Radical Retrosynthesis

Accounts of Chemical Research 51, 1807-1817

DOI: 10.1021/acs.accounts.8b00209

Citation Report

#	Article	IF	CITATIONS
1	Direct Catalytic Enantioselective Benzylation from Aryl Acetic Acids. Journal of the American Chemical Society, 2018, 140, 17418-17422.	6.6	52
2	Convergent Synthesis of Taxol Skeleton via Decarbonylative Radical Coupling Reaction. Organic Letters, 2018, 20, 7554-7557.	2.4	16
3	A General Amino Acid Synthesis Enabled by Innate Radical Crossâ€Coupling. Angewandte Chemie - International Edition, 2018, 57, 14560-14565.	7.2	97
4	Enantioselective Total Synthesis of (â^')-Caldaphnidine O via a Radical Cyclization Cascade. Journal of the American Chemical Society, 2019, 141, 13043-13048.	6.6	38
5	Generation of Aryl Radicals from Aryl Halides: Rongalite-Promoted Transition-Metal-Free Arylation. Journal of Organic Chemistry, 2019, 84, 9946-9956.	1.7	42
6	A Catalystâ€Free Minisciâ€Type Reaction: the C–H Alkylation of Quinoxalinones with Sodium Alkylsulfinates and Phenyliodine(III) Dicarboxylates. European Journal of Organic Chemistry, 2019, 2019, 6935-6944.	1.2	28
7	Total Synthesis of Viridin and Viridiol. Journal of the American Chemical Society, 2019, 141, 16208-16212.	6.6	59
8	Lewis Acid-Catalyzed Selective Reductive Decarboxylative Pyridylation of <i>N</i> Hydroxyphthalimide Esters: Synthesis of Congested Pyridine-Substituted Quaternary Carbons. ACS Catalysis, 2019, 9, 10142-10151.	5.5	42
9	Perfluoroalkylative pyridylation of alkenes <i>via</i> 4-cyanopyridine-boryl radicals. Chemical Science, 2019, 10, 2767-2772.	3.7	81
10	Organic Electrosynthesis: Applications in Complex Molecule Synthesis. ChemElectroChem, 2019, 6, 4067-4092.	1.7	143
11	Total Synthesis of 1â€Hydroxytaxinine. Angewandte Chemie, 2019, 131, 12287-12291.	1.6	8
12	Total Synthesis of 1â€Hydroxytaxinine. Angewandte Chemie - International Edition, 2019, 58, 12159-12163.	7.2	31
13	Intermolecular Reactions of Pyridyl Radicals with Olefins via Photoredox Catalysis. Synlett, 2019, 30, 1607-1614.	1.0	8
14	Modular, stereocontrolled C _β â€"H/C _α â€"C activation of alkyl carboxylic acids. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8721-8727.	3.3	39
15	CO ₂ or SO ₂ : Should It Stay, or Should It Go?. Journal of Organic Chemistry, 2019, 84, 6232-6243.	1.7	34
16	Tandem Decarboxylative Cyclization/Alkenylation Strategy for Total Syntheses of (+)-Longirabdiol, (â^')-Longirabdolactone, and (â^')-Effusin. Journal of the American Chemical Society, 2019, 141, 8372-8380.	6.6	30
17	Photoinduced Skeletal Rearrangements Reveal Radical-Mediated Synthesis of Terpenoids. CheM, 2019, 5, 1671-1681.	5.8	47
18	Hydroalkylation of Olefins To Form Quaternary Carbons. Journal of the American Chemical Society, 2019, 141, 7709-7714.	6.6	134

#	Article	IF	CITATIONS
19	Intermolekulare radikalische C(sp 3)â€Hâ€Aminierung unter Iodâ€Katalyse. Angewandte Chemie, 2019, 131, 7564-7568.	1.6	19
20	Intermolecular Radical C(sp ³)â^H Amination under Iodine Catalysis. Angewandte Chemie - International Edition, 2019, 58, 7485-7489.	7.2	80
21	Visible-Light-Mediated, Chemo- and Stereoselective Radical Process for the Synthesis of <i>C</i> -Glycoamino Acids. Organic Letters, 2019, 21, 3086-3092.	2.4	100
22	A Radical Approach to Anionic Chemistry: Synthesis of Ketones, Alcohols, and Amines. Journal of the American Chemical Society, 2019, 141, 6726-6739.	6.6	148
23	Forging C(sp ³)–C(sp ³) Bonds with Carbon-Centered Radicals in the Synthesis of Complex Molecules. Journal of the American Chemical Society, 2019, 141, 2800-2813.	6.6	111
24	Zincâ€Mediated Intermolecular Reductive Radical Fluoroalkylsulfination of Unsaturated Carbon–Carbon Bonds with Fluoroalkyl Bromides and Sulfur Dioxide. Chemistry - A European Journal, 2019, 25, 1824-1828.	1.7	45
25	Translation of a Polar Biogenesis Proposal into a Radical Synthetic Approach: Synthesis of Pleurocin A/Matsutakone and Pleurocin B. Journal of the American Chemical Society, 2019, 141, 1222-1226.	6.6	22
26	Quaternary Centers by Nickelâ€Catalyzed Crossâ€Coupling of Tertiary Carboxylic Acids and (Hetero)Aryl Zinc Reagents. Angewandte Chemie - International Edition, 2019, 58, 2454-2458.	7.2	76
27	Quaternary Centers by Nickelâ€Catalyzed Crossâ€Coupling of Tertiary Carboxylic Acids and (Hetero)Aryl Zinc Reagents. Angewandte Chemie, 2019, 131, 2476-2480.	1.6	17
28	Alkyl Sulfinates: Radical Precursors Enabling Drug Discovery. Journal of Medicinal Chemistry, 2019, 62, 2256-2264.	2.9	102
29	Nickelâ€Catalyzed 1,2â€Diarylation of Alkenyl Carboxylates: A Gateway to 1,2,3â€Trifunctionalized Building Blocks. Angewandte Chemie, 2020, 132, 1217-1221.	1.6	19
30	Nickelâ€Catalyzed 1,2â€Diarylation of Alkenyl Carboxylates: A Gateway to 1,2,3â€Trifunctionalized Building Blocks. Angewandte Chemie - International Edition, 2020, 59, 1201-1205.	7.2	69
31	Bridging and Conformational Control of Porphyrin Units through Nonâ€Traditional Rigid Scaffolds. Chemistry - A European Journal, 2020, 26, 2405-2416.	1.7	7
32	Pyridinium Salts as Redoxâ€Active Functional Group Transfer Reagents. Angewandte Chemie - International Edition, 2020, 59, 9264-9280.	7.2	192
33	Pyridiniumsalze als redoxaktive Reagenzien zur Übertragung funktioneller Gruppen. Angewandte Chemie, 2020, 132, 9350-9366.	1.6	27
34	Iron Hydride Radical Reductive Alkylation of Unactivated Alkenes. Organic Letters, 2020, 22, 684-688.	2.4	20
35	Synthesis of Spongidine A and D and Petrosaspongiolide L Methyl Ester Using Pyridine C–H Functionalization. Organic Letters, 2020, 22, 552-555.	2.4	9
36	Synthesis of Swinhoeisterol A, Dankasterone A and B, and Periconiastone A by Radical Framework Reconstruction. Journal of the American Chemical Society, 2020, 142, 104-108.	6.6	32

#	ARTICLE	lF	Citations
37	Stereoselective Decarboxylative Alkylation of Titanium(IV) Enolates with Diacyl Peroxides. Organic Letters, 2020, 22, 199-203.	2.4	9
38	A Survival Guide for the "Electro-curious― Accounts of Chemical Research, 2020, 53, 72-83.	7.6	431
39	A Retrosynthetic Approach for Photocatalysis. European Journal of Organic Chemistry, 2020, 2020, 1193-1244.	1.2	43
40	A supramolecular bifunctional iridium photoaminocatalyst for the enantioselective alkylation of aldehydes. Dalton Transactions, 2020, 49, 14497-14505.	1.6	4
41	New Strategies in the Efficient Total Syntheses of Polycyclic Natural Products. Accounts of Chemical Research, 2020, 53, 2569-2586.	7.6	33
42	Direct, stereoselective thioglycosylation enabled by an organophotoredox radical strategy. Chemical Science, 2020, 11, 13079-13084.	3.7	22
43	Advances in Asymmetric Amino Acid Synthesis Enabled by Radical Chemistry. Advanced Synthesis and Catalysis, 2020, 362, 4325-4367.	2.1	37
44	Ni(^{4-tBu} stb) ₃ : A Robust 16-Electron Ni(0) Olefin Complex for Catalysis. Organometallics, 2020, 39, 3295-3300.	1.1	36
45	Harnessing Radical Chemistry via Electrochemical Transition Metal Catalysis. IScience, 2020, 23, 101796.	1.9	29
46	A General One-Pot Protocol for Hindered <i>N</i> Alkyl Azaheterocycles from Tertiary Carboxylic Acids. Organic Letters, 2020, 22, 4180-4184.	2.4	11
47	Radical Reactions in Alkaloid Synthesis: A Perspective from Carbon Radical Precursors. European Journal of Organic Chemistry, 2020, 2020, 5070-5100.	1.2	18
48	Formation of quaternary carbons through cobalt-catalyzed C(sp3)–C(sp3) Negishi cross-coupling. Chemical Communications, 2020, 56, 8210-8213.	2.2	12
49	Regioselective, Photocatalytic \hat{l}_{\pm} -Functionalization of Amines. Journal of the American Chemical Society, 2020, 142, 11972-11977.	6.6	54
50	Synthesis of (â^')-Picrotoxinin by Late-Stage Strong Bond Activation. Journal of the American Chemical Society, 2020, 142, 11376-11381.	6.6	32
51	P/N Heteroleptic Cu(I)-Photosensitizer-Catalyzed Deoxygenative Radical Alkylation of Aromatic Alkynes with Alkyl Aldehydes Using Dipropylamine as a Traceless Linker Agent. ACS Catalysis, 2020, 10, 7563-7572.	5 . 5	26
52	Closing the radical gap in chemical synthesis. Science, 2020, 368, 1312-1313.	6.0	5
53	Fluoroalkylation of Allylic Alcohols with Concomitant (Hetero)aryl Migration: Access to Fluoroalkylated Ketones and Evaluation of Antifungal Action against <i>Magnaporthe grisea</i> European Journal of Organic Chemistry, 2020, 2020, 5192-5200.	1.2	22
54	The literature of heterocyclic chemistry, part XVIII, 2018. Advances in Heterocyclic Chemistry, 2020, 132, 385-468.	0.9	12

#	Article	IF	CITATIONS
55	Construction of the ABCE-ring structure of talatisamine via decarboxylative radical cyclization. Tetrahedron, 2020, 76, 131385.	1.0	13
56	Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science, 2020, 367, 1021-1026.	6.0	285
57	Merging chemoenzymatic and radical-based retrosynthetic logic for rapid and modular synthesis of oxidized meroterpenoids. Nature Chemistry, 2020, 12, 173-179.	6.6	66
58	Enantioselective Radicalâ€Polar Crossover Reactions of Indanonecarboxamides with Alkenes. Angewandte Chemie - International Edition, 2020, 59, 4846-4850.	7.2	15
59	Enantioselective Radicalâ€Polar Crossover Reactions of Indanonecarboxamides with Alkenes. Angewandte Chemie, 2020, 132, 4876-4880.	1.6	4
60	A Systems Approach to a Oneâ€Pot Electrochemical Wittig Olefination Avoiding the Use of Chemical Reductant or Sacrificial Electrode. Chemistry - A European Journal, 2020, 26, 11829-11834.	1.7	18
61	Free-radical reactions in the synthesis of organofluorine compounds. , 2020, , 75-101.		0
62	Total Synthesis of (â°')-Maximiscin. Journal of the American Chemical Society, 2020, 142, 8608-8613.	6.6	22
63	Discoveries and Challenges en Route to Swinhoeisterolâ€A. Chemistry - A European Journal, 2020, 26, 9971-9981.	1.7	8
64	Asymmetric Total Synthesis of Dankasteronesâ€A and B and Periconiastoneâ€A Through Radical Cyclization. Angewandte Chemie - International Edition, 2021, 60, 5512-5518.	7.2	33
65	Asymmetric Total Synthesis of Dankasteronesâ€A and B and Periconiastoneâ€A Through Radical Cyclization. Angewandte Chemie, 2021, 133, 5572-5578.	1.6	4
66	Mimicking oxidative radical cyclizations of lignan biosynthesis using redox-neutral photocatalysis. Nature Chemistry, 2021, 13, 24-32.	6.6	20
67	Synthesis of Three-Dimensionally Fascinating Diterpenoid Alkaloids and Related Diterpenes. Accounts of Chemical Research, 2021, 54, 22-34.	7.6	24
68	Lewis Acid Activation of Fragment-Coupling Reactions of Tertiary Carbon Radicals Promoted by Visible-Light Irradiation of EDA Complexes. Organic Letters, 2021, 23, 1103-1106.	2.4	34
69	Recent progress in the synthesis of the furanosteroid family of natural products. Organic Chemistry Frontiers, 2021, 8, 2608-2642.	2.3	12
70	Ideality in Context: Motivations for Total Synthesis. Accounts of Chemical Research, 2021, 54, 605-617.	7.6	43
71	Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. Journal of the American Chemical Society, 2021, 143, 1699-1721.	6.6	145
72	Gram-Scale, Seven-Step Total Synthesis of (â^²)-Colchicine. Organic Letters, 2021, 23, 2731-2735.	2.4	11

#	Article	IF	CITATIONS
73	16-Electron Nickel(0)-Olefin Complexes in Low-Temperature C(sp ²)–C(sp ³) Kumada Cross-Couplings. Organometallics, 2021, 40, 2220-2230.	1.1	12
74	Concise Synthesis of 9,11-Secosteroids Pinnigorgiols B and E. Journal of the American Chemical Society, 2021, 143, 4886-4890.	6.6	24
75	Electrochemical generation of nitrogen-centered radicals for organic synthesis. Green Synthesis and Catalysis, 2021, 2, 165-178.	3.7	130
76	Total Synthesis of Talatisamine: Exploration of Convergent Synthetic Strategies. Bulletin of the Chemical Society of Japan, 2021, 94, 973-983.	2.0	2
77	Electrochemical Generation and Use in Organic Synthesis of <i>C</i> â€; <i>O</i> â€; and <i>N</i> â€Centered Radicals. Chemical Record, 2021, 21, 2538-2573.	2.9	21
78	Asymmetric Total Synthesis of Norzoanthamine. Angewandte Chemie, 2021, 133, 12917-12922.	1.6	0
79	Recent advances in the total synthesis of natural products bearing the contiguous all-carbon quaternary stereocenters. Tetrahedron Letters, 2021, 71, 153029.	0.7	30
80	Asymmetric Total Synthesis of Norzoanthamine. Angewandte Chemie - International Edition, 2021, 60, 12807-12812.	7.2	14
81	Synthesis of Cyclic Anhydrides via Ligandâ€Enabled C–H Carbonylation of Simple Aliphatic Acids. Angewandte Chemie, 2021, 133, 16518-16523.	1.6	8
82	Synthesis of Cyclic Anhydrides via Ligandâ€Enabled C–H Carbonylation of Simple Aliphatic Acids. Angewandte Chemie - International Edition, 2021, 60, 16382-16387.	7.2	25
83	Reductive Radical Conjugate Addition of Alkyl Electrophiles Catalyzed by a Cobalt/Iridium Photoredox System. Organic Letters, 2021, 23, 6046-6051.	2.4	7
84	Strategic Use of Visible-Light Photoredox Catalysis in Natural Product Synthesis. Chemical Reviews, 2022, 122, 1717-1751.	23.0	199
85	Late-stage C–H functionalization offers new opportunities in drug discovery. Nature Reviews Chemistry, 2021, 5, 522-545.	13.8	341
86	In-situ-generation of alkylsilyl peroxides from alkyl hydroperoxides and their subsequent copper-catalyzed functionalization with organosilicon compounds. Tetrahedron Letters, 2021, 75, 153144.	0.7	4
87	Convergent synthesis of (R)-silodosin via decarboxylative cross-coupling. Tetrahedron Letters, 2021, 79, 153290.	0.7	2
88	C(sp 3) â°C(sp 3) Bond Formation via Electrochemical Alkoxylation and Subsequent Lewis Acid Promoted Reactions. Advanced Synthesis and Catalysis, 2021, 363, 4521.	2.1	5
89	Dealkenylative Ni-Catalyzed Cross-Coupling Enabled by Tetrazine and Photoexcitation. Journal of the American Chemical Society, 2021, 143, 14046-14052.	6.6	19
90	Visible-Light-Mediated C–I Difluoroallylation with an α-Aminoalkyl Radical as a Mediator. Organic Letters, 2021, 23, 7306-7310.	2.4	38

#	Article	IF	CITATIONS
91	DTBP-promoted site-selective α-alkoxyl Câ€"H functionalization of alkyl esters: synthesis of 2-alkyl ester substituted chromanones. Organic and Biomolecular Chemistry, 2021, 19, 4520-4528.	1.5	3
92	Synthl: A New Open-Source Tool for Synthon-Based Library Design. Journal of Chemical Information and Modeling, 2022, 62, 2151-2163.	2.5	18
93	Biocatalytic Alkylation Chemistry: Building Molecular Complexity with High Selectivity. ChemPlusChem, 2022, 87, .	1.3	10
94	Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 2487-2649.	23.0	210
95	Direct decarboxylative Giese reactions. Chemical Society Reviews, 2022, 51, 1415-1453.	18.7	87
96	Total Synthesis of Resiniferatoxin Enabled by Photocatalytic Decarboxylative Radical Cyclization. Organic Letters, 2022, 24, 929-933.	2.4	13
97	Photoinduced Decarboxylative Radical Coupling Reaction of Multiply Oxygenated Structures by Catalysis of Pt-Doped TiO ₂ . Journal of Organic Chemistry, 2022, 87, 730-736.	1.7	12
98	Modular terpene synthesis enabled by mild electrochemical couplings. Science, 2022, 375, 745-752.	6.0	62
99	Nitrogen-Centered Radicals in Functionalization of sp ² Systems: Generation, Reactivity, and Applications in Synthesis. Chemical Reviews, 2022, 122, 8181-8260.	23.0	133
100	Sulfoxylate Anion Radical-Induced Aryl Radical Generation and Intramolecular Arylation for the Synthesis of Biarylsultams. Journal of Organic Chemistry, 2022, 87, 4204-4214.	1.7	14
101	Ni-electrocatalytic Csp3–Csp3 doubly decarboxylative coupling. Nature, 2022, 606, 313-318.	13.7	96
102	Synthesis of the [6.6.7.5] Tetracyclic Core of Calyciphylline N via a Boc-Mediated Oxidative Dearomatization/Diels–Alder Approach. Organic Letters, 2022, 24, 2694-2698.	2.4	1
103	Reductive Radical Annulation Strategy toward Bicyclo[3.2.1]octanes: Synthesis of <i>ent</i> -Kaurane and Beyerane Diterpenoids. Journal of the American Chemical Society, 2022, 144, 99-105.	6.6	8
104	DABCO-promoted photocatalytic C–H functionalization of aldehydes. Beilstein Journal of Organic Chemistry, 2021, 17, 2959-2967.	1.3	4
105	Metal-free deoxygenative coupling of alcohol-derived benzoates and pyridines for small molecules and DNA-encoded libraries synthesis. Chemical Science, 2022, 13, 6982-6989.	3.7	19
106	Convergent total synthesis of (+)-calcipotriol: A scalable, modular approach to vitamin D analogs. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200814119.	3.3	10
107	Dual Photoredox and Cobalt Catalysis Enabled Transformations. European Journal of Organic Chemistry, 2022, 2022, .	1.2	26
109	Alcohols as Alkylating Agents: Photoredox atalyzed Conjugate Alkylation via In Situ Deoxygenation. Angewandte Chemie, 0, , .	1.6	4

#	Article	IF	CITATIONS
110	Alcohols as Alkylating Agents: Photoredox atalyzed Conjugate Alkylation via In Situ Deoxygenation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
111	Ni-Catalyzed Enantioselective Dialkyl Carbinol Synthesis via Decarboxylative Cross-Coupling: Development, Scope, and Applications. Journal of the American Chemical Society, 2022, 144, 10992-11002.	6.6	12
112	Catalytic Enantioselective Reductive Cross Coupling of Electron-Deficient Olefins. Organic Letters, 2022, 24, 4788-4792.	2.4	12
113	Carboxylic Acid-Directed Manganese(I)-Catalyzed Regioselective Hydroarylation of Unactivated Alkenes. Organic Letters, 2022, 24, 6154-6158.	2.4	4
114	Ironâ€Catalyzed Reductive Cyclization of Alkenyl Vinylogous Carbonates for Stereoselective Synthesis of Substituted Tetrahydrofurans, Tetrahydropyrans, and Chromans. Advanced Synthesis and Catalysis, 0, , .	2.1	4
115	Decarboxylative Cross-Coupling: A Radical Tool in Medicinal Chemistry. ACS Medicinal Chemistry Letters, 2022, 13, 1413-1420.	1.3	39
116	Overcoming Limitations in Decarboxylative Arylation via Ag–Ni Electrocatalysis. Journal of the American Chemical Society, 2022, 144, 17709-17720.	6.6	49
117	Regiodivergent Asymmetric Pyridinium Additions: Mechanistic Insight and Synthetic Applications. Chemistry - A European Journal, 0, , .	1.7	5
118	Total Synthesis of the Phenolic Steroid Myrmenaphthol A. Organic Letters, 2022, 24, 7383-7387.	2.4	4
119	Highly Selective Radical Relay 1,4-Oxyimination of Two Electronically Differentiated Olefins. Journal of the American Chemical Society, 2022, 144, 21664-21673.	6.6	30
120	Asymmetric total synthesis of norzoanthamine and formal synthesis of zoanthenol. Organic Chemistry Frontiers, 2023, 10, 651-660.	2.3	4
121	Electroreductively Induced Radicals for Organic Synthesis. Molecules, 2023, 28, 857.	1.7	9
122	Efficient Amines Oxidation Using Metal-Organic Framework Photocatalysts for Aminoalkyl Radicals-Mediated Halogen-Atom Transfer. Journal of Materials Chemistry A, 0, , .	5.2	3
123	Combining the best of both worlds: radical-based divergent total synthesis. Beilstein Journal of Organic Chemistry, 0, 19, 1-26.	1.3	4
124	Asymmetric Catalytic Aerobic Oxidative Radical Addition/Hydroxylation/1,4-Aryl Migration Reaction of Olefins. ACS Catalysis, 2023, 13, 815-823.	5.5	3
125	Directed Photochemically Mediated Nickel-Catalyzed (Hetero)arylation of Aliphatic C–H Bonds. Journal of the American Chemical Society, 2023, 145, 3882-3890.	6.6	4
126	Alkyl sulfinates as cross-coupling partners for programmable and stereospecific installation of C(sp3) bioisosteres. Nature Chemistry, 2023, 15, 550-559.	6.6	6
127	A Visible-Light-Induced α-Aminoalkyl-Radical-Mediated Halogen-Atom Transfer Process: Modular Synthesis of Phenanthridinone Alkaloids. Organic Letters, 2023, 25, 1689-1694.	2.4	4

#	Article	IF	CITATIONS
128	Redox Inversion: A Radical Analogue of Umpolung Reactivity for Base- and Metal-Free Catalytic C(sp ³)–C(sp ³) Coupling. Journal of Organic Chemistry, 2023, 88, 3935-3940.	1.7	2
129	Retrosynthesis from transforms to predictive sustainable chemistry and nanotechnology: a brief tutorial review. Green Chemistry, 2023, 25, 2971-2991.	4.6	3
130	Overcoming the limitations of Kolbe coupling with waveform-controlled electrosynthesis. Science, 2023, 380, 81-87.	6.0	44
131	Ni-Electrocatalytic Enantioselective Doubly Decarboxylative C(sp ³)–C(sp ³) Cross Coupling. Journal of the American Chemical Society, 2023, 145, 11518-11523.	6.6	18
132	Indolization of <i>N</i> -Aryl Tertiary Amines with Diazoacetates by a Single Organophotocatalyst. Organic Letters, 2023, 25, 3778-3783.	2.4	1