Neighboring Pt Atom Sites in an Ultrathin FePt Nanosh CO-Tolerant Oxygen Reduction Reaction

Nano Letters

18, 5905-5912

DOI: 10.1021/acs.nanolett.8b02606

Citation Report

#	Article	IF	CITATIONS
1	Favorable Core/Shell Interface within Co ₂ P/Pt Nanorods for Oxygen Reduction Electrocatalysis. Nano Letters, 2018, 18, 7870-7875.	4.5	68
2	Platinum single-atom catalysts: a comparative review towards effective characterization. Catalysis Science and Technology, 2019, 9, 4821-4834.	2.1	122
3	Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism. Journal of Electroanalytical Chemistry, 2019, 848, 113279.	1.9	56
4	Co ₃ O ₄ Nanoparticles with Ultrasmall Size and Abundant Oxygen Vacancies for Boosting Oxygen Involved Reactions. Advanced Functional Materials, 2019, 29, 1903444.	7.8	108
5	In Situ Transmission Electron Microscopy Study of Nanocrystal Formation for Electrocatalysis. ChemNanoMat, 2019, 5, 1439-1455.	1.5	14
6	Atomically Dispersed Pt on Screwâ€like Pd/Au Coreâ€shell Nanowires for Enhanced Electrocatalysis. Chemistry - A European Journal, 2020, 26, 4019-4024.	1.7	19
7	N-doped carbon sheets loaded with well-dispersed Ni3Fe nanoparticles as bifunctional oxygen electrode for rechargeable Zn-air battery. Journal of Electroanalytical Chemistry, 2019, 851, 113418.	1.9	11
8	Noble metal-based 1D and 2D electrocatalytic nanomaterials: Recent progress, challenges and perspectives. Nano Today, 2019, 28, 100774.	6.2	81
9	Galvanic replacement of liquid metal galinstan with Pt for the synthesis of electrocatalytically active nanomaterials. Nanoscale, 2019, 11, 9705-9715.	2.8	43
10	Peptide-Assisted 2-D Assembly toward Free-Floating Ultrathin Platinum Nanoplates as Effective Electrocatalysts. Nano Letters, 2019, 19, 3730-3736.	4.5	44
11	Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nature Communications, 2019, 10, 1743.	5.8	430
12	Pt–Ni–P nanocages with surface porosity as efficient bifunctional electrocatalysts for oxygen reduction and methanol oxidation. Journal of Materials Chemistry A, 2019, 7, 9791-9797.	5.2	63
13	Hollow PtNi Nanochains as Highly Efficient and Stable Oxygen Reduction Reaction Catalysts. ChemistrySelect, 2019, 4, 963-971.	0.7	6
14	Shape Stability of Metallic Nanoplates: A Molecular Dynamics Study. Nanoscale Research Letters, 2019, 14, 357.	3.1	3
15	PtFe Alloy Nanoparticles Confined on Carbon Nanotube Networks as Air Cathodes for Flexible and Wearable Energy Devices. ACS Applied Nano Materials, 2019, 2, 7870-7879.	2.4	22
16	Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chemical Reviews, 2020, 120, 814-850.	23.0	75
17	Structural Regulation with Atomic-Level Precision: From Single-Atomic Site to Diatomic and Atomic Interface Catalysis. Matter, 2020, 2, 78-110.	5.0	221
18	Densely Populated Single Atom Catalysts. Small Methods, 2020, 4, 1900540.	4.6	185

CITATION REPORT

#	Article	IF	CITATIONS
19	A centimeter scale self-standing two-dimensional ultra-thin mesoporous platinum nanosheet. Materials Horizons, 2020, 7, 489-494.	6.4	19
20	Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanoparticles for improved activity and durability towards oxygen reduction. Energy and Environmental Science, 2020, 13, 3032-3040.	15.6	185
21	Synthesis of Twoâ€dimensional Metallic Nanosheets: From Elemental Metals to Chemically Complex Alloys. ChemNanoMat, 2020, 6, 1683-1711.	1.5	18
22	Manipulation of Electron Transfer between Pd and TiO ₂ for Improved Electrocatalytic Hydrogen Evolution Reaction Performance. ACS Applied Materials & Interfaces, 2020, 12, 27037-27044.	4.0	13
23	Cation Exchange Strategy to Single-Atom Noble-Metal Doped CuO Nanowire Arrays with Ultralow Overpotential for H ₂ O Splitting. Nano Letters, 2020, 20, 5482-5489.	4.5	93
24	Atomâ€Ratio onducted Tailoring of PdAu Bimetallic Nanocrystals with Distinctive Shapes and Dimensions for Boosting the ORR Performance. Chemistry - A European Journal, 2020, 26, 4480-4488.	1.7	6
25	Self-stabilization of zero-dimensional PdIr nanoalloys at two-dimensional manner for boosting their OER and HER performance. Applied Surface Science, 2020, 510, 145408.	3.1	14
26	Sequential Synthesis and Activeâ€Site Coordination Principle of Precious Metal Singleâ€Atom Catalysts for Oxygen Reduction Reaction and PEM Fuel Cells. Advanced Energy Materials, 2020, 10, 2000689.	10.2	92
27	Enabling selective, room-temperature gas detection using atomically dispersed Zn. Sensors and Actuators B: Chemical, 2021, 329, 129221.	4.0	10
28	Hierarchical defective palladium-silver alloy nanosheets for ethanol electrooxidation. Journal of Colloid and Interface Science, 2021, 586, 200-207.	5.0	41
29	Effect of an external electric field, aqueous solution and specific adsorption on segregation of Pt _{ML} /M _{ML} /Pt(111) (M = Cu, Pd, Au): a DFT study. Physical Chemistry Chemical Physics, 2021, 23, 1584-1589.	1.3	5
30	Interconnected surface-vacancy-rich PtFe nanowires for efficient oxygen reduction. Journal of Materials Chemistry A, 2021, 9, 12845-12852.	5.2	18
31	Advanced Platinum-Based Oxygen Reduction Electrocatalysts for Fuel Cells. Accounts of Chemical Research, 2021, 54, 311-322.	7.6	237
32	Few-layered MoN–MnO heterostructures with interfacial-O synergistic active centers boosting electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 8325-8331.	5.2	23
33	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	5.2	135
34	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	1.8	57
35	The Critical Impacts of Ligands on Heterogeneous Nanocatalysis: A Review. ACS Catalysis, 2021, 11, 6020-6058.	5.5	169
36	Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 2021, 12, 5179.	5.8	87

		CITATION REPORT	
#	Article	IF	CITATIONS
37	Assist more Pt-O bonds of Pt/MoO3-CNT as a highly efficient and stable electrocatalyst for methanol oxidation and oxygen reduction reaction. Journal of Alloys and Compounds, 2021, 873, 159827.	2.8	17
38	Double Active Sites in Co–N <i>_x</i> –C@Co Electrocatalysts for Simultaneous Production of Hydrogen and Carbon Monoxide. ACS Applied Materials & Interfaces, 2021, 13, 38256-38265.	4.0	18
39	Large-scale synthesis of metal nanosheets as highly active catalysts: Combining accumulative roll-bonding and etching process. Frontiers of Materials Science, 2021, 15, 456-464.	1.1	1
40	Porous Pd/NiFeO _x Nanosheets Enhance the pHâ€Universal Overall Water Splitting. Advanced Functional Materials, 2021, 31, 2107181.	7.8	61
41	Heterostructural Interface in Fe ₃ C-TiN Quantum Dots Boosts Oxygen Reduction Reaction for Al–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 47440-47448.	4.0	13
42	Trimetallic Au@PdPt porous core-shell structured nanowires for oxygen reduction electrocatalysis. Chemical Engineering Journal, 2022, 428, 131070.	6.6	17
43	Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy and Environmental Science, 2021, 14, 2954-3009.	15.6	188
44	Recent advances in the design of a high performance metal–nitrogen–carbon catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 22218-22247.	5.2	66
45	Armoring the Pt/C Catalyst with Fine Atomic-Scale Tungsten Species to Increase Tolerance against Thermal and Fuel Cell Stresses. ACS Applied Energy Materials, 0, , .	2.5	2
46	Synthesis and Design of a Highly Stable Platinum Nickel Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2021, 13, 52681-52687.	4.0	14
47	Exploring Structure-function Relationship of Two-dimensional Electrocatalysts with Synchrotron Radiation X-ray Absorption Spectrum. Current Chinese Science, 2021, 1, 22-42.	0.2	2
48	Porous, thick nitrogen-doped carbon encapsulated large PtNi core-shell nanoparticles for oxygen reduction reaction with extreme stability and activity. Carbon, 2022, 186, 36-45.	5.4	15
49	First-principles calculations of CO and CH3OH adsorption on Pt monolayer modified WC (0 0 0 1) surface. Computational and Theoretical Chemistry, 2022, 1207, 113510.	1.1	2
50	Highly-dispersed and high-metal-density electrocatalysts on carbon supports for the oxygen reduction reaction: from nanoparticles to atomic-level architectures. Materials Advances, 2022, 3, 779-809.	2.6	45
51	Stability of single-atom catalysts for electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 5835-5849.	5.2	40
52	A multi-scale model for syngas combustion on NiO oxygen carrier for chemical looping combustion: The role of nearest neighbors. Fuel Processing Technology, 2022, 229, 107172.	3.7	8
53	Ultrathin two-dimensional metallenes for heterogeneous catalysis. Chem Catalysis, 2022, 2, 693-723.	2.9	39
54	Cooperative electrocatalytic effect of Pd and Ce alloys nanoparticles in PdCe@CNWs electrode for oxygen evolution reaction (OER). Molecular Catalysis, 2022, 522, 112255.	1.0	10

CITATION REPORT

#	Article	IF	CITATIONS
55	Rational design and precise manipulation of nano-catalysts. Chinese Journal of Catalysis, 2022, 43, 898-912.	6.9	7
56	Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys. International Journal of Materials Research, 2022, 113, 428-439.	0.1	7
57	Metal-metal interactions in correlated single-atom catalysts. Science Advances, 2022, 8, eabo0762.	4.7	142
58	Coordinatively Unsaturated PtCo Flowers Assembled with Ultrathin Nanosheets for Enhanced Oxygen Reduction. ACS Catalysis, 2022, 12, 6478-6485.	5.5	29
59	Two-dimensional PtPb-PbS heterostructure enables improved kinetics and highlighted bifunctional antipoisoning for methanol electrooxidation. Science China Chemistry, 2022, 65, 1112-1121.	4.2	5
60	Recent advance on structural design of high-performance Pt-based nanocatalysts for oxygen reduction reaction. , 2022, , 100022.		4
61	A perspective on the controlled synthesis of iron-based nanoalloys for the oxygen reduction reaction. Chemical Communications, 2022, 58, 8884-8899.	2.2	2
62	Selective dissolution to synthesize densely populated Pt single atom catalyst. Nano Research, 2023, 16, 219-227.	5.8	3
63	Enhancing electrical conductivity of single-atom doped Co3O4 nanosheet arrays at grain boundary by phosphor doping strategy for efficient water splitting. Nano Research, 2022, 15, 9511-9519.	5.8	14
64	Outlook on Single Atom Catalysts for Persulfate-Based Advanced Oxidation. ACS ES&T Engineering, 2022, 2, 1776-1796.	3.7	57
65	Fe–N–C Boosts the Stability of Supported Platinum Nanoparticles for Fuel Cells. Journal of the American Chemical Society, 2022, 144, 20372-20384.	6.6	50
66	Rational design of noble metal-based multimetallic nanomaterials: A review. Nano Energy, 2022, 104, 107959.	8.2	8
67	Surface Anion Promotes Pt Electrocatalysts with High CO Tolerance in Fuel-Cell Performance. Journal of the American Chemical Society, 2022, 144, 22018-22025.	6.6	10
68	One-Pot Synthesis of Pt High Index Facets Catalysts for Electrocatalytic Oxidation of Ethanol. Nanomaterials, 2022, 12, 4451.	1.9	0
69	Synthesis of Platinum Nanocrystals Dispersed on Nitrogen-Doped Hierarchically Porous Carbon with Enhanced Oxygen Reduction Reaction Activity and Durability. Nanomaterials, 2023, 13, 444.	1.9	2
70	Subnanoscale Dual-Site Pd–Pt Layers Make PdPtCu Nanocrystals CO-Tolerant Bipolar Effective Electrocatalysts for Alcohol Fuel Cell Devices. Nano Letters, 2023, 23, 3467-3475.	4.5	10
71	Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chemical Reviews, 2023, 123, 3443-3492.	23.0	11
72	氢燃æ−™ç"µæ±é [~] ³æžæŠ—ä,€æ°§åŒ–碳æ⁻'化å,¬åŒ–å‰,çš"ç"究进展äŽå±•望. Zhongguo Kexue	ish a. %exu	e/S o ientia <u>S</u> ini

	CITATIO	ATION REPORT		
#	Article	IF	CITATIONS	
76	Nanoarchitectonics of Metallene Materials for Electrocatalysis. ACS Nano, 2023, 17, 13017-13043.	7.3	34	
81	Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchange membrane fuel cells. Frontiers in Energy, 0, , .	1.2	1	