointâ€Defect Engineering: Leveraging Imperfections in Graphitic Carbon Nitride (g ₃ N ₄) Photocatalysts toward Artificial Photosynthesis. e2006851.	Small, 2021, 17,	5.2	139
139	In2Se3/CdS nanocomposites as high efficiency photocatalysts for hydrogen production light irradiation. International Journal of Hydrogen Energy, 2021, 46, 15539-15549.	n under visible	3.8	19
140	Do Gas Nanobubbles Enhance Aqueous Photocatalysis? Experiment and Analysis of Me Catalysts, 2021, 11, 511.	chanism.	1.6	10
141	Holey defected TiO2 nanosheets with oxygen vacancies for efficient photocatalytic hyd production from water splitting. Surfaces and Interfaces, 2021, 23, 100979.	lrogen	1.5	12
142	Semiconductor heterojunction photocatalysts with near-infrared light antennas: a revie Physics D: Applied Physics, 2021, 54, 313002.	w. Journal	1.3	12
143	Evolutionary inverse design of defects at graphene 2D lateral interfaces. Journal of App 2021, 129, 185302.	lied Physics,	1.1	1
144	Highly enhanced adsorption and photocatalytic performance of TiO2 quantum dots syn microwaves for degradation of reactive red azo dye. Journal of Nanoparticle Research, 2	nthesized by 2021, 23, 1.	0.8	4
146	Synthesis, characterization and utilization of oxygen vacancy contained metal oxide se for energy and environmental catalysis. Chemosphere, 2021, 272, 129534.	miconductors	4.2	41

#	Article	IF	CITATIONS
147	Synthesis of 2D/2D CoAl-LDHs/Ti3C2Tx Schottky-junction with enhanced interfacial charge transfer and visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2021, 286, 119867.	10.8	131
148	Unveiling Charge Dynamics in Acetylene-Bridged Donorâ^ï€â€"Acceptor Covalent Triazine Framework for Enhanced Photoredox Catalysis. ACS Catalysis, 2021, 11, 7429-7441.	5.5	75
149	Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation. Nano Research, 2021, 14, 3365-3371.	5.8	24
150	Bi2WO6 hollow microspheres with high specific surface area and oxygen vacancies for efficient photocatalysis N2 fixation. Chemical Engineering Journal, 2021, 414, 128827.	6.6	97
151	Introduction, production, characterization and applications of defects in graphene. Journal of Materials Science: Materials in Electronics, 2021, 32, 19991-20030.	1.1	15
152	Decoupling the Impacts of Engineering Defects and Band Gap Alignment Mechanism on the Catalytic Performance of Holey 2D CeO _{2â^'} <i>_x</i> â€Based Heterojunctions. Advanced Functional Materials, 2021, 31, 2103171.	7.8	27
153	Surface disorder engineering in ZnCdS for cocatalyst free visible light driven hydrogen production. Nano Research, 2022, 15, 996-1002.	5.8	50
154	Multi-electron reduction process for boosting ammonia photosynthesis using graphene-modified red phosphorus. Applied Surface Science, 2021, 555, 149733.	3.1	6
155	Two-Dimensional All-in-One Sulfide Monolayers Driving Photocatalytic Overall Water Splitting. Nano Letters, 2021, 21, 6228-6236.	4.5	88
156	Opportunities from Doping of Non ritical Metal Oxides in Last Generation Light onversion Devices. Advanced Energy Materials, 2021, 11, 2101041.	10.2	29
157	Advantageous metal-atom-escape towards super-hydrophilic interfaces assembly for efficient overall water splitting. Journal of Power Sources, 2021, 499, 229941.	4.0	75
158	Engineering Cocatalysts onto Lowâ€Dimensional Photocatalysts for CO ₂ Reduction. Small Structures, 2021, 2, 2100046.	6.9	40
159	Tuning electromagnetic absorption properties of transition metal oxides by hydrogenation with nascent hydrogen. Chemical Engineering Journal, 2021, 417, 127980.	6.6	18
160	Femtosecond relaxation dynamics of twoâ€dimensional <scp>BiOI</scp> nanoplatelets as efficient photocatalysts. Journal of the Chinese Chemical Society, 2022, 69, 51-59.	0.8	3
161	Defect Luminescence Based Persistent Phosphors—From Controlled Synthesis to Bioapplications. Chinese Journal of Chemistry, 2021, 39, 3188-3198.	2.6	17
162	A critical innovation of photocatalytic degradation for toxic chemicals and pathogens in air. Journal of Industrial and Engineering Chemistry, 2021, 100, 19-39.	2.9	15
163	Influence of a hole inversion layer at the In2O3 / BiVO4 interface on the high-efficiency photocatalytic performance. Surfaces and Interfaces, 2021, 25, 101148.	1.5	7
164	Ultrathin Two-Dimensional Bi-Based photocatalysts: Synthetic strategies, surface defects, and reaction mechanisms. Chemical Engineering Journal, 2021, 417, 129305.	6.6	52

	CITATION	Report	
#	Article	IF	Citations
165	High Carrier Separation Efficiency in Morphology-Controlled BiOBr/C Schottky Junctions for Photocatalytic Overall Water Splitting. ACS Nano, 2021, 15, 13209-13219.	7.3	72
166	Converting Organic Wastewater into CO Using MOFs-Derived Co/In ₂ O ₃ Double-Shell Photocatalyst. ACS Applied Materials & Interfaces, 2021, 13, 40754-40765.	4.0	21
167	Defect Engineering to Boost the Lithium-Ion Storage Performance of Ti ₃ C ₂ T <i>_x</i> MXene Induced by Plasma-Assisted Mechanochemistry. ACS Applied Energy Materials, 2021, 4, 10280-10289.	2.5	14
168	Bismuth-based photocatalyst for photocatalytic oxidation of flue gas mercury removal: A review. Journal of Hazardous Materials, 2021, 418, 126280.	6.5	82
169	Feasible Tuning of Surface OVs on (001) TiO ₂ for Superior Photocatalytic Nitrogen Fixation Activity. ChemPhysChem, 2021, 22, 2168-2171.	1.0	10
170	In situ etching growth of defective ZnS nanosheets anchored vertically on layered-double-hydroxide microflowers for accelerated photocatalytic activity. Applied Catalysis B: Environmental, 2021, 292, 120187.	10.8	33
171	Defect engineering in polymeric carbon nitride photocatalyst: Synthesis, properties and characterizations. Advances in Colloid and Interface Science, 2021, 296, 102523.	7.0	49
172	Facile synthesis of high crystallinity and oxygen vacancies rich bismuth oxybromide upconversion nanosheets by air-annealing for UV–Vis–NIR broad spectrum driven Bisphenol A degradation. Chemical Engineering Journal, 2021, 421, 127868.	6.6	29
173	Oxygen migration triggering molybdenum exposure in oxygen vacancy-rich ultra-thin Bi2MoO6 nanoflakes: Dual binding sites governing selective CO2 reduction into liquid hydrocarbons. Journal of Energy Chemistry, 2021, 61, 281-289.	7.1	40
174	Tailoring hydrophily and composition of BiOI for an ultrafast photodegradation of tetracycline hydrochloride. Journal of Environmental Chemical Engineering, 2021, 9, 106292.	3.3	4
175	Defect-domains enabling VO2 nanosheet arrays with fast charge transfer for 3.0 V aqueous supercapacitors. Chemical Engineering Journal, 2021, 423, 130208.	6.6	28
176	Metal-modified PtTe2 nanorods: Surface reconstruction for efficient methanol oxidation electrocatalysis. Chemical Engineering Journal, 2021, 424, 130319.	6.6	74
177	Synergistically boosting highly selective CO2–to–CO photoreduction over BiOCl nanosheets via in-situ formation of surface defects and non-precious metal nanoparticles. Applied Catalysis B: Environmental, 2021, 297, 120413.	10.8	112
178	Enhanced visible light driven photocatalytic performance of Bi2WO6 nano-catalysts by introducing oxygen vacancy. Journal of Alloys and Compounds, 2021, 887, 161297.	2.8	21
179	Realization of all-in-one hydrogen-evolving photocatalysts via selective atomic substitution. Applied Catalysis B: Environmental, 2021, 298, 120518.	10.8	49
180	Constructing 3D Bi/Bi4O5I2 microspheres with rich oxygen vacancies by one-pot solvothermal method for enhancing photocatalytic activity on mercury removal. Chemical Engineering Journal, 2021, 425, 131599.	6.6	93
181	Optimization of photocatalytic degradation conditions and toxicity assessment of norfloxacin under visible light by new lamellar structure magnetic ZnO/g-C3N4. Ecotoxicology and Environmental Safety, 2021, 225, 112742.	2.9	16
182	Phenolic compounds degradation: Insight into the role and evidence of oxygen vacancy defects engineering on nanomaterials. Science of the Total Environment, 2021, 800, 149410.	3.9	36

#	Article	IF	CITATIONS
183	Defect engineering in metal sulfides for energy conversion and storage. Coordination Chemistry Reviews, 2021, 448, 214147.	9.5	107
184	Vacancy-engineered bismuth-based semiconductor with enhanced photocatalytic activity: A review. Materials Science in Semiconductor Processing, 2022, 137, 106230.	1.9	22
185	Defective polymeric carbon nitride: Fabrications, photocatalytic applications and perspectives. Chemical Engineering Journal, 2022, 427, 130991.	6.6	85
186	Bifunctional template-mediated synthesis of porous ordered g-C3N4 decorated with potassium and cyano groups for effective photocatalytic H2O2 evolution from dual-electron O2 reduction. Chemical Engineering Journal, 2022, 427, 132032.	6.6	92
187	Etching to unveil active sites of nanocatalysts for electrocatalysis. Materials Chemistry Frontiers, 2021, 5, 3962-3985.	3.2	6
188	One-pot construction of robust BiOCl/ZnO p–n heterojunctions with semi-coherent interfaces toward improving charge separation for photodegradation enhancement. Nanoscale Advances, 2021, 3, 4851-4857.	2.2	18
189	Modulating surficial oxygen vacancy of the VO ₂ nanostructure to boost its electromagnetic absorption performance. Journal of Materials Chemistry C, 0, , .	2.7	56
190	A review on vertical and lateral heterostructures of semiconducting 2D-MoS ₂ with other 2D materials: a feasible perspective for energy conversion. Nanoscale, 2021, 13, 9908-9944.	2.8	53
191	Electron-assisted synthesis of g-C ₃ N ₄ /MoS ₂ composite with dual defects for enhanced visible-light-driven photocatalysis. RSC Advances, 2021, 11, 78-86.	1.7	10
192	Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts. Nanoscale, 2021, 13, 1581-1595.	2.8	38
193	Recent advances in zinc chalcogenide-based nanocatalysts for photocatalytic reduction of CO ₂ . Journal of Materials Chemistry A, 2021, 9, 23364-23381.	5.2	25
194	Surface Defects in Two-Dimensional Photocatalysts for Efficient Organic Synthesis. Matter, 2020, 2, 842-861.	5.0	107
195	Electrochemical reduction of carbon dioxide with nearly 100% carbon monoxide faradaic efficiency from vacancy-stabilized single-atom active sites. Journal of Materials Chemistry A, 2021, 9, 24955-24962.	5.2	30
196	W Modified HY Zeolite as Catalyst for Alkylation of Aromatic. Catalysis Letters, 2022, 152, 2480-2490.	1.4	1
197	Regeneration mechanism, modification strategy, and environment application of layered double hydroxides: Insights based on memory effect. Coordination Chemistry Reviews, 2022, 450, 214253.	9.5	61
198	One-pot low-energy synthesis of rGO-CuO hybrid for detection of NO2 at room temperature. Materials Science in Semiconductor Processing, 2022, 138, 106289.	1.9	8
199	Synergistic effect of oxygen defect and doping engineering on S-scheme O-Znln2S4/TiO2-x heterojunction for effective photocatalytic hydrogen production by water reduction coupled with oxidative dehydrogenation. Chemical Engineering Journal, 2022, 430, 133125.	6.6	70
200	Atomic-Level Understanding for the Enhanced Generation of Hydrogen Peroxide by the Introduction of an Aryl Amino Group in Polymeric Carbon Nitrides. ACS Catalysis, 2021, 11, 14087-14101.	5.5	33

#	ARTICLE	IF	CITATIONS
201	Facile synthesis of BiOCl single-crystal photocatalyst with high exposed (0 0 1) facets and its application in photocatalytic degradation. Inorganic Chemistry Communication, 2021, 134, 109038.	1.8	11
202	Prediction of functionalized graphene as potential catalysts for overall water splitting. Applied Surface Science, 2022, 578, 151989.	3.1	8
203	Recent advances in biological applications of nanomaterials through defect engineering. Science of the Total Environment, 2022, 816, 151647.	3.9	4
204	Internal Electric Field on Steering Charge Migration: Modulations, Determinations and Energyâ€Related Applications. Advanced Functional Materials, 2022, 32, .	7.8	63
205	Defect engineering of nanostructures: Insights into photoelectrochemical water splitting. Materials Today, 2022, 52, 133-160.	8.3	49
206	Edgeâ€Siteâ€Rich Ordered Macroporous BiOCl Triggers CO Activation for Efficient CO ₂ Photoreduction. Small, 2022, 18, e2105228.	5.2	27
207	Defect Engineering Boosted Ultrahigh Thermoelectric Power Conversion Efficiency in Polycrystalline SnSe. ACS Applied Materials & Interfaces, 2021, 13, 58701-58711.	4.0	14
208	A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coordination Chemistry Reviews, 2022, 453, 214338.	9.5	279
209	Oxygen vacancies enriched Bi2WO6 for enhanced decabromodiphenyl ether photodegradation via C-Br bond activation. Applied Surface Science, 2022, 581, 152439.	3.1	14
210	Growing ZnIn ₂ S ₄ Nanosheets on FeWO ₄ Flowers with p-n Heterojunction Structure for Efficient Photocatalytic H ₂ Production. SSRN Electronic Journal, 0, , .	0.4	0
211	Precisely Tailoring Nitrogen Defects in Carbon Nitride for Efficient Photocatalytic Overall Water Splitting. ACS Applied Materials & amp; Interfaces, 2022, 14, 3970-3979.	4.0	44
212	Hard Carbon Derived from Graphite Anode by Mechanochemistry and the Enhanced Lithiumâ€lon Storage Performance. ChemElectroChem, 2022, 9, .	1.7	9
213	Current challenges in nanomaterial-based sensors for online monitoring of drinking water by surface plasmon resonance. Current Opinion in Environmental Science and Health, 2022, 26, 100326.	2.1	4
215	Electrochemiluminescence detection of oxygen vacancies in layered double hydroxides. Chemical Communications, 2022, 58, 423-426.	2.2	8
216	Solarâ€powered chemistry: Engineering lowâ€dimensional carbon nitrideâ€based nanostructures for selective <scp>CO₂</scp> conversion to <scp>C₁C₂</scp> products. InformaÄnÃ-Materiály, 2022, 4, .	8.5	53
217	Atom manufacturing of photocatalyst towards solar CO ₂ reduction. Reports on Progress in Physics, 2022, 85, 026501.	8.1	8
218	Chapter 5. 2D Photocatalytic Materials for Environmental Applications. Inorganic Materials Series, 2022, , 217-293.	0.5	0
219	Oxygen vacancy–based metal oxides photoanodes in photoelectrochemical water splitting. Materials Today Sustainability, 2022, 18, 100118.	1.9	100

#	Article	IF	CITATIONS
220	Oxygen defect functionalized cobalt oxide towards high-efficient reaction with OHâ^' for aqueous energy storage devices. Journal of Power Sources, 2022, 524, 231074.	4.0	13
221	Oxygen Defect Functionalized Cobalt Oxide Towards High-Efficient Reaction with OH ⁻ for Aqueous Energy Storage Devices. SSRN Electronic Journal, 0, , .	0.4	0
222	Crystal lattice engineering in a screw-dislocated ZnO nanocone photocatalyst by carbon doping. Materials Advances, 2022, 3, 4322-4333.	2.6	11
223	Advanced Photocatalysts for Uranium Extraction: Elaborate Design and Future Perspectives. SSRN Electronic Journal, O, , .	0.4	1
224	Functionalized Graphitic Carbon Nitrides for Photocatalytic H ₂ 0 ₂ Production: Desired Properties Leading to Rational Catalyst Design. KONA Powder and Particle Journal, 2023, 40, 124-148.	0.9	2
225	Recent advances in ZnIn ₂ S ₄ -based materials towards photocatalytic purification, solar fuel production and organic transformations. Journal of Materials Chemistry C, 2022, 10, 5400-5424.	2.7	41
226	Defectâ€Rich, Highly Porous PtAg Nanoflowers with Superior Antiâ€Poisoning Ability for Efficient Methanol Oxidation Reaction. Small, 2022, 18, e2106643.	5.2	28
227	Dimensional heterojunction design: The rising star of 2D bismuth-based nanostructured photocatalysts for solar-to-chemical conversion. Nano Research, 2023, 16, 4310-4364.	5.8	34
228	Photoswitchable Chlorine Vacancies in Ultrathin Bi ₄ O ₅ Cl ₂ for Selective CO ₂ Photoreduction. ACS Catalysis, 2022, 12, 3965-3973.	5.5	69
229	S vacancies in 2D SnS2 accelerating hydrogen evolution reaction. Science China Materials, 2022, 65, 1833-1841.	3.5	19
230	Intrinsic defects of nonprecious metal electrocatalysts for energy conversion: Synthesis, advanced characterization, and fundamentals. ChemPhysMater, 2022, 1, 155-182.	1.4	6
231	Strain Engineering: A Boosting Strategy for Photocatalysis. Advanced Materials, 2022, 34, e2200868.	11.1	82
232	Nanoconfinement Synthesis of Ultrasmall Bismuth Oxyhalide Nanocrystals with Sizeâ€Induced Fully Reversible Potassiumâ€Ion Storage and Ultrahigh Volumetric Capacity. Advanced Functional Materials, 2022, 32, .	7.8	15
233	First-principles study on the electronic properties of GeC/BSe van der Waals heterostructure: A direct Z-scheme photocatalyst for overall water splitting. Physical Review Materials, 2022, 6, .	0.9	12
234	Magnetic field-enhanced photocatalytic nitrogen fixation over defect-rich ferroelectric Bi2WO6. Ceramics International, 2022, 48, 20062-20069.	2.3	16
235	Oxygen vacancy-regulated TiO2 nanotube photoelectrochemical sensor for highly sensitive and selective detection of tetracycline hydrochloride. Sensors and Actuators B: Chemical, 2022, 359, 131564.	4.0	36
236	Two-Dimensional Nanomaterial-based catalytic Medicine: Theories, advanced catalyst and system design. Advanced Drug Delivery Reviews, 2022, 184, 114241.	6.6	39
237	The environmental fate of biomass associated polybrominated diphenyl ethers. Chemosphere, 2022, 299, 134397.	4.2	3

ARTICLE IF CITATIONS # Growing ZnIn2S4 nanosheets on FeWO4 flowers with p-n heterojunction structure for efficient 238 3.1 64 photocatalytic H2 production. Applied Surface Science, 2022, 591, 153256. Enhanced CO2 conversion on highly-strained and oxygen-deficient BiVO4 photocatalyst. Chemical 6.6 Engineering Journal, 2022, 442, 136209. Construction of Dual-Defective Al₂O₃/Bi1₂O₁₇Cl₂ Heterojunctions for 240 7 1.8 Enhanced Photocatalytic Molecular Oxygen Activation via Defect Coupling and Charge Separation. Industrial & amp; Engineering Chemistry Research, 2022, 61, 441-452. A Sub-Nanostructural Transformable Nanozyme for Tumor Photocatalytic Therapy. Nano-Micro 241 14.4 24 Letters, 2022, 14, 101. Metal Oxide Based Photoelectrodes in Photoelectrocatalysis: Advances and Challenges. 242 1.3 11 ChemPlusChem, 2022, 87, e202200097. Recent trends in covalent functionalization of 2D materials. Physical Chemistry Chemical Physics, 1.3 2022, 24, 10684-10711. Mixed-Phase TiO₂ with Oxygen Vacancies for Enhanced Visible Light Photocatalysis 245 0.5 1 Performance. Nano, 2022, 17, . Electrically Driven Hydrogenation of MoO₃ Nanoparticles in Protonic Acid for Oxidative 246 2.4 Degradation of Micropollutants. ACS Applied Nano Materials, 0, , . Vacancy defect engineering in semiconductors for solar lightâ€driven environmental remediation and 247 46 sustainable energy production., 2022, 1, 213-255. 248 Challenges of photocatalysis and their coping strategies. Chem Catalysis, 2022, 2, 1315-1345. A Z-scheme CuO–ZnO–ZnS–CuS quaternary nanocomposite for solar-light-driven photocatalytic 249 1.1 6 performance. Current Applied Physics, 2022, 39, 113-121. Photocatalytic degradation of persistent organic pollutants by Co-Cl bond reinforced CoAl-LDH/Bi12O17Cl2 photocatalyst: mechanism and application prospect evaluation. Water Research, 5.3 2022, 219, 118558. Morphological structure engineering of organic-inorganic nanoflowers based on tunable bandgap 251 6.6 7 enables to rapid photodynamic bacteria-killing. Chemical Engineering Journal, 2022, 444, 136613. A staggered type of 0D/2D CuInS2/NiAl-LDH heterojunction with enhanced photocatalytic performance for the degradation of 2,4-Dichlorophenol. Separation and Purification Technology, 2022, 294, 121215. In-situ electronic structure redistribution tuning of single-atom Mn/g-C3N4 catalyst to trap atomic-scale lead(II) for highly stable and accurate electroanalysis. Journal of Hazardous Materials, 253 12 6.5 2022, 435, 129009. Perspective on Defective Semiconductor Heterojunctions for CO₂ Photoreduction. 254 Langmuir, 2022, 38, 6491-6498. Tin-anchored Ti₃C₂ quantum dots with high conductivity for efficient 255 2.22 photocatalytic reduction. Environmental Science: Nano, 2022, 9, 2417-2426. Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives. 170 Coordination Chemistry Reviews, 2022, 467, 214615.

#	Article	IF	CITATIONS
257	Self-Powered and Flexible Gas Sensor Using Defect-Engineered Ws2/G Heterostructure. SSRN Electronic Journal, 0, , .	0.4	0
258	Silver decorated TiO2/g-C3N4 bifunctional nanocomposites for photocatalytic elimination of water pollutants under UV and artificial solar light. Results in Engineering, 2022, 14, 100470.	2.2	30
259	Borate particulate photocatalysts for photocatalytic applications: A review. International Journal of Hydrogen Energy, 2022, 47, 25608-25630.	3.8	68
260	Classification and catalytic mechanisms of heterojunction photocatalysts and the application of titanium dioxide (TiO2)-based heterojunctions in environmental remediation. Journal of Environmental Chemical Engineering, 2022, 10, 108077.	3.3	42
261	Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
262	Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation. Angewandte Chemie, 0, , .	1.6	0
263	Quantitative Evaluation of Carrier Dynamics in Full-Spectrum Responsive Metallic Znln ₂ S ₄ with Indium Vacancies for Boosting Photocatalytic CO ₂ Reduction. Nano Letters, 2022, 22, 4970-4978.	4.5	54
264	Catalytic radiosensitization: Insights from materials physicochemistry. Materials Today, 2022, 57, 262-278.	8.3	16
265	High Anisotropic Optoelectronics in Monolayer Binary M ₈ X ₁₂ (M = Mo, W; X =) Tj ET	QqQ 0 0 rg	BT ₅ /Overlock
266	Two-dimensional antibacterial materials. Progress in Materials Science, 2022, 130, 100976.	16.0	46
266 267	Two-dimensional antibacterial materials. Progress in Materials Science, 2022, 130, 100976. Mechanistic insights into the formation of surface oxygen vacancies with controllable concentration and long-term stability in small-molecule bonded bismuth-based semiconductor hybrid photocatalyst. Journal of Colloid and Interface Science, 2022, 625, 109-118.	16.0 5.0	46 9
266 267 268	Two-dimensional antibacterial materials. Progress in Materials Science, 2022, 130, 100976. Mechanistic insights into the formation of surface oxygen vacancies with controllable concentration and long-term stability in small-molecule bonded bismuth-based semiconductor hybrid photocatalyst. Journal of Colloid and Interface Science, 2022, 625, 109-118. Correlating O-Vacancy and Hydrogen Spillover in Ru/TiO2-SiO2 Catalysts with Their Activity and Selectivity Towards Furfural Hydrogenation. SSRN Electronic Journal, 0, , .	16.0 5.0 0.4	46 9 0
266 267 268 269	Two-dimensional antibacterial materials. Progress in Materials Science, 2022, 130, 100976. Mechanistic insights into the formation of surface oxygen vacancies with controllable concentration and long-term stability in small-molecule bonded bismuth-based semiconductor hybrid photocatalyst. Journal of Colloid and Interface Science, 2022, 625, 109-118. Correlating O-Vacancy and Hydrogen Spillover in Ru/TiO2-SiO2 Catalysts with Their Activity and Selectivity Towards Furfural Hydrogenation. SSRN Electronic Journal, 0, , . Boron nitride materials as emerging catalysts for oxidative dehydrogenation of light alkanes. Nanotechnology, 2022, 33, 432003.	16.0 5.0 0.4 1.3	46 9 0 6
266 267 268 269 270	Two-dimensional antibacterial materials. Progress in Materials Science, 2022, 130, 100976.Mechanistic insights into the formation of surface oxygen vacancies with controllable concentration and long-term stability in small-molecule bonded bismuth-based semiconductor hybrid photocatalyst. Journal of Colloid and Interface Science, 2022, 625, 109-118.Correlating O-Vacancy and Hydrogen Spillover in Ru/TiO2-SiO2 Catalysts with Their Activity and Selectivity Towards Furfural Hydrogenation. SSRN Electronic Journal, 0, , .Boron nitride materials as emerging catalysts for oxidative dehydrogenation of light alkanes. Nanotechnology, 2022, 33, 432003.Emerging Synthesis Strategies of 2D MOFs for Electrical Devices and Integrated Circuits. Small, 2022, 18, .	16.0 5.0 0.4 1.3 5.2	46 9 0 6 19
266 267 268 269 270 271	Two-dimensional antibacterial materials. Progress in Materials Science, 2022, 130, 100976.Mechanistic insights into the formation of surface oxygen vacancies with controllable concentration and long-term stability in small-molecule bonded bismuth-based semiconductor hybrid photocatalyst. Journal of Colloid and Interface Science, 2022, 625, 109-118.Correlating O-Vacancy and Hydrogen Spillover in Ru/TiO2-SiO2 Catalysts with Their Activity and Selectivity Towards Furfural Hydrogenation. SSRN Electronic Journal, 0, , .Boron nitride materials as emerging catalysts for oxidative dehydrogenation of light alkanes. Nanotechnology, 2022, 33, 432003.Emerging Synthesis Strategies of 2D MOFs for Electrical Devices and Integrated Circuits. Small, 2022, 18, .Surface modification of glass fiber membrane via insertion of a bis(diarylcarbene) assisted with polymerization and cross-linking reactions. Surfaces and Interfaces, 2022, 32, 102155.	16.0 5.0 0.4 1.3 5.2 1.5	 46 9 0 6 19 2
266 267 268 269 270 271 271	Two-dimensional antibacterial materials. Progress in Materials Science, 2022, 130, 100976. Mechanistic insights into the formation of surface oxygen vacancies with controllable concentration and long-term stability in small-molecule bonded bismuth-based semiconductor hybrid photocatalyst. Journal of Colloid and Interface Science, 2022, 625, 109-118. Correlating O-Vacancy and Hydrogen Spillover in Ru/TiO2-SiO2 Catalysts with Their Activity and Selectivity Towards Furfural Hydrogenation. SSRN Electronic Journal, 0, , . Boron nitride materials as emerging catalysts for oxidative dehydrogenation of light alkanes. Nanotechnology, 2022, 33, 432003. Emerging Synthesis Strategies of 2D MOFs for Electrical Devices and Integrated Circuits. Small, 2022, 18, . Surface modification of glass fiber membrane via insertion of a bis(diarylcarbene) assisted with polymerization and cross-linking reactions. Surfaces and Interfaces, 2022, 32, 102155. Surface lattice oxygen mobility inspired peroxymonosulfate activation over Mn2O3 exposing different crystal faces toward bisphenol A degradation. Chemical Engineering Journal, 2022, 450, 138147.	 16.0 5.0 0.4 1.3 5.2 1.5 6.6 	 46 9 0 6 19 2 8
266 267 268 269 270 271 271 272 273	Two-dimensional antibacterial materials. Progress in Materials Science, 2022, 130, 100976. Mechanistic insights into the formation of surface oxygen vacancies with controllable concentration and long-term stability in small-molecule bonded bismuth-based semiconductor hybrid photocatalyst. Journal of Colloid and Interface Science, 2022, 625, 109-118. Correlating O-Vacancy and Hydrogen Spillover in Ru/TiO2-SiO2 Catalysts with Their Activity and Selectivity Towards Furfural Hydrogenation. SSRN Electronic Journal, 0, , . Boron nitride materials as emerging catalysts for oxidative dehydrogenation of light alkanes. Nanotechnology, 2022, 33, 432003. Emerging Synthesis Strategies of 2D MOFs for Electrical Devices and Integrated Circuits. Small, 2022, 18, . Surface modification of glass fiber membrane via insertion of a bis(diarylcarbene) assisted with polymerization and cross-linking reactions. Surfaces and Interfaces, 2022, 32, 102155. Surface lattice oxygen mobility inspired peroxymonosulfate activation over Mn2O3 exposing different crystal faces toward bisphenol A degradation. Chemical Engineering Journal, 2022, 450, 138147. Boosting photocatalytic nitrogen reduction to ammonia by dual defective -C N and K-doping sites on graphitic carbon nitride nanorod arrays. Applied Catalysis B: Environmental, 2022, 317, 121752.	 16.0 5.0 0.4 1.3 5.2 1.5 6.6 10.8 	 46 9 0 6 19 2 8 22

#	Article	IF	CITATIONS
275	Metal Sulfides for Photocatalytic Hydrogen Production: Current Development and Future Challenges. Solar Rrl, 2022, 6, .	3.1	22
276	Alkali Etching Induced CoAl‣ayered Double Oxides with Regulatable Cation and Oxygen Vacancy Defects to Promote the Photothermal Degradation of Methanol. ChemNanoMat, 0, , .	1.5	1
277	Simultaneous introduction of surface plasmon resonance effect and oxygen vacancies onto Bi/Bi2O3 heterostructure for enhancing visible-light photocatalysis. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	2
278	Exploring the roles of oxygen species in H2 oxidation at Î ² -MnO2 surfaces using operando DRIFTS-MS. Communications Chemistry, 2022, 5, .	2.0	13
279	2D hybrid photocatalysts for solar energy harvesting. Sustainable Materials and Technologies, 2022, 33, e00469.	1.7	7
280	Recent review of BixMOy (M=V, Mo, W) for photocatalytic CO2 reduction into solar fuels. Chemosphere, 2022, 307, 136026.	4.2	4
281	Self-powered and flexible gas sensor using defect-engineered WS2/G heterostructure. Sensors and Actuators B: Chemical, 2022, 371, 132523.	4.0	17
282	β particles induced directional inward migration of oxygen vacancies: Surface oxygen vacancies and interface oxygen vacancies synergistically activate PMS. Applied Catalysis B: Environmental, 2022, 318, 121879.	10.8	97
283	Influence of grain boundary density on the surface energy of nanocrystalline metal thin films. Applied Surface Science, 2022, 604, 154463.	3.1	1
284	Recent progress in NOx photocatalytic removal: Surface/interface engineering and mechanistic understanding. Journal of Environmental Chemical Engineering, 2022, 10, 108566.	3.3	15
285	Recent progress of indium-based photocatalysts: Classification, regulation and diversified applications. Coordination Chemistry Reviews, 2022, 473, 214819.	9.5	8
286	Dual reaction centers promote adsorption-photo Fenton synergistic efficient removal of tetracycline by reduced graphene oxide/CuFe2O4-oxygen vacancies. Applied Surface Science, 2022, 606, 154890.	3.1	10
287	Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect. Coordination Chemistry Reviews, 2022, 473, 214794.	9.5	42
288	Stabilize the oxygen vacancies in Bi2SiO5 for durable photocatalysis via altering local electronic structure with phosphate dopant. Applied Catalysis B: Environmental, 2022, 319, 121911.	10.8	20
289	Tuning oxygen vacancy in Bi2WO6 by heteroatom doping for enhanced photooxidation-reduction properties. Journal of Colloid and Interface Science, 2023, 629, 133-146.	5.0	14
290	Designing SnS/MoS ₂ van der Waals heterojunction for direct Z-scheme photocatalytic overall water-splitting by DFT investigation. Physical Chemistry Chemical Physics, 2022, 24, 21321-21330.	1.3	3
291	State-of-the-art advancements of atomically thin two-dimensional photocatalysts for energy conversion. Chemical Communications, 2022, 58, 9594-9613.	2.2	10
292	Defect Engineering in Layered Black Phosphorus for Multi-Functional Optoelectronics. RSC Nanoscience and Nanotechnology, 2022, , 33-52.	0.2	0

#	Article	IF	CITATIONS
293	Large-Scale Manual Grinding Preparation of Ultrathin Porous Sulfur (S ₈)-Anchored ScOOH Nanosheets for Photothermal Conversion and Dye Adsorption. ACS Applied Nano Materials, 2022, 5, 15133-15141.	2.4	4
294	Sulfur vacancy engineering of metal sulfide photocatalysts for solar energy conversion. Chem Catalysis, 2023, 3, 100375.	2.9	6
295	Atomically dispersed scandium Lewis acid sites on carbon nitride for efficient photocatalytic hydrogen peroxide production. Science China Materials, 2023, 66, 672-678.	3.5	7
296	TiO ₂ /FePS ₃ Sâ€6cheme Heterojunction for Greatly Raised Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2022, 12, .	10.2	104
297	PeakForce Quantitative Nanomechanical Imaging for Characterization of the Surface Energy of Nano-Patterned Au Strip. Journal of Natural Fibers, 2023, 20, .	1.7	3
298	Accelerating Electronâ€Transfer Dynamics by TiO ₂ â€Immobilized Reversible Singleâ€Atom Copper for Enhanced Artificial Photosynthesis of Urea. Advanced Materials, 2022, 34, .	11.1	40
299	Enhanced Charge-Modulated Switchable CO ₂ Capture on Graphene-like BeN ₄ with Beryllium Vacancy. Journal of Physical Chemistry C, 2022, 126, 18189-18197.	1.5	4
300	Anomalous Dynamics of Defect-Assisted Phonon Recycling in Few-Layer Mo _{0.5} W _{0.5} S ₂ . Journal of Physical Chemistry Letters, 2022, 13, 10395-10403.	2.1	1
301	Engineered MoS2 nanostructures for improved photocatalytic applications in water treatment. Materials Today Sustainability, 2023, 21, 100264.	1.9	9
302	Chlorine-deficient BiOCl1-x with highly positive valence band maximum for enhanced photooxidation capacity. Journal of Materials Science, 0, , .	1.7	0
303	1D/2D Hybrid Te/Graphene and Te/MoS ₂ : Multifaceted Broadband Photonics and Green-Energy Applications. ACS Applied Materials & Interfaces, 2022, 14, 51449-51458.	4.0	1
304	Coupled adsorption and photocatalysis of g-C3N4 based composites: Material synthesis, mechanism, and environmental applications. Chemical Engineering Journal, 2023, 453, 139755.	6.6	87
305	Versatile iodine-doped BiOCl with abundant oxygen vacancies and (110) crystal planes for enhanced pollutant photodegradation. Environmental Research, 2023, 216, 114808.	3.7	16
306	Defect-induced electronic modification and surface reconstruction of catalysts during water oxidation process. Chemical Engineering Journal, 2023, 454, 140254.	6.6	16
307	Tuning Coâ€Catalytic Sites in Hierarchical Porous Nâ€Doped Carbon for Highâ€Performance Rechargeable and Flexible Znâ€Air Battery. Advanced Energy Materials, 2023, 13, .	10.2	49
308	Effect of Vacuum-Sealed Annealing and Ice-Water Quenching on the Structure and Photocatalytic Acetone Oxidations of Nano-TiO ₂ Materials. ACS Omega, 2022, 7, 43710-43718.	1.6	2
309	Electronic structures of defects in bottom-up N-doped graphene nanoribbons: Experiment and theory. Applied Surface Science, 2023, 612, 155874.	3.1	0
310	In-situ self-sacrificed fabrication of insulator-based SrTiO3/SrCO3 heterojunction interface for gaseous HCHO and NO photocatalytic degradation. Applied Surface Science, 2023, 612, 155806.	3.1	6

#	Article	IF	CITATIONS
311	CdS Nanoparticles Decorated 1D CeO2 Nanorods for Enhanced Photocatalytic Desulfurization Performance. Catalysts, 2022, 12, 1478.	1.6	1
312	Interface Engineering in 2D/2D Heterogeneous Photocatalysts. Small, 2023, 19, .	5.2	23
313	Flower-like bentonite-based Co3O4 with oxygen vacancies-rich as highly efficient peroxymonosulfate activator for lomefloxacin hydrochloride degradation. Chemical Engineering Journal, 2023, 455, 140673.	6.6	12
314	2D, Metalâ€Free Electrocatalysts for the Nitrogen Reduction Reaction. Advanced Functional Materials, 2023, 33, .	7.8	17
315	Strategies for Improving the Photocatalytic Methane to Methanol Conversion Efficiency. Current Organic Chemistry, 2023, 27, 399-410.	0.9	1
316	Photocatalytic Degradation of Toluene by a TiO ₂ p-n Homojunction Nanostructure. ACS Applied Nano Materials, 2022, 5, 18612-18621.	2.4	23
317	Unraveling the unique role of brown graphitic carbon nitride in robust CO2 photoreduction. Applied Surface Science, 2023, 615, 156173.	3.1	7
318	Direct Z-Scheme Heterojunction α-MnO2/BiOI with Oxygen-Rich Vacancies Enhanced Photoelectrocatalytic Degradation of Organic Pollutants under Visible Light. Catalysts, 2022, 12, 1596.	1.6	5
319	Nanoconfined oxygen vacancies assisted highly efficient and selective Cr(VI) removal in high salinity industrial wastewaters. Chemical Engineering Journal, 2023, 456, 141155.	6.6	2
320	Oxygen-Deficient Engineering for Perovskite Oxides in the Application of AOPs: Regulation, Detection, and Reduction Mechanism. Catalysts, 2023, 13, 148.	1.6	32
321	Synergism of oxygen–iodine binary vacancies with the interfacial electric field: enhancing CO ₂ photoreduction over V _{O–I} -BiOCI/BiOI atomic-thin nanosheets. Journal of Materials Chemistry A, 2023, 11, 4057-4066.	5.2	5
322	Vacancy Engineering for High-Efficiency Nanofluidic Osmotic Energy Generation. Journal of the American Chemical Society, 2023, 145, 2669-2678.	6.6	18
323	Advances in photocatalytic environmental and clean energy applications of bismuth-rich oxy halides-based heterojunctions: aÂreview. Materials Today Sustainability, 2023, 21, 100327.	1.9	9
324	Review of photo- and electro-catalytic multi-metallic layered double hydroxides. Coordination Chemistry Reviews, 2023, 480, 215008.	9.5	21
325	Sulfur Vacancy-Rich CuS for Improved Surface-Enhanced Raman Spectroscopy and Full-Spectrum Photocatalysis. Nanomaterials, 2023, 13, 128.	1.9	0
326	A critical review on layered double hydroxide (LDH)-derived functional nanomaterials as potential and sustainable photocatalysts. Sustainable Energy and Fuels, 2023, 7, 1145-1186.	2.5	12
327	Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angewandte Chemie - International Edition, 2023, 62, .	7.2	53
328	Atomic cation-vacancy engineering of two-dimensional nanosheets for energy-related applications. Materials Chemistry Frontiers, 2023, 7, 1004-1024.	3.2	13

#	ARTICLE	IF	CITATIONS
329	Graphitic carbon nitride: An uprising carbonaceous material. , 2023, , 1-14.		1
330	Oxygen defects, morphology, and surface chemistry of metal oxides: a deep insight through a joint experimental and theoretical perspective. , 2023, , 191-215.		0
331	Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angewandte Chemie, 2023, 135, .	1.6	2
332	Modulated construction of S-deficient catalytically active site-rich CoS for enhanced photocatalytic reduction of Cr(VI). Applied Surface Science, 2023, 618, 156596.	3.1	9
333	A review on the synthesis, properties, and characterizations of graphitic carbon nitride (g-C3N4) for energy conversion and storage applications. Materials Today Physics, 2023, 34, 101080.	2.9	17
334	Defective materials for CO2 photoreduction: From C1 to C2+ products. Coordination Chemistry Reviews, 2023, 482, 215057.	9.5	9
335	Zn vacancy-tailoring mediated ZnIn2S4 nanosheets with accelerated orderly charge flow for boosting photocatalytic hydrogen evolution. Chemical Engineering Science, 2023, 270, 118533.	1.9	6
336	Heterostructure charge transfer dynamics on self-assembled ZnO on electronically different single-walled carbon nanotubes. Chemosphere, 2023, 323, 138239.	4.2	5
337	N-plasma modulation for boosting electromagnetic wave absorption behavior of MoO3 ceramic based on non-metallic doping. Materialia, 2023, 28, 101727.	1.3	1
338	Alkali-assisted engineering of ultrathin graphite phase carbon nitride nanosheets with carbon vacancy and cyano group for significantly promoting photocatalytic hydrogen peroxide generation under visible light: Fast electron transfer channel. Journal of Colloid and Interface Science, 2023, 643. 47-61.	5.0	7
339	Hollow-structured BaTiO3 nanoparticles with cerium-regulated defect engineering to promote piezocatalytic antibacterial treatment. Applied Catalysis B: Environmental, 2023, 328, 122520.	10.8	18
340	Synergistic role of hydrogen treatment and heterojunction in H-WO3-x/TiO2-x NT/Ti foil-based photoanodes for photoelectrochemical wastewater detoxification and antibacterial activity. Chemosphere, 2023, 318, 137973.	4.2	3
341	Solarâ€Triggered Engineered 2Dâ€Materials for Environmental Remediation: Status and Future Insights. Advanced Materials Interfaces, 2023, 10, .	1.9	8
342	Highly selective photocatalytic oxidation of 5-hydroxymethylfurfural by interfacial Pt–O bonding Pt–Ov–BiOBr. New Journal of Chemistry, 2023, 47, 7118-7126.	1.4	0
343	Real-time dynamic simulation of laser-induced N ₂ dissociation on two-dimensional graphene sheets. Physical Chemistry Chemical Physics, 2023, 25, 8836-8842.	1.3	0
344	Deciphering the Roles of Diketone-Derived Defects on Graphite Carbon Nitride in Boosted Photocatalytic Production of H ₂ O ₂ . ACS Applied Energy Materials, 2023, 6, 3401-3412.	2.5	2
345	Advancement of modification engineering in lean methane combustion catalysts based on defect chemistry. Catalysis Science and Technology, 2023, 13, 2566-2584.	2.1	32
346	Self-adaptive bulk/surface engineering of Bi O Br towards enhanced photocatalysis: Current status and future challenges. Journal of Energy Chemistry, 2023, 82, 387-413.	7.1	6

#	Article	IF	CITATIONS
347	Surface Defect Engineering in Colored TiO ₂ Hollow Spheres Toward Efficient Photocatalysis. Advanced Functional Materials, 2023, 33, .	7.8	29
348	Ordered porous nitrogen-vacancy carbon nitride for efficient visible-light hydrogen evolution. Journal of Colloid and Interface Science, 2023, 642, 53-60.	5.0	1
349	Photocatalytic and Electrocatalytic Generation of Hydrogen Peroxide: Principles, Catalyst Design and Performance. Nano-Micro Letters, 2023, 15, .	14.4	17
350	Weakened Crystalline SnNb ₂ O ₆ for Enhanced Performance in Photocatalytic H ₂ Production and CO ₂ Reduction. Chemistry - an Asian Journal, 0, , .	1.7	0
351	Atomic Nickel on Graphitic Carbon Nitride as a Visible Light-Driven Hydrogen Production Photocatalyst Studied by X-ray Spectromicroscopy. ACS Sustainable Chemistry and Engineering, 2023, 11, 5390-5399.	3.2	8
352	CO ₂ Photoreduction Catalyzed by Cu-Deficient Cu _{1.95} S@CuS: Enhanced Performance via Boosted Directional Interfacial Charge Transfer. ACS Catalysis, 2023, 13, 5264-5271.	5.5	15
353	3D/2D ZnIn ₂ S ₄ /BiFeO ₃ as Sâ€scheme heterojunction photocatalyst for boosted visibleâ€light hydrogen evolution. Journal of the American Ceramic Society, 2023, 106, 4785-4793.	1.9	38
354	Oxygenâ€Vacancyâ€Rich Piezoelectric BiO _{2â^'} <i>_x</i> Nanosheets for Augmented Piezocatalytic, Sonothermal, and Enzymatic Therapies. Advanced Materials, 2023, 35, .	11.1	27
355	<i>g</i> â€ <i>B</i> ₃ <i>C</i> ₂ <i>N</i> ₃ : A Potential Two Dimensional Metalâ€free Photocatalyst for Overall Water Splitting**. ChemPhysChem, 2023, 24, .	1.0	2
362	Lamellar Membranes. Engineering Materials, 2023, , 23-48.	0.3	0
364	Recent Advances of VOCs Catalytic Oxidation over Spinel Oxides: Catalyst Design and Reaction Mechanism. Environmental Science & amp; Technology, 2023, 57, 9495-9514.	4.6	8
374	g-C ₃ N ₄ Photocatalysts: Utilizing Electron–Hole Pairs for Boosted Redox Capability in Water Splitting. Energy Material Advances, 2023, 4, .	4.7	7
385	Silicon Nanowires/Graphene Oxide Heterojunction for Photovoltaics Application. Materials Horizons, 2023, , 185-206.	0.3	0
432	Recent advances in transition metal phosphide-based heterostructure electrocatalysts for the oxygen evolution reaction. Materials Chemistry Frontiers, 2024, 8, 1064-1083.	3.2	0
448	Synthesizing crystalline g-C ₃ N ₄ for enhanced photocatalytic hydrogen evolution under visible light. CrystEngComm, 2024, 26, 599-603.	1.3	0
467	Graphitic carbon nitride as a metal free photocatalyst for solar water splitting. , 2024, , 347-380.		0