Multicomponent electrocatalyst with ultralow Pt loadir activity

Nature Energy 3, 773-782 DOI: 10.1038/s41560-018-0209-x

Citation Report

#	Article	IF	CITATIONS
3	Energy-efficient 1.67ÂV single- and 0.90 V dual-electrolyte based overall water-electrolysis devices enabled by a ZIF-L derived acid–base bifunctional cobalt phosphide nanoarray. Journal of Materials Chemistry A, 2018, 6, 24277-24284.	5.2	51
4	Covalently Modified Electrode with Pt Nanoparticles Encapsulated in Porous Organic Polymer for Efficient Electrocatalysis. ACS Applied Nano Materials, 2018, 1, 6477-6482.	2.4	13
5	Palladium Phosphide as a Stable and Efficient Electrocatalyst for Overall Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 14862-14867.	7.2	233
6	Palladium Phosphide as a Stable and Efficient Electrocatalyst for Overall Water Splitting. Angewandte Chemie, 2018, 130, 15078-15083.	1.6	20
7	NiMo Solid Solution Nanowire Array Electrodes for Highly Efficient Hydrogen Evolution Reaction. Advanced Functional Materials, 2019, 29, 1903747.	7.8	108
8	Polypyrrole encapsulating TiB2 as newly-emerged electrocatalyst for highly boosted hydrogen evolution reaction. Ceramics International, 2019, 45, 23298-23303.	2.3	13
9	Quantum Monte Carlo Study of the Water Dimer Binding Energy and Halogenâ^'ï€ Interactions. Journal of Physical Chemistry A, 2019, 123, 7785-7791.	1.1	5
10	Hydrogen evolution activity tuning <i>via</i> two-dimensional electron accumulation at buried interfaces. Journal of Materials Chemistry A, 2019, 7, 20696-20705.	5.2	11
11	Metal boride better than Pt: HCP Pd ₂ B as a superactive hydrogen evolution reaction catalyst. Energy and Environmental Science, 2019, 12, 3099-3105.	15.6	93
12	High temperature shockwave stabilized single atoms. Nature Nanotechnology, 2019, 14, 851-857.	15.6	278
13	Anchoring ultrafine PtNi nanoparticles on N-doped graphene for highly efficient hydrogen evolution reaction. Catalysis Science and Technology, 2019, 9, 4961-4969.	2.1	23
14	Tunable doping of N and S in carbon nanotubes by retarding pyrolysis-gas diffusion to promote electrocatalytic hydrogen evolution. Chemical Communications, 2019, 55, 10011-10014.	2.2	9
15	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie, 2019, 131, 12776-12784.	1.6	20
16	3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. Energy and Environmental Science, 2019, 12, 2830-2841.	15.6	219
17	Singleâ€Atom Crâ^'N ₄ Sites Designed for Durable Oxygen Reduction Catalysis in Acid Media. Angewandte Chemie, 2019, 131, 12599-12605.	1.6	29
18	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie - International Edition, 2019, 58, 12646-12654.	7.2	47
19	Singleâ€Atom Crâ^'N ₄ Sites Designed for Durable Oxygen Reduction Catalysis in Acid Media. Angewandte Chemie - International Edition, 2019, 58, 12469-12475.	7.2	307
20	Synthesis of Pt Nanocatalyst Supported on Halloysite Nanotubes via Strong Electronic Adsorption for Hydrolytic Dehydrogenation of Ammonia Borane. Chemistry Letters, 2019, 48, 1084-1087.	0.7	16

#	Article	IF	CITATIONS
21	Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nature Communications, 2019, 10, 4875.	5.8	253
22	Pt (1 1 1) quantum dot engineered Fe-MOF nanosheet arrays with porous core-shell as an electrocatalyst for efficient overall water splitting. Journal of Catalysis, 2019, 380, 307-317.	3.1	51
23	Quaternary Activity of the Beihewan Fault in the Southeastern Beishan Wrench Belt, Western China: Implications for Crustal Stability and Intraplate Earthquake Hazards North of Tibet. Journal of Geophysical Research: Solid Earth, 2019, 124, 13286-13309.	1.4	16
24	Integrated model for the prenatal diagnosis and postnatal surgical treatment of total anomalous pulmonary venous connection: A multidisciplinary collaborative experience and preliminary results. Journal of Cardiac Surgery, 2019, 34, 1264-1272.	0.3	3
25	Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nature Communications, 2019, 10, 4977.	5.8	243
26	Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 2019, 10, 5106.	5.8	742
27	Superb water splitting activity of the electrocatalyst Fe3Co(PO4)4 designed with computation aid. Nature Communications, 2019, 10, 5195.	5.8	120
28	Atomically Dispersed Pt on Screwâ€like Pd/Au Coreâ€shell Nanowires for Enhanced Electrocatalysis. Chemistry - A European Journal, 2020, 26, 4019-4024.	1.7	19
29	Interstitial Hydrogen Atom Modulation to Boost Hydrogen Evolution in Pd-Based Alloy Nanoparticles. ACS Nano, 2019, 13, 12987-12995.	7.3	67
30	Ultrathin Nanosheet of Graphdiyne-Supported Palladium Atom Catalyst for Efficient Hydrogen Production. IScience, 2019, 11, 31-41.	1.9	149
31	Intercalated Iridium Diselenide Electrocatalysts for Efficient pHâ€Universal Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 14764-14769.	7.2	126
32	Intercalated Iridium Diselenide Electrocatalysts for Efficient pHâ€Universal Water Splitting. Angewandte Chemie, 2019, 131, 14906-14911.	1.6	30
33	The effect of carbon quantum dots on the electrocatalytic hydrogen evolution reaction of manganese–nickel phosphide nanosheets. Journal of Materials Chemistry A, 2019, 7, 21488-21495.	5.2	46
34	Monoatomic Platinum-Anchored Metallic MoS ₂ : Correlation between Surface Dopant and Hydrogen Evolution. Journal of Physical Chemistry Letters, 2019, 10, 6081-6087.	2.1	53
35	In Situ Decoration of Ultrafine Ru Nanocrystals on N-Doped Graphene Tube and Their Applications as Oxygen Reduction and Hydrogen Evolution Catalyst. ACS Applied Energy Materials, 2019, 2, 7330-7339.	2.5	32
36	Monodispersed platinum nanoparticles embedded in Ni3S2-containing hollow carbon spheres with ultralow Pt loading and high alkaline hydrogen evolution activity. Electrochimica Acta, 2019, 318, 590-596.	2.6	12
37	Platinum single-atom and cluster anchored on functionalized MWCNTs with ultrahigh mass efficiency for electrocatalytic hydrogen evolution. Nano Energy, 2019, 63, 103849.	8.2	106
38	High‥ield Electrochemical Production of Large‣ized and Thinly Layered NiPS ₃ Flakes for Overall Water Splitting. Small, 2019, 15, e1902427.	5.2	62

#	Article	IF	CITATIONS
39	O species-decorated graphene shell encapsulating iridium–nickel alloy as an efficient electrocatalyst towards hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15079-15088.	5.2	36
40	Feâ€Doped Nickel Hydroxide/Nickel Oxyhydroxide Function as an Efficient Catalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 3488-3498.	1.7	43
41	Pt-like hydrogen evolution on a V ₂ O ₅ /Ni(OH) ₂ electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 15794-15800.	5.2	31
42	Highâ€Performance Hydrogen Evolution by Ru Single Atoms and Nitridedâ€Ru Nanoparticles Implanted on Nâ€Doped Graphitic Sheet. Advanced Energy Materials, 2019, 9, 1900931.	10.2	224
43	Metallic cobalt nanoparticles embedded in sulfur and nitrogen co-doped rambutan-like nanocarbons for the oxygen reduction reaction under both acidic and alkaline conditions. Journal of Materials Chemistry A, 2019, 7, 14291-14301.	5.2	37
44	Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nature Energy, 2019, 4, 512-518.	19.8	756
45	Mapping of atomic catalyst on graphdiyne. Nano Energy, 2019, 62, 754-763.	8.2	64
46	Rationally engineered active sites for efficient and durable hydrogen generation. Nature Communications, 2019, 10, 2281.	5.8	59
47	Coupling a Low Loading of IrP ₂ , PtP ₂ , or Pd ₃ P with Heteroatom-Doped Nanocarbon for Overall Water-Splitting Cells and Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 16461-16473.	4.0	38
48	Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis. Joule, 2019, 3, 956-991.	11.7	197
49	Single Atoms and Clusters Based Nanomaterials for Hydrogen Evolution, Oxygen Evolution Reactions, and Full Water Splitting. Advanced Energy Materials, 2019, 9, 1900624.	10.2	538
50	Fe2O3 nanocatalysts on N-doped carbon nanomaterial for highly efficient electrochemical hydrogen evolution in alkaline. Journal of Power Sources, 2019, 426, 74-83.	4.0	50
51	Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nature Communications, 2019, 10, 1743.	5.8	430
52	Highly Efficient Hydrogen Evolution from Seawater by Biofunctionalized Exfoliated MoS ₂ Quantum Dot Aerogel Electrocatalysts That Is Superior to Pt. ACS Applied Materials & Interfaces, 2019, 11, 14159-14165.	4.0	43
53	Modulating the Electronic Structure of Singleâ€Atom Catalysts on 2D Nanomaterials for Enhanced Electrocatalytic Performance. Small Methods, 2019, 3, 1800438.	4.6	88
54	Active Site Identification and Evaluation Criteria of In Situ Grown CoTe and NiTe Nanoarrays for Hydrogen Evolution and Oxygen Evolution Reactions. Small Methods, 2019, 3, 1900113.	4.6	78
55	Support and Interface Effects in Waterâ€Splitting Electrocatalysts. Advanced Materials, 2019, 31, e1808167.	11.1	531
56	Ultrafine Pt Nanoparticles Stabilized by MoS ₂ /N-Doped Reduced Graphene Oxide as a Durable Electrocatalyst for Alcohol Oxidation and Oxygen Reduction Reactions. ACS Applied Materials & amp: Interfaces, 2019, 11, 12504-12515	4.0	122

#	Article	IF	CITATIONS
57	Highly Efficient Utilization of Precious Metals for Hydrogen Evolution Reaction with Photoâ€Assisted Electroâ€Deposited Urchinâ€Like Te Nanostructure as a Template. ChemCatChem, 2019, 11, 2283-2287.	1.8	4
58	Engineering FeNi alloy nanoparticles <i>via</i> synergistic ultralow Pt doping and nanocarbon capsulation for efficient hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 24347-24355.	5.2	39
59	Synthesis of the Urchinâ€Like NiS@NiCo ₂ S ₄ Composites on Nickel Foam for Highâ€Performance Supercapacitors. ChemElectroChem, 2020, 7, 175-182.	1.7	13
60	Highly efficient hydrogen evolution reaction of Co3O4 supports on N-doped carbon nanotubes in an alkaline solution. Ionics, 2020, 26, 3437-3446.	1.2	14
61	N-doping induced tensile-strained Pt nanoparticles ensuring an excellent durability of the oxygen reduction reaction. Journal of Catalysis, 2020, 382, 247-255.	3.1	61
62	Highly efficient H ₂ production from H ₂ S <i>via</i> a robust graphene-encapsulated metal catalyst. Energy and Environmental Science, 2020, 13, 119-126.	15.6	113
63	Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horizons, 2020, 5, 43-56.	4.1	223
64	Generation of Ni3S2 nanorod arrays with high-density bridging S22â~' by introducing a small amount of Na3VO4·12H2O for superior hydrogen evolution reaction. Nanoscale, 2020, 12, 2063-2070.	2.8	6
65	Electrochemical formation of PtRu bimetallic nanoparticles for highly efficient and pH-universal hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 2090-2098.	5.2	33
66	Tuning the surface charge density of exfoliated thin molybdenum disulfide sheets <i>via</i> non-covalent functionalization for promoting hydrogen evolution reaction. Journal of Materials Chemistry C, 2020, 8, 510-517.	2.7	17
67	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020, 120, 623-682.	23.0	794
68	Confining Subâ€Nanometer Pt Clusters in Hollow Mesoporous Carbon Spheres for Boosting Hydrogen Evolution Activity. Advanced Materials, 2020, 32, e1901349.	11.1	255
69	Recent Advances in Noble Metal (Pt, Ru, and Ir)-Based Electrocatalysts for Efficient Hydrogen Evolution Reaction. ACS Omega, 2020, 5, 31-40.	1.6	390
70	Self-growth Ni2P nanosheet arrays with cationic vacancy defects as a highly efficient bifunctional electrocatalyst for overall water splitting. Journal of Colloid and Interface Science, 2020, 561, 638-646.	5.0	52
71	Stabilizing atomic Pt with trapped interstitial F in alloyed PtCo nanosheets for high-performance zinc-air batteries. Energy and Environmental Science, 2020, 13, 884-895.	15.6	99
72	In-situ X-ray techniques for non-noble electrocatalysts. Pure and Applied Chemistry, 2020, 92, 733-749.	0.9	19
73	Coral-like hierarchical structured carbon nanoscaffold with improved sensitivity for biomolecular detection in cancer tissue. Biosensors and Bioelectronics, 2020, 150, 111924.	5.3	22
74	Improving Electrochemical Hydrogen Evolution of Ag@CN Nanocomposites by Synergistic Effects with α-Rich Proteins. ACS Applied Materials & Interfaces, 2020, 12, 2207-2215.	4.0	20

#	Article	IF	CITATIONS
75	Nitrogen/oxygen co-doped carbon nanofoam derived from bamboo fungi for high-performance supercapacitors. Journal of Power Sources, 2020, 479, 228835.	4.0	41
76	Silver Single Atom in Carbon Nitride Catalyst for Highly Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2020, 132, 23312-23316.	1.6	46
77	Charge Redistribution Caused by S,P Synergistically Active Ru Endows an Ultrahigh Hydrogen Evolution Activity of Sâ€Đoped RuP Embedded in N,P,Sâ€Đoped Carbon. Advanced Science, 2020, 7, 2001526.	5.6	77
78	<i>In situ</i> surface reconstruction synthesis of a nickel oxide/nickel heterostructural film for efficient hydrogen evolution reaction. Chemical Communications, 2020, 56, 10529-10532.	2.2	24
79	Study on POM assisted electrolysis for hydrogen and ammonia production. International Journal of Hydrogen Energy, 2020, 45, 28313-28324.	3.8	6
80	Galvanic replacement of liquid metal Galinstan with copper for the formation of photocatalytically active nanomaterials. New Journal of Chemistry, 2020, 44, 14979-14988.	1.4	19
81	High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nature Communications, 2020, 11, 3724.	5.8	153
82	Interface Engineering with Ultralow Ruthenium Loading for Efficient Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 36177-36185.	4.0	35
83	Utilizing ballistic nanoparticle impact to reconfigure the metal support interaction in Pt–TiN electrocatalysts. Nanoscale Horizons, 2020, 5, 1407-1414.	4.1	5
84	Remarkably enhanced catalytic activity by the synergistic effect of palladium single atoms and palladium–cobalt phosphide nanoparticles. Nano Energy, 2020, 78, 105166.	8.2	57
85	Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. Science Advances, 2020, 6, eaaz8447.	4.7	83
86	Hierarchical 2D yarn-ball like metal–organic framework NiFe(dobpdc) as bifunctional electrocatalyst for efficient overall electrocatalytic water splitting. Journal of Materials Chemistry A, 2020, 8, 22974-22982.	5.2	43
87	2D hydrogenated boride as a reductant and stabilizer for <i>in situ</i> synthesis of ultrafine and surfactant-free carbon supported noble metal electrocatalysts with enhanced activity and stability. Journal of Materials Chemistry A, 2020, 8, 18856-18862.	5.2	11
88	Nanoribbon Superstructures of Graphene Nanocages for Efficient Electrocatalytic Hydrogen Evolution. Nano Letters, 2020, 20, 7342-7349.	4.5	30
89	Structural Design of Amorphous CoMoP <i>_x</i> with Abundant Active Sites and Synergistic Catalysis Effect for Effective Water Splitting. Advanced Functional Materials, 2020, 30, 2003889.	7.8	128
90	Single-Step Chemical Vapor Deposition Growth of Platinum Nanocrystal: Monolayer MoS ₂ Dendrite Hybrid Materials for Efficient Electrocatalysis. Chemistry of Materials, 2020, 32, 8243-8256.	3.2	23
91	Nonâ€Metal Singleâ€Phosphorusâ€Atom Catalysis of Hydrogen Evolution. Angewandte Chemie, 2020, 132, 23999-24007.	1.6	16
92	Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Science Advances, 2020, 6, .	4.7	214

#	Article	IF	CITATIONS
93	Ultrafast and surfactant-free synthesis of Sub-3 nm nanoalloys by shear-assisted liquid-metal reduction. Nanoscale Advances, 2020, 2, 4873-4880.	2.2	7
94	Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nature Communications, 2020, 11, 4246.	5.8	221
95	Nonâ€Metal Singleâ€Phosphorusâ€Atom Catalysis of Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 23791-23799.	7.2	69
96	Silver Single Atom in Carbon Nitride Catalyst for Highly Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 23112-23116.	7.2	270
97	Tailoring the electronic structure by constructing the heterointerface of RuO ₂ –NiO for overall water splitting with ultralow overpotential and extra-long lifetime. Journal of Materials Chemistry A, 2020, 8, 18945-18954.	5.2	29
98	Ru/RuO ₂ Nanoparticle Composites with N-Doped Reduced Graphene Oxide as Electrocatalysts for Hydrogen and Oxygen Evolution. ACS Applied Nano Materials, 2020, 3, 12269-12277.	2.4	68
99	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695.	2.5	100
100	Recent Advancement of p―and dâ€Block Elements, Single Atoms, and Grapheneâ€Based Photoelectrochemical Electrodes for Water Splitting. Advanced Energy Materials, 2020, 10, 2000280.	10.2	88
101	Electrodeposited Organic–Inorganic Nanohybrid as Robust Bifunctional Electrocatalyst for Water Splitting. Inorganic Chemistry, 2020, 59, 7469-7478.	1.9	15
102	Creating active interfaces as a strategy to improve electrochemical water splitting reactions. JPhys Energy, 2020, 2, 041001.	2.3	10
103	Sustainable synthesis of supported metal nanocatalysts for electrochemical hydrogen evolution. Chinese Journal of Catalysis, 2020, 41, 1791-1811.	6.9	80
104	Partial Dehydration in Hydrated Tungsten Oxide Nanoplates Leads to Excellent and Robust Bifunctional Oxygen Reduction and Hydrogen Evolution Reactions in Acidic Media. ACS Sustainable Chemistry and Engineering, 2020, 8, 9507-9518.	3.2	23
105	Metal–organic framework derived nitrogen-doped carbon-RhNi alloys anchored on graphene for highly efficient hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 2676-2684.	3.0	6
106	Highly dispersed ultrafine shell-like nano-Pt with efficient hydrogen evolution <i>via</i> metal boron organic polymers. Journal of Materials Chemistry A, 2020, 8, 7171-7176.	5.2	38
107	Triboelectric nanogenerators powered electrodepositing tri-functional electrocatalysts for water splitting and rechargeable zinc-air battery: A case of Pt nanoclusters on NiFe-LDH nanosheets. Nano Energy, 2020, 72, 104669.	8.2	108
108	Stabilizing mechanism of single-atom catalysts on a defective carbon surface. Npj Computational Materials, 2020, 6, .	3.5	38
109	Optimized Metal Chalcogenides for Boosting Water Splitting. Advanced Science, 2020, 7, 1903070.	5.6	190
110	Synergistically coupling ultrasmall PtCu nanoalloys with highly porous CoP nanosheets as an enhanced electrocatalyst for electrochemical hydrogen evolution. Sustainable Energy and Fuels, 2020, 4, 2551-2558.	2.5	12

#	Article	IF	CITATIONS
111	Two-Dimensional Layered Materials: High-Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2020, 3, 6270-6296.	2.4	70
112	Advanced Characterization Techniques for Identifying the Key Active Sites of Gas″nvolved Electrocatalysts. Advanced Functional Materials, 2020, 30, 2001704.	7.8	19
113	Tetraruthenium Polyoxometalate as an Atom-Efficient Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Catalyst and Its Application in Seawater Batteries. ACS Applied Materials & Interfaces, 2020, 12, 32689-32697.	4.0	23
114	Single Ni Atoms and Clusters Embedded in Nâ€Đoped Carbon "Tubes on Fibers―Matrix with Bifunctional Activity for Water Splitting at High Current Densities. Small, 2020, 16, e2002511.	5.2	38
115	Oxide Electrocatalysts Based on Earth-Abundant Metals for Both Hydrogen- and Oxygen-Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 11549-11557.	3.2	46
116	Etchingâ€Doping Sedimentation Equilibrium Strategy: Accelerating Kinetics on Hollow Rhâ€Doped CoFeâ€Layered Double Hydroxides for Water Splitting. Advanced Functional Materials, 2020, 30, 2003556.	7.8	117
117	Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts. Journal of Materials Chemistry A, 2020, 8, 5209-5216.	5.2	136
118	Topological Engineering of Ptâ€Groupâ€Metalâ€Based Chiral Crystals toward Highâ€Efficiency Hydrogen Evolution Catalysts. Advanced Materials, 2020, 32, e1908518.	11.1	81
119	<i>In situ</i> growth of free-standing perovskite hydroxide electrocatalysts for efficient overall water splitting. Journal of Materials Chemistry A, 2020, 8, 5919-5926.	5.2	21
120	Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Science China Materials, 2020, 63, 921-948.	3.5	76
121	In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy, 2020, 71, 104653.	8.2	149
122	Preparation and catalytic performance of ZrO ₂ â€supported Pt singleâ€atom and cluster catalyst for hydrogenation of 2,4â€dinitrotoluene to 2,4â€toluenediamine. Journal of Chemical Technology and Biotechnology, 2020, 95, 1675-1682.	1.6	15
123	CoSe2 nanobelt coupled with CoMoO4 nanosheet as efficient electrocatalysts for hydrogen and oxygen evolution reaction. Environmental Science and Ecotechnology, 2020, 1, 100004.	6.7	14
124	Octapod-Shaped CdSe Nanocrystals Hosting Pt with High Mass Activity for the Hydrogen Evolution Reaction. Chemistry of Materials, 2020, 32, 2420-2429.	3.2	26
125	Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 4369-4375.	5.2	100
126	Reversible ternary nickelâ€cobaltâ€iron catalysts for intermittent water electrolysis. EcoMat, 2020, 2, e12012.	6.8	14
127	Recent Advances on Waterâ€Splitting Electrocatalysis Mediated by Nobleâ€Metalâ€Based Nanostructured Materials. Advanced Energy Materials, 2020, 10, 1903120.	10.2	560
128	Simple and Scalable Mechanochemical Synthesis of Noble Metal Catalysts with Single Atoms toward Highly Efficient Hydrogen Evolution. Advanced Functional Materials, 2020, 30, 2000531.	7.8	153

#	Article	IF	CITATIONS
129	Stabilization of cobalt clusters with graphdiyne enabling efficient overall water splitting. Nano Energy, 2020, 74, 104852.	8.2	43
130	Threeâ€Dimensional Porous Fe–N–C Derived from Ironâ€Citrateâ€Functionalized Melamine Foam as a Highly Active Oxygen Reduction Catalyst for Zn–Air Batteries. Energy Technology, 2020, 8, 2000149.	1.8	7
131	Catalytic nature of iron-nitrogen-graphene heterogeneous catalysts for oxygen evolution reaction and oxygen reduction reaction. Applied Surface Science, 2020, 514, 146073.	3.1	15
132	Charge redistribution within platinum–nitrogen coordination structure to boost hydrogen evolution. Nano Energy, 2020, 73, 104739.	8.2	55
133	Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nature Sustainability, 2020, 3, 556-563.	11.5	186
134	Ultrafine Ptâ€Based Nanowires for Advanced Catalysis. Advanced Functional Materials, 2020, 30, 2000793.	7.8	188
135	Immiscible bi-metal single-atoms driven synthesis of electrocatalysts having superb mass-activity and durability. Applied Catalysis B: Environmental, 2020, 270, 118896.	10.8	102
136	A highly efficient overall water splitting ruthenium-cobalt alloy electrocatalyst across a wide pH range <i>via</i> electronic coupling with carbon dots. Journal of Materials Chemistry A, 2020, 8, 9638-9645.	5.2	88
137	Atomic Level Dispersed Metal–Nitrogen–Carbon Catalyst toward Oxygen Reduction Reaction: Synthesis Strategies and Chemical Environmental Regulation. Energy and Environmental Materials, 2021, 4, 5-18.	7.3	55
138	Coinage metal clusters: From superatom chemistry to genetic materials. Coordination Chemistry Reviews, 2021, 429, 213643.	9.5	57
139	Multi-site catalyst derived from Cr atoms-substituted CoFe nanoparticles for high-performance oxygen evolution activity. Chemical Engineering Journal, 2021, 404, 126513.	6.6	41
140	Ultrafine VN nanoparticles confined in Co@N-doped carbon nanotubes for boosted hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 853, 157257.	2.8	22
141	Photoelectrochemical performance of TiO2 nanotube arrays modified with Ni2P Co-catalyst. International Journal of Hydrogen Energy, 2021, 46, 4981-4991.	3.8	15
142	Partial‣ingleâ€Atom, Partialâ€Nanoparticle Composites Enhance Water Dissociation for Hydrogen Evolution. Advanced Science, 2021, 8, 2001881.	5.6	85
143	Structurally ordered intermetallic Ir3V electrocatalysts for alkaline hydrogen evolution reaction. Nano Energy, 2021, 81, 105636.	8.2	45
144	Peroxydisulfate activation by atomically-dispersed Fe-Nx on N-doped carbon: Mechanism of singlet oxygen evolution for nonradical degradation of aqueous contaminants. Chemical Engineering Journal, 2021, 413, 127545.	6.6	102
145	Topological materials and topologically engineered materials: properties, synthesis, and applications for energy conversion and storage. Journal of Materials Chemistry A, 2021, 9, 1297-1313.	5.2	17
146	High-temperature treatment to engineer the single-atom Pt coordination environment towards highly efficient hydrogen evolution. Journal of Energy Chemistry, 2021, 59, 212-219.	7.1	26

#	Article	IF	CITATIONS
147	Tailoring Binding Abilities by Incorporating Oxophilic Transition Metals on 3D Nanostructured Ni Arrays for Accelerated Alkaline Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2021, 143, 1399-1408.	6.6	161
148	Carbon supported nickel phosphide as efficient electrocatalyst for hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2021, 46, 622-632.	3.8	39
149	Supramolecular Nanosheet evolution into BC ₃ N matrix improves the hydrogen evolution reaction activity in the pH universality of highly dispersed Pt nanoparticles. Journal of Materials Chemistry A, 2021, 9, 16427-16435.	5.2	23
150	Ir-based bifunctional electrocatalysts for overall water splitting. Catalysis Science and Technology, 2021, 11, 4673-4689.	2.1	53
151	Confinement of Pt NPs by hollow-porous-carbon-spheres <i>via</i> pore regulation with promoted activity and durability in the hydrogen evolution reaction. Nanoscale, 2021, 13, 18273-18280.	2.8	8
152	Enhanced Hydrogen Evolution Efficiency Achieved by Atomically Controlled Platinum Deposited on Gold Nanodendrites with High-Index Surfaces. Journal of Materials Chemistry A, 0, , .	5.2	8
153	The janus in monodispersed catalysts: synergetic interactions. Journal of Materials Chemistry A, 2021, 9, 5276-5295.	5.2	7
154	Edge-effect enhanced catalytic CO oxidation by atomically dispersed Pt on nitride-graphene. Journal of Materials Chemistry A, 2021, 9, 2093-2098.	5.2	5
155	Confined sub-nanometer PtCo clusters as a highly efficient and robust electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 5468-5474.	5.2	58
156	Exploring the Interface of Skin‣ayered Titanium Fibers for Electrochemical Water Splitting. Advanced Energy Materials, 2021, 11, 2002926.	10.2	48
156 157		10.2 2.8	48 29
	Energy Materials, 2021, 11, 2002926.		
157	Energy Materials, 2021, 11, 2002926. Cooperativity in supported metal single atom catalysis. Nanoscale, 2021, 13, 5985-6004. Shielded goethite catalyst that enables fast water dissociation in bipolar membranes. Nature	2.8	29
157 158	Energy Materials, 2021, 11, 2002926. Cooperativity in supported metal single atom catalysis. Nanoscale, 2021, 13, 5985-6004. Shielded goethite catalyst that enables fast water dissociation in bipolar membranes. Nature Communications, 2021, 12, 9. Incomplete amorphous phosphorization on the surface of crystalline cobalt molybdate to accelerate	2.8 5.8	29 49
157 158 159	 Energy Materials, 2021, 11, 2002926. Cooperativity in supported metal single atom catalysis. Nanoscale, 2021, 13, 5985-6004. Shielded goethite catalyst that enables fast water dissociation in bipolar membranes. Nature Communications, 2021, 12, 9. Incomplete amorphous phosphorization on the surface of crystalline cobalt molybdate to accelerate hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 21859-21866. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. Journal 	2.8 5.8 5.2	29 49 16
157 158 159 160	Energy Materials, 2021, 11, 2002926. Cooperativity in supported metal single atom catalysis. Nanoscale, 2021, 13, 5985-6004. Shielded goethite catalyst that enables fast water dissociation in bipolar membranes. Nature Communications, 2021, 12, 9. Incomplete amorphous phosphorization on the surface of crystalline cobalt molybdate to accelerate hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 21859-21866. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 13459-13470. A universal screening strategy for the accelerated design of superior oxygen evolution/reduction	2.8 5.8 5.2 5.2	29 49 16 172
157 158 159 160	Energy Materials, 2021, 11, 2002926. Cooperativity in supported metal single atom catalysis. Nanoscale, 2021, 13, 5985-6004. Shielded goethite catalyst that enables fast water dissociation in bipolar membranes. Nature Communications, 2021, 12, 9. Incomplete amorphous phosphorization on the surface of crystalline cobalt molybdate to accelerate hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 21859-21866. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 13459-13470. A universal screening strategy for the accelerated design of superior oxygen evolution/reduction electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 3511-3519. Few-layered MoN–MnO heterostructures with interfacial-O synergistic active centers boosting	2.8 5.8 5.2 5.2 5.2	29 49 16 172 21

#	Article	IF	CITATIONS
166	Synergism on Electronic Structures and Active Edges of Metallic Vanadium Disulfide Nanosheets via Co Doping for Efficient Hydrogen Evolution Reaction in Seawater. ChemCatChem, 2021, 13, 2138-2144.	1.8	13
167	Metal Subâ€nanoclusters Confined within Hierarchical Porous Carbons with High Oxidation Activity. Angewandte Chemie - International Edition, 2021, 60, 10842-10849.	7.2	36
168	Few‣ayer Tellurium: Cathodic Exfoliation and Doping for Collaborative Hydrogen Evolution. Small, 2021, 17, e2007768.	5.2	8
169	Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction. Advanced Energy Materials, 2021, 11, 2100303.	10.2	61
170	Metal Subâ€nanoclusters Confined within Hierarchical Porous Carbons with High Oxidation Activity. Angewandte Chemie, 2021, 133, 10937-10944.	1.6	0
171	A general strategy for synthesizing hierarchical architectures assembled by dendritic Pt-based nanoalloys for electrochemical hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 11573-11586.	3.8	9
172	Electronic Optimization by Coupling FeCo Nanoclusters and Pt Nanoparticles to Carbon Nanotubes for Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 5895-5901.	3.2	9
173	High mass-specific reactivity of a defect-enriched Ru electrocatalyst for hydrogen evolution in harsh alkaline and acidic media. Science China Materials, 2021, 64, 2467-2476.	3.5	16
174	Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nature Communications, 2021, 12, 2351.	5.8	83
175	Polythionine Coated on Au/Co ₃ O ₄ Enhances the Performance for Hydrogen Evolution Reaction. Nano, 2021, 16, 2150055.	0.5	0
176	Rationally Designed Ni–Ni ₃ S ₂ Interfaces for Efficient Overall Water Electrolysis. Advanced Energy and Sustainability Research, 2021, 2, 2100078.	2.8	40
177	Effects of functional supports on efficiency and stability of atomically dispersed noble-metal electrocatalysts. EnergyChem, 2021, 3, 100054.	10.1	20
178	Single-atom site catalysts supported on two-dimensional materials for energy applications. Chinese Chemical Letters, 2021, 32, 3771-3781.	4.8	38
179	Oneâ€dimensional nanomaterial supported metal singleâ€atom electrocatalysts: Synthesis, characterization, and applications. Nano Select, 2021, 2, 2072-2111.	1.9	12
180	Atomicâ€Precision Tailoring of Au–Ag Core–Shell Composite Nanoparticles for Direct Electrochemicalâ€Plasmonic Hydrogen Evolution in Water Splitting. Advanced Functional Materials, 2021, 31, 2102517.	7.8	21
181	Cold-plasma technique enabled supported Pt single atoms with tunable coordination for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 285, 119861.	10.8	38
182	2D-Layered Non-Precious Electrocatalysts for Hydrogen Evolution Reaction: Fundamentals to Applications. Catalysts, 2021, 11, 689.	1.6	20
183	Continuous Fly-Through High-Temperature Synthesis of Nanocatalysts. Nano Letters, 2021, 21, 4517-4523.	4.5	13

#	Article	IF	CITATIONS
184	Highly Surface-Distorted Pt Superstructures for Multifunctional Electrocatalysis. Nano Letters, 2021, 21, 5075-5082.	4.5	31
185	A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nature Communications, 2021, 12, 3502.	5.8	183
186	Metallized Ni(OH) ₂ ·NiO/FeOOH on Ni Foam as a Highly Effective Water Oxidation Catalyst Prepared by Surface Treatment: Oxidation–Corrosion Equilibrium. ACS Applied Energy Materials, 2021, 4, 5599-5605.	2.5	2
187	Boosting electrocatalytic activity toward alkaline hydrogen evolution by strongly coupled ternary Ni3S4/Ni/Ni(OH)2 hybrid. Electrochimica Acta, 2021, 382, 138342.	2.6	6
188	Recent advances of single-atom electrocatalysts for hydrogen evolution reaction. JPhys Materials, 2021, 4, 042002.	1.8	11
189	Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nature Communications, 2021, 12, 4018.	5.8	160
190	Reversed Charge Transfer and Enhanced Hydrogen Spillover in Platinum Nanoclusters Anchored on Titanium Oxide with Rich Oxygen Vacancies Boost Hydrogen Evolution Reaction. Angewandte Chemie, 2021, 133, 16758-16763.	1.6	34
191	Engineering local coordination environment of atomically dispersed platinum catalyst via lattice distortion of support for efficient hydrogen evolution reaction. Materials Today Energy, 2021, 20, 100653.	2.5	19
192	Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends in Chemistry, 2021, 3, 485-498.	4.4	105
193	Reversed Charge Transfer and Enhanced Hydrogen Spillover in Platinum Nanoclusters Anchored on Titanium Oxide with Rich Oxygen Vacancies Boost Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 16622-16627.	7.2	167
194	Ceâ€Modified Ni(OH) ₂ Nanoflowers Supported on NiSe ₂ Octahedra Nanoparticles as Highâ€Efficient Oxygen Evolution Electrocatalyst. Advanced Energy Materials, 2021, 11, 2101266.	10.2	83
195	Temperature-Controlled Structural Variations of Meticulous Fibrous Networks of NiFe-Polymeric Zeolite Imidazolate Frameworks for Enhanced Performance in Electrocatalytic Water-Splitting Reactions. Inorganic Chemistry, 2021, 60, 12467-12480.	1.9	10
196	A Na-ion direct formate fuel cell converting solar fuel to electricity and hydrogen. Journal of Power Sources, 2021, 499, 229960.	4.0	5
197	Investigation of the synergistic effect on cobalt oxide modified silver surface for electrocatalytic hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 869, 159324.	2.8	14
198	Construction of Dualâ€Site Atomically Dispersed Electrocatalysts with Ru ₅ Single Atoms and Ruâ€O ₄ Nanoclusters for Accelerated Alkali Hydrogen Evolution. Small, 2021, 17, e2101163.	5.2	71
199	MOF-derived hollow heterostructures for advanced electrocatalysis. Coordination Chemistry Reviews, 2021, 439, 213946.	9.5	142
200	Hydrogen-Intercalation-Induced Lattice Expansion of Pd@Pt Core–Shell Nanoparticles for Highly Efficient Electrocatalytic Alcohol Oxidation. Journal of the American Chemical Society, 2021, 143, 11262-11270.	6.6	121
201	Construction of heterostructured CoP/CN/Ni: Electron redistribution towards effective hydrogen generation and oxygen reduction. Chemical Engineering Journal, 2021, 415, 129031.	6.6	33

#	Article	IF	CITATIONS
202	Tuning the Intrinsic Activity and Electrochemical Surface Area of MoS ₂ via Tiny Zn Doping: Toward an Efficient Hydrogen Evolution Reaction (HER) Catalyst. Chemistry - A European Journal, 2021, 27, 15992-15999.	1.7	19
203	Reutilizing Methane Reforming Spent Catalysts as Efficient Overall Water-Splitting Electrocatalysts. ACS Omega, 2021, 6, 21316-21326.	1.6	16
204	Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate, 2021, 2, e106.	5.2	27
205	In-situ mediation of graphitic carbon film-encapsulated tungsten carbide for enhancing hydrogen evolution performance and stability. Electrochimica Acta, 2021, 388, 138566.	2.6	3
206	Plasma-Induced Defect Engineering and Cation Refilling of NiMoO ₄ Parallel Arrays for Overall Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 41545-41554.	4.0	36
207	Tuning the oxidation state of Ru to surpass Pt in hydrogen evolution reaction. Nano Research, 2021, 14, 4321-4327.	5.8	19
208	Hollow Hydrangeaâ€Like CoRu/Co Architecture as an Excellent Electrocatalyst for Oxygen Evolution. ChemSusChem, 2021, 14, 3959-3966.	3.6	7
209	One-dimensional, space-confined, solid-phase growth of the Cu9S5@MoS2 core–shell heterostructure for electrocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 595, 88-97.	5.0	22
210	The Central Role of Nitrogen Atoms in a Zeolitic Imidazolate Frameworkâ€Derived Catalyst for Cathodic Hydrogen Evolution. ChemSusChem, 2021, 14, 3926-3934.	3.6	2
211	Strong Electron Coupling of Ru and Vacancyâ€Rich Carbon Dots for Synergistically Enhanced Hydrogen Evolution Reaction. Small, 2021, 17, e2102496.	5.2	31
212	Bifunctional oxovanadate doped cobalt carbonate for high-efficient overall water splitting in alkaline-anion-exchange-membrane water-electrolyzer. Chemical Engineering Journal, 2022, 430, 132623.	6.6	58
213	Heterojunctionâ€Based Electron Donators to Stabilize and Activate Ultrafine Pt Nanoparticles for Efficient Hydrogen Atom Dissociation and Gas Evolution. Angewandte Chemie, 2021, 133, 25970-25974.	1.6	7
214	Design concept for electrocatalysts. Nano Research, 2022, 15, 1730-1752.	5.8	396
215	A stable and active three-dimensional carbon based trimetallic electrocatalyst for efficient overall wastewater splitting. International Journal of Hydrogen Energy, 2021, 46, 30762-30779.	3.8	9
216	Sub-2 nm Ultrasmall High-Entropy Alloy Nanoparticles for Extremely Superior Electrocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2021, 143, 17117-17127.	6.6	202
217	Construction of Ti ₃ C ₂ T _x MXene Supported Low-Platinum Electrocatalyst for Hydrogen Evolution Reaction by Direct Electrochemical Strategy. Journal of the Electrochemical Society, 2021, 168, 096504.	1.3	12
218	Heterojunctionâ€Based Electron Donators to Stabilize and Activate Ultrafine Pt Nanoparticles for Efficient Hydrogen Atom Dissociation and Gas Evolution. Angewandte Chemie - International Edition, 2021, 60, 25766-25770.	7.2	52
219	Engineering the synergistic effect of carbon dotsâ€stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. SmartMat, 2022, 3, 249-259.	6.4	38

#	Article	IF	Citations
220	Interfacial Proton Transfer for Hydrogen Evolution at the Sub-Nanometric Platinum/Electrolyte Interface. ACS Applied Materials & Interfaces, 2021, 13, 47252-47261.	4.0	4
221	Stable NiPt–Mo2C active site pairs enable boosted water splitting and direct methanol fuel cell. Green Energy and Environment, 2023, 8, 559-566.	4.7	10
222	Facile, general and environmental-friendly fabrication of O/N-codoped porous carbon as a universal matrix for efficient hydrogen evolution electrocatalysts. Chemical Engineering Journal, 2021, 420, 130483.	6.6	32
223	Ultralow Pt Doped on N-based Carbon as a Promising Electrocatalyst for High-Temperature Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2021, 4, 9881-9890.	2.5	10
224	MXene/Carbon Nanotube Hybrids: Synthesis, Structures, Properties, and Applications. ChemSusChem, 2021, 14, 5079-5111.	3.6	39
225	Galvanic Deposition of Pt Nanoparticles on Black TiO ₂ Nanotubes for Hydrogen Evolving Cathodes. ChemSusChem, 2021, 14, 4993-5003.	3.6	14
226	Tunable one-dimensional inorganic perovskite nanomeshes library for water splitting. Nano Energy, 2021, 88, 106251.	8.2	12
227	Synergistic engineering of morphology and electronic structure in constructing metal-organic framework-derived Ru doped cobalt-nickel oxide heterostructure towards efficient alkaline hydrogen evolution reaction. Chemical Engineering Journal, 2021, 426, 131300.	6.6	20
228	Regulating electrolytic Fe0.5CoNiCuZn high entropy alloy electrodes for oxygen evolution reactions in alkaline solution. Journal of Materials Science and Technology, 2021, 93, 110-118.	5.6	42
229	Molybdenum oxide-iron, cobalt, copper alloy hybrid as efficient bifunctional catalyst for alkali water electrolysis. Journal of Colloid and Interface Science, 2022, 606, 1662-1672.	5.0	19
230	A rigorous electrochemical ammonia electrolysis protocol with <i>in operando</i> quantitative analysis. Journal of Materials Chemistry A, 2021, 9, 11571-11579.	5.2	29
231	Ruthenium Core–Shell Engineering with Nickel Single Atoms for Selective Oxygen Evolution via Nondestructive Mechanism. Advanced Energy Materials, 2021, 11, 2003448.	10.2	124
232	Tuning metal single atoms embedded in N _x C _y moieties toward high-performance electrocatalysis. Energy and Environmental Science, 2021, 14, 3455-3468.	15.6	176
233	A topological quantum catalyst: the case of two-dimensional traversing nodal line states associated with high catalytic performance for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 22453-22461.	5.2	30
234	Atomic-layered Pt clusters on S-vacancy rich MoS _{2â^'x} with high electrocatalytic hydrogen evolution. Chemical Communications, 2021, 57, 7011-7014.	2.2	12
235	A general MOF-intermediated synthesis of hollow CoFe-based trimetallic phosphides composed of ultrathin nanosheets for boosting water oxidation electrocatalysis. Nanoscale, 2021, 13, 7279-7284.	2.8	32
236	First principles and machine learning based superior catalytic activities and selectivities for N ₂ reduction in MBenes, defective 2D materials and 2D π-conjugated polymer-supported single atom catalysts. Journal of Materials Chemistry A, 2021, 9, 9203-9213.	5.2	67
237	Modulation of Cu and Rh single-atoms and nanoparticles for high-performance hydrogen evolution activity in acidic media. Journal of Materials Chemistry A, 2021, 9, 10326-10334.	5.2	70

#	Article	IF	CITATIONS
238	Surface enrichment of iridium on IrCo alloys for boosting hydrogen production. Journal of Materials Chemistry A, 2021, 9, 16898-16905.	5.2	65
239	Pyrolyzed M–N _x catalysts for oxygen reduction reaction: progress and prospects. Energy and Environmental Science, 2021, 14, 2158-2185.	15.6	170
240	Ultralow Loading (Singleâ€Atom and Clusters) of the Pt Catalyst by Atomic Layer Deposition Using Dimethyl ((3,4â€̂+) <i>N</i> , <i>N</i> à€dimethylâ€3â€buteneâ€1â€amineâ€ <i>N</i>) Platinum (DDAP) on the Highâ€Surfaceâ€Area Substrate for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2021, 8, 2001508.	1.9	13
241	Transformation of stainless steel 316 into a bifunctional water splitting electrocatalyst tolerant to polarity switching. Sustainable Materials and Technologies, 2020, 25, e00177.	1.7	9
242	A high performance N-doped graphene nanoribbon based spintronic device applicable with a wide range of adatoms. Nanoscale Advances, 2020, 2, 5905-5911.	2.2	10
243	Synergistic Effect of Platinum Single Atoms and Nanoclusters Boosting Electrocatalytic Hydrogen Evolution. CCS Chemistry, 2021, 3, 2539-2547.	4.6	36
244	Ultradispersed Ir _{<i>x</i>} Ni clusters as bifunctional electrocatalysts for high-efficiency water splitting in acid electrolytes. RSC Advances, 2021, 11, 33179-33185.	1.7	9
245	Recent Advances in Layered-Double-Hydroxides Based Noble Metal Nanoparticles Efficient Electrocatalysts. Nanomaterials, 2021, 11, 2644.	1.9	12
246	Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. Electrochemical Energy Reviews, 2022, 5, 145-186.	13.1	86
247	Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott–Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc–air batteries. Applied Catalysis B: Environmental, 2022, 302, 120838.	10.8	124
248	Characterizing the Onset Potential Distribution of Pt/C Catalyst Deposition by a Total Internal Reflection Imaging Method. Small, 2021, 17, e2102407.	5.2	6
249	Fast synthesis of Pt single-atom catalyst with high intrinsic activity for hydrogen evolution reaction by plasma sputtering. Materials Today Energy, 2021, 22, 100877.	2.5	16
250	Design Principles for Tungsten Oxide Electrocatalysts for Water Splitting. ChemElectroChem, 2021, 8, 4427-4440.	1.7	15
251	Spontaneous amorphous oxide-interfaced ultrafine noble metal nanoclusters for unexpected anodic electrocatalysis. Chem Catalysis, 2021, 1, 1104-1117.	2.9	14
252	Ultrahighâ€Currentâ€Density and Longâ€Termâ€Durability Electrocatalysts for Water Splitting. Small, 2022, 18, e2104513.	5.2	49
253	Boosted hydrogen evolution in alkaline media enabled by a facile oxidation-involving surface modification. Electrochimica Acta, 2021, 398, 139337.	2.6	3
254	Low temperature activation of inert hexagonal boron nitride for metal deposition and single atom catalysis. Materials Today, 2021, 51, 108-116.	8.3	16
255	Atomically ordered Rh ₂ P catalysts anchored within hollow mesoporous carbon for efficient hydrogen production. Chemical Communications, 2021, 57, 12345-12348.	2.2	11

#	Article	IF	CITATIONS
256	Late Transition Metal Doped MXenes Showing Superb Bifunctional Electrocatalytic Activities for Water Splitting via Distinctive Mechanistic Pathways. Advanced Energy Materials, 2021, 11, 2102388.	10.2	73
257	Alkali-Metal-Mediated Reversible Chemical Hydrogen Storage Using Seawater. Jacs Au, 2021, 1, 2339-2348.	3.6	6
258	Ultralow-Platinum Supported Polyaniline-Mxene Via Facile Electrochemical Strategy for Efficient Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
259	Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coordination Chemistry Reviews, 2022, 452, 214289.	9.5	54
260	Critical Role of Phosphorus in Hollow Structures Cobaltâ€Based Phosphides as Bifunctional Catalysts for Water Splitting. Small, 2022, 18, e2103561.	5.2	54
261	Theoretical realization of hybrid Weyl state and associated high catalytic performance for hydrogen evolution in NiSi. IScience, 2022, 25, 103543.	1.9	24
262	Universal low-temperature oxidative thermal redispersion strategy for green and sustainable fabrication of oxygen-rich carbons anchored metal nanoparticles for hydrogen evolution reactions. Chemical Engineering Journal, 2022, 433, 133648.	6.6	73
263	Confining Zeroâ€Valent Platinum Single Atoms in αâ€MoC _{1â^'} <i>_x</i> for pHâ€Universal Hydrogen Evolution Reaction. Advanced Functional Materials, 2022, 32, 2108464.	7.8	43
264	Atomic‣evel Metal Electrodeposition: Synthetic Strategies, Applications, and Catalytic Mechanism in Electrochemical Energy Conversion. Small Structures, 2022, 3, 2100185.	6.9	29
265	Single Carbon Vacancy Traps Atomic Platinum for Hydrogen Evolution Catalysis. Journal of the American Chemical Society, 2022, 144, 2171-2178.	6.6	140
266	Structural rule of N-coordinated single-atom catalysts for electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 3585-3594.	5.2	13
267	Molybdenum-Cobalt Bimetallic Alloy Encapsulated in Nitrogen-Doped Carbon as a Highly Efficient Electrocatalyst for Water Splitting Reaction. SSRN Electronic Journal, 0, , .	0.4	0
268	2D/2D/1D Structure of a Self-Supporting Electrocatalyst for Efficient Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 1710-1719.	2.5	21
269	Synergistic improvement in electron transport and active sites exposure over RGO supported NiP/Fe4P for oxygen evolution reaction. Ionics, 2022, 28, 1359-1366.	1.2	24
270	Autogenous growth of highly active bifunctional Ni–Fe2B nanosheet arrays toward efficient overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 8303-8313.	3.8	14
271	Synergistic effect of Co catalysts with atomically dispersed CoN _{<i>x</i>} active sites on ammonia borane hydrolysis for hydrogen generation. Journal of Materials Chemistry A, 2022, 10, 5580-5592.	5.2	17
272	Stability of single-atom catalysts for electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 5835-5849.	5.2	40
273	Autocatalytic Surface Reductionâ€Assisted Synthesis of PtW Ultrathin Alloy Nanowires for Highly Efficient Hydrogen Evolution Reaction. Advanced Energy Materials. 2022. 12	10.2	40

#	Article	IF	Citations
274	WO ₃ Nanosheet-Supported IrW Alloy for High-Performance Acidic Overall Water Splitting with Low Ir Loading. ACS Applied Energy Materials, 2022, 5, 970-980.	2.5	15
275	Graphynes: ideal supports of single atoms for electrochemical energy conversion. Journal of Materials Chemistry A, 2022, 10, 3905-3932.	5.2	21
276	Highly Dispersed Pt Clusters on F-Doped Tin(IV) Oxide Aerogel Matrix: An Ultra-Robust Hybrid Catalyst for Enhanced Hydrogen Evolution. ACS Nano, 2022, 16, 1625-1638.	7.3	48
277	Construction of Fe ₂ O ₃ Nanosheet Arrays by Sulfur Doping toward Efficient Alkaline Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 1793-1800.	2.5	12
278	Iron doped titania/multiwalled carbon nanotube nanocomposite: A robust electrocatalyst for hydrogen evolution reaction in aqueous acidic medium. Electrochimica Acta, 2022, 407, 139921.	2.6	11
279	Mesoporous RhTe nanowires towards all-pH-value hydrogen evolution electrocatalysis. Chemical Engineering Journal, 2022, 435, 134798.	6.6	34
280	Crystalline-amorphous interface of mesoporous Ni2PÂ@ÂFePOxHy for oxygen evolution at high current density in alkaline-anion-exchange-membrane water-electrolyzer. Applied Catalysis B: Environmental, 2022, 306, 121127.	10.8	90
281	Oxygen Vacancies and Interface Engineering on Amorphous/Crystalline CrO _x â€Ni ₃ N Heterostructures toward Highâ€Durability and Kinetically Accelerated Water Splitting. Small, 2022, 18, e2106554.	5.2	71
282	Mapping Hydrogen Evolution Activity Trends of Intermetallic Pt-Group Silicides. ACS Catalysis, 2022, 12, 2623-2631.	5.5	32
283	Strong Oxide‣upport Interaction over IrO ₂ /V ₂ O ₅ for Efficient pHâ€Universal Water Splitting. Advanced Science, 2022, 9, e2104636.	5.6	77
284	Pyrolysis-free, facile mechanochemical strategy toward cobalt single-atom/nitrogen-doped carbon for highly efficient water splitting. Chemical Engineering Journal, 2022, 433, 134089.	6.6	13
285	Electronic modulation of Pt nanoclusters through tuning the interface of Pt-SnO2 clusters for enhanced hydrogen evolution catalysis. Chemical Engineering Journal, 2022, 435, 135102.	6.6	28
286	Spherical vs. planar: Steering the electronic communication between Ru nanoparticle and single atom to boost the electrocatalytic hydrogen evolution activity both in acid and alkaline. Applied Catalysis B: Environmental, 2022, 307, 121193.	10.8	36
287	Atomic-Scale Platinum Deposition on Photocathodes by Multiple Redox Cycles Under Illumination for Enhanced Solar-to-Hydrogen Energy Conversion. SSRN Electronic Journal, 0, , .	0.4	Ο
288	Increasing oxygen vacancies in CeO ₂ nanocrystals by Ni doping and reduced graphene oxide decoration towards electrocatalytic hydrogen evolution. CrystEngComm, 2022, 24, 3369-3379.	1.3	9
290	Atomically ordered Pt ₃ Mn intermetallic electrocatalysts for the oxygen reduction reaction in fuel cells. Journal of Materials Chemistry A, 2022, 10, 7399-7408.	5.2	26
291	Hydrogen Evolution Reaction Activity Obtained Using Platinum Single Atoms on Tio2 Nanosheets Modified with Graphene. SSRN Electronic Journal, 0, , .	0.4	0
292	N-Doped Graphene-Coated Commercial Pt/C Catalysts toward High-Stability and Antipoisoning in Oxygen Reduction Reaction. Journal of Physical Chemistry Letters, 2022, 13, 2019-2026.	2.1	18

#	Article	IF	CITATIONS
293	Ultrahigh Ptâ€Massâ€Activity Hydrogen Evolution Catalyst Electrodeposited from Bulk Pt. Advanced Functional Materials, 2022, 32, .	7.8	50
294	Ultralow-Platinum Supported Polyaniline-MXene via Facile Electrochemical Strategy for Efficient Hydrogen Evolution. Journal of the Electrochemical Society, 2022, 169, 036507.	1.3	2
295	Efficient and Durable Cu ₃ P-FeP for Hydrogen Evolution from Seawater with Current Density Exceeding 1 A cm ^{–2} . ACS Applied Energy Materials, 2022, 5, 2909-2917.	2.5	3
296	Dual-Anion Doping Enables NiSe ₂ Electrocatalysts to Accelerate Alkaline Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 5036-5043.	2.5	12
297	Layered Double (Ni, Fe) Hydroxide Loaded with Platinum Nanoparticles as an Efficient Catalyst for the Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 5002-5009.	2.5	5
298	Atomically dispersed ultralow-platinum loading on Ti3C2T MXene as efficient catalyst for hydrogen evolution reaction. Electrochimica Acta, 2022, 411, 140091.	2.6	8
299	Hydrogen Production on Pt/TiO ₂ : Synergistic Catalysis between Pt Clusters and Interfacial Adsorbates. Journal of Physical Chemistry Letters, 2022, 13, 3182-3187.	2.1	4
300	Atomic-scale platinum deposition on photocathodes by multiple redox cycles under illumination for enhanced solar-to-hydrogen energy conversion. Journal of Power Sources, 2022, 533, 231410.	4.0	5
301	Restructuring morphology and surface-electronic-structure of Pt-Co3O4-δ-carbon toward ultra-highly efficient hydrogen production. Fuel, 2022, 319, 123616.	3.4	15
302	Theoretical investigation of HER/OER/ORR catalytic activity of single atom-decorated graphyne by DFT and comparative DOS analyses. Applied Surface Science, 2022, 592, 153237.	3.1	46
303	Au surface plasmon resonance promoted charge transfer in Z-scheme system enables exceptional photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2022, 310, 121322.	10.8	37
304	Atomic ruthenium coordinated with chlorine and nitrogen as efficient and multifunctional electrocatalyst for overall water splitting and rechargeable zinc-air battery. Chemical Engineering Journal, 2022, 441, 136078.	6.6	30
305	Multi-Hierarchical Porous Mn-Doped CoP Catalyst on Nickel Phosphide Foam for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 149-158.	2.5	14
306	Fiber Materials for Electrocatalysis Applications. Advanced Fiber Materials, 2022, 4, 720-735.	7.9	48
307	Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. Advanced Science, 2022, 9, e2200307.	5.6	121
308	Effect of surface reconstruction induced by different electrochemical methods on hydrogen evolution performance of Ni2P array catalysts. International Journal of Hydrogen Energy, 2022, 47, 17097-17106.	3.8	6
309	Superhydrophilic/Superaerophobic Hierarchical NiP ₂ @MoO ₂ /Co(<i>Ni</i>)MoO ₄ Core–Shell Array Electrocatalysts for Efficient Hydrogen Production at Large Current Densities. ACS Applied Materials & Interfaces, 2022, 14, 19448-19458.	4.0	23
310	Highly dispersed ruthenium nanoparticles on nitrogen doped carbon toward efficient hydrogen evolution in both alkaline and acidic electrolytes. RSC Advances, 2022, 12, 13932-13937.	1.7	2

#	Article	IF	CITATIONS
311	Atomic‣evel Platinum Filling into Niâ€Vacancies of Dualâ€Deficient NiO for Boosting Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2022, 12, .	10.2	110
312	RuCo Nanoparticles Embedded on Carbon Nanotubes through Spray Drying for Enhanced Hydrogen Evolution Electrocatalysis. ACS Applied Energy Materials, 2022, 5, 5633-5643.	2.5	4
313	Exploring Stability of Transition-Metal Single Atoms on Cu ₂ O Surfaces. Journal of Physical Chemistry C, 2022, 126, 8065-8078.	1.5	5
314	Electrodeposited Ni-Mo Surface Alloy @ Ni-Foam for Electrocatalytic Hydrogen Generation in Acidic and Alkaline Media. Journal of the Electrochemical Society, 2022, 169, 056511.	1.3	6
315	MOF-Derived Porous Fe ₃ O ₄ /RuO ₂ -C Composite for Efficient Alkaline Overall Water Splitting. ACS Applied Energy Materials, 2022, 5, 6059-6069.	2.5	20
316	Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nature Communications, 2022, 13, 2430.	5.8	98
317	Ligand Charge Donation–Acquisition Balance: A Unique Strategy to Boost Single Pt Atom Catalyst Mass Activity toward the Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 5970-5978.	5.5	18
318	Nickel–Cobalt Hydrogen Phosphate on Nickel Nitride Supported on Nickel Foam for Alkaline Seawater Electrolysis. ACS Applied Materials & Interfaces, 2022, 14, 22061-22070.	4.0	38
319	Recent advances of amorphous-phase-engineered metal-based catalysts for boosted electrocatalysis. Journal of Materials Science and Technology, 2022, 127, 1-18.	5.6	18
320	Morphological and Electronic Optimization of Nanostructured FeCoNi-Based Electrocatalysts by Al Dopants for Neutral/Alkaline Water Splitting. ACS Applied Energy Materials, 2022, 5, 5886-5900.	2.5	4
321	Platinum nanoclusters by atomic layer deposition on three-dimensional TiO2 nanotube array for efficient hydrogen evolution. Materials Today Energy, 2022, 27, 101042.	2.5	8
322	Unveiling the Role of Charge Transfer in Enhanced Electrochemical Nitrogen Fixation at Single-Atom Catalysts on BX Sheets (X = As, P, Sb). Journal of Physical Chemistry Letters, 2022, 13, 4530-4537.	2.1	29
323	Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis. Applied Catalysis B: Environmental, 2022, 315, 121534.	10.8	63
324	Synergetic catalysis of p–d hybridized single-atom catalysts: first-principles investigations. Journal of Materials Chemistry A, 2022, 10, 13066-13073.	5.2	3
325	Morphologyâ€Tuned Pt ₃ Ge Accelerates Water Dissociation to Industrialâ€ S tandard Hydrogen Production over a wide pH Range. Advanced Materials, 2022, 34, .	11.1	12
326	Surface conversion derived core-shell nanostructures of Co particles@RuCo alloy for superior hydrogen evolution in alkali and seawater. Applied Catalysis B: Environmental, 2022, 315, 121554.	10.8	29
327	Surfaceâ€Decorated Highâ€Entropy Alloy Catalysts with Significantly Boosted Activity and Stability. Advanced Functional Materials, 2022, 32, .	7.8	37
328	Boosting the performance of single-atom catalysts via external electric field polarization. Nature Communications, 2022, 13, .	5.8	52

ARTICLE IF CITATIONS Recent Advances in Carbonâ€Supported Nobleâ€Metal Electrocatalysts for Hydrogen Evolution Reaction: 329 10.2 64 Syntheses, Structures, and Properties. Advanced Energy Materials, 2022, 12, Singleâ€Atom Catalysts for Hydrogen Generation: Rational Design, Recent Advances, and Perspectives. 10.2 Advanced Energy Materials, 2022, 12, . Multi-functional metal–organic frameworks for detection and removal of water pollutions. 331 2.2 25 Chemical Communications, 2022, 58, 7890-7908. Interface Engineering of Mos2 Nanopetal Grown on Carbon Nanofibers for the Electrocatalytic Sensing of Mercury (Ii) and Efficient Hydrogen Evolution. SSRN Electronic Journal, 0, , . A highâ€performance transitionâ€metal phosphide electrocatalyst for converting solar energy into 333 22 hydrogen at 19.6% STH efficiency., 2023, 5, . Rapid Conversion of Co²⁺ to Co³⁺ by Introducing Oxygen Vacancies in Co₃O₄ Nanowire Anodes for Nitrogen Removal with Highly Efficient H₂ Recovery in Urine Treatment. Environmental Science & Sc 334 4.6 9693-9701. Sulfur-modulated FeNi nanoalloys as bifunctional oxygen electrode for efficient rechargeable 335 3.5 6 aqueous Zn-air batteries. Science China Materials, 2022, 65, 3007-3016. Fast atomic structure optimization with on-the-fly sparse Gaussian process potentials ^{*}. Journal of Physics Condensed Matter, 2022, 34, 344007. Hierarchically Self-Supporting Phosphorus-Doped CoMoO₄ Nanoflowers Arrays toward 337 2.5 8 Efficient Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 6814-6822. Synchronous bi-modulation by nanoclusters and single atoms for high-efficient oxygen reduction 6.6 electrocatalysis. Chemical Engineering Journal, 2022, 446, 137441. Platinum atomic clusters embedded in polyoxometalates-carbon black as an efficient and durable 339 5.015 catalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 624, 704-712. Single atoms (Pt, Ir and Rh) anchored on activated NiCo LDH for alkaline hydrogen evolution reaction. 340 2.2 Chemical Communications, 2022, 58, 8254-8257. Pt doping and strong metalâ€"support interaction as a strategy for NiMo-based electrocatalysts to 341 boost the hydrogen evolution reaction in alkaline solution. Journal of Materials Chemistry A, 2022, 5.2 19 10, 15395-15401. Atomic Scale Synergistic Interactions Lead to Breakthrough Catalysts for Electrocatalytic Water 342 0.4 Splitting. SSRN Electronic Journal, 0, , . Room Temperature Preparation of Two-Dimensional Black Phosphorus@Metal Organic Framework Heterojunctions and Their Efficient Overall Water-Splitting Electrocatalytic Reactions. ACS Applied 343 4.0 24 Materials & amp; Interfaces, 2022, 14, 31502-31509. In-situ growth of ruthenium-based nanostructure on carbon cloth for superior electrocatalytic 344 activity towards HER and OER. Applied Catalysis B: Environmental, 2022, 317, 121729. Simply constructed highly dispersed cobalt nanoparticles in diverse N-doped graphitic carbon with 345 remarkable performances for water electrolysis. International Journal of Hydrogen Energy, 2022, 47, 3.8 9 25511-25521. Electron enriched ternary NiMoB electrocatalyst for improved overall water splitting: Better 346 performance as compared to the Pt/C || RuÓ2 at high current density. Applied Materials Today, 2022, 2.3 29, 101579.

#	Article	IF	CITATIONS
347	Tuning the Cobalt–Platinum Alloy Regulating Singleâ€Atom Platinum for Highly Efficient Hydrogen Evolution Reaction. Advanced Functional Materials, 2022, 32, .	7.8	38
348	Co-Mo microcolumns decorated with trace Pt for large current density hydrogen generation in alkaline seawater. Applied Catalysis B: Environmental, 2022, 317, 121762.	10.8	30
349	Interfacing nickel with molybdenum oxides as monolithic catalyst to accelerate alkaline hydrogen electrocatalysis with robust stability. Applied Catalysis B: Environmental, 2022, 317, 121786.	10.8	19
350	Dense Heterointerfaces and Unsaturated Coordination Synergistically Accelerate Electrocatalysis in Pt/Pt ₅ P ₂ Porous Nanocages. Advanced Functional Materials, 2022, 32, .	7.8	23
351	Cathodic Protection System against a Reverse-Current after Shut-Down in Zero-Gap Alkaline Water Electrolysis. Jacs Au, 2022, 2, 2491-2500.	3.6	14
352	A Synthesis Strategy of Double-Atom Catalysts on a Carbon Surface. Journal of Physical Chemistry C, 2022, 126, 13520-13526.	1.5	4
353	Electronegativity Enhanced Strong Metal–Support Interaction in Ru@F–Ni ₃ N for Enhanced Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 36688-36699.	4.0	14
354	Synergies of Adjacent Sites in Atomically Dispersed Ruthenium toward Achieving Stable Hydrogen Evolution. Inorganic Chemistry, 2022, 61, 13453-13461.	1.9	73
355	Interfacial electronic interaction enabling exposed Pt(110) facets with high specific activity in hydrogen evolution reaction. Nano Research, 2023, 16, 174-180.	5.8	12
356	The role of the Pd ratio in increasing the activity of Pt for high efficient hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 921, 116711.	1.9	5
357	Yolk-shell Fe3O4@Carbon@Platinum-Chlorin e6 nanozyme for MRI-assisted synergistic catalytic-photodynamic-photothermal tumor therapy. Journal of Colloid and Interface Science, 2022, 628, 1033-1043.	5.0	19
358	Achieving efficient alkaline hydrogen evolution reaction on long-range Ni sites in Ru clusters-immobilized Ni3N array catalyst. Chemical Engineering Journal, 2023, 451, 138698.	6.6	14
359	Modulation of the interfacial charge density on Fe2P–CoP by coupling CeO2 for accelerating alkaline electrocatalytic hydrogen evolution reaction and overall water splitting. Chemical Engineering Journal, 2023, 451, 138550.	6.6	44
360	Ir nanodots decorated Ni3Fe nanoparticles for boosting electrocatalytic water splitting. Chemical Engineering Journal, 2023, 451, 138548.	6.6	5
361	Interface engineering of MoS2 nanopetal grown on carbon nanofibers for the electrocatalytic sensing of mercury (II) and efficient hydrogen evolution. Materials Today Nano, 2022, 20, 100262.	2.3	2
362	Atomic scale synergistic interactions lead to breakthrough catalysts for electrocatalytic water splitting. Applied Catalysis B: Environmental, 2023, 320, 122016.	10.8	35
363	Doped MXene combinations as highly efficient bifunctional and multifunctional catalysts for water splitting and metal–air batteries. Journal of Materials Chemistry A, 2022, 10, 22500-22511.	5.2	16
364	Doping P atom with a lone pair: an effective strategy to realize high HER catalytic activity and avoid deactivation under wide H* coverage on 2D silicene and germanene by increasing the structural rigidity. Nanoscale, 2022, 14, 10918-10928.	2.8	4

#	Article	IF	Citations
365	Strain engineering of metal nanostructures for catalysis. , 2022, , .		0
366	<i>In situ</i> precise anchoring of Pt single atoms in spinel Mn ₃ O ₄ for a highly efficient hydrogen evolution reaction. Energy and Environmental Science, 2022, 15, 4592-4600.	15.6	84
367	Transition metal Dual–Atom Ni2/TiO2 catalysts for photoelectrocatalytic hydrogen Evolution: A density functional theory study. Applied Surface Science, 2023, 608, 155132.	3.1	7
368	Hydrogen evolution reaction activity obtained using platinum single atoms on TiO2 nanosheetsÂmodified with graphene. Journal of Materials Science, 2022, 57, 16448-16459.	1.7	2
369	Ultrasmall molybdenum-iron nitride nanoparticles confined carbon nanotubes hybrids for efficient overall water splitting. Functional Composites and Structures, 2022, 4, 035008.	1.6	7
370	Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production. Nature Communications, 2022, 13, .	5.8	22
371	Effect of the interfacial electronic coupling of nickel-iron sulfide nanosheets with layer Ti3C2 MXenes as efficient bifunctional electrocatalysts for anion-exchange membrane water electrolysis. Applied Catalysis B: Environmental, 2023, 321, 122039.	10.8	27
372	Cost-effective electrocatalysts for Hydrogen Evolution Reactions (HER): Challenges and Prospects. International Journal of Hydrogen Energy, 2022, 47, 38964-38982.	3.8	27
373	Theoretically revealing the activity origin of the hydrogen evolution reaction on carbon-based single-atom catalysts and finding ideal catalysts for water splitting. Journal of Materials Chemistry A, 2022, 10, 24362-24372.	5.2	5
374	Enhanced oxygen activation on an atomically dispersed Au catalyst with dual active sites for room-temperature formaldehyde oxidation. Environmental Science: Nano, 2023, 10, 80-91.	2.2	4
375	Transition metal single atom embedded GaN monolayer surface for efficient and selective CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 24280-24289.	5.2	5
376	Interfacial Charge-Modulated Multifunctional MoS ₂ /Ti ₃ C ₂ T _{<i>x</i>} Penetrating Electrode for High-Efficiency Freshwater Production. ACS Nano, 2022, 16, 18898-18909.	7.3	8
377	Phosphorus-Rich Ruthenium Phosphide Embedded on a 3D Porous Dual-Doped Graphitic Carbon for Hydrogen Evolution Reaction. Nanomaterials, 2022, 12, 3597.	1.9	0
378	Tuning Structure and Properties of Pt Catalysts Confined in Singleâ€Walled Carbon Nanotubes (SWNTs) for Electrocatalysis. ChemNanoMat, 0, , .	1.5	0
379	Catalytic effect of carbon-based electrode materials in energy storage devices. Science China Materials, 2022, 65, 3229-3242.	3.5	5
380	Heterostructure Engineering of 2D Superlattice Materials for Electrocatalysis. Advanced Science, 2022, 9, .	5.6	29
381	Highly dispersed Pt species anchored on W18O49 nanowires mediate efficient and durable hydrogen evolution in acidic water. Science China Materials, 2022, 65, 3435-3441.	3.5	9
382	Transition Metalâ€Based Electrocatalysts for Seawater Oxidation. Advanced Materials Interfaces, 2022, 9, .	1.9	11

#	Article	IF	CITATIONS
383	Modulating organic ligands to construct 2D–3D-hybrid porous P-doped metal-organic frameworks electrocatalyst for overall water splitting. Journal of Alloys and Compounds, 2023, 933, 167670.	2.8	8
384	In-situ construction and repair of high catalytic activity interface on corrosion-resistant high-entropy amorphous alloy electrode for hydrogen production in high-temperature dilute sulfuric acid electrolysis. Chemical Engineering Journal, 2023, 453, 139905.	6.6	7
385	Stable p-block metals electronic perturbation in PtM@CNT (M=Ga, In, Pb and Bi) for acidic seawater hydrogen production at commercial current densities. Applied Catalysis B: Environmental, 2023, 322, 122100.	10.8	18
386	Improving the hydrogen evolution reaction activity of molybdenum-based heterojunction nanocluster capsules via electronic modulation by erbium–nitrogen–phosphorus ternary doping. Chemical Engineering Journal, 2023, 454, 140079.	6.6	14
387	Electrocatalysis in Li–O2 battery over single-atom catalyst based on g-C3N4 substrate. Applied Surface Science, 2023, 610, 155481.	3.1	5
388	Electrocatalytic Performance of Bimetallic Ni-Mo Alloy with Thermally Modulated Microstructure for Hydrogen Generation at Ultra-Low Overpotential in Acidic Media. , 2022, , .		0
389	S and O Co-Coordinated Mo Single Sites in Hierarchically Porous Tubes from Sulfur–Enamine Copolymerization for Oxygen Reduction and Evolution. Journal of the American Chemical Society, 2022, 144, 20571-20581.	6.6	39
390	Multi-configuration structure based on catalysis electrodes and composite membrane for efficient alkaline water splitting. Chemical Engineering Journal, 2023, 454, 140373.	6.6	3
391	Ultrahigh Mass Activity for the Hydrogen Evolution Reaction by Anchoring Platinum Single Atoms on Active {100} Facets of TiC via Cation Defect Engineering. Advanced Functional Materials, 2023, 33, .	7.8	11
392	Single atom catalysts in Van der Waals gaps. Nature Communications, 2022, 13, .	5.8	17
393	A crystal glass–nanostructured Al-based electrocatalyst for hydrogen evolution reaction. Science Advances, 2022, 8, .	4.7	20
394	Chitin Derived Carbon Anchored Ultrafine Ru Nanoparticles for Efficient Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 15530-15537.	3.2	9
395	Progress of oxygen and hydrogen evolution reactions in parallel with chlorine evolution on manganese single-atom catalysts based on perfect and defective porphyrin, corrole, and phthalocyanine. International Journal of Hydrogen Energy, 2023, 48, 2973-2989.	3.8	5
396	2D transitional-metal nickel compounds monolayer: Highly efficient multifunctional electrocatalysts for the HER, OER and ORR. International Journal of Hydrogen Energy, 2023, 48, 4242-4252.	3.8	17
397	Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Advances in Colloid and Interface Science, 2023, 311, 102811.	7.0	17
398	Amorphous nickel phosphate as a high performance electrode material for supercapacitor. Synthetic Metals, 2023, 292, 117217.	2.1	5
399	Interface engineering of Fe2P@CoMnP4 heterostructured nanoarrays for efficient and stable overall water splitting. Journal of Colloid and Interface Science, 2023, 633, 897-906.	5.0	10
400	A study of twoâ€dimensional single atomâ€supported <scp>MXenes</scp> as hydrogen evolution reaction catalysts using density functional theory and machine learning. International Journal of Quantum Chemistry, 2023, 123, .	1.0	4

#	Article	IF	CITATIONS
401	1T' Re <i>_x</i> Mo _{1â^'} <i>_x</i> S ₂ –2H MoS _{2Lateral Heterojunction for Enhanced Hydrogen Evolution Reaction Performance. Advanced Functional Materials, 2023, 33, .}	> 7.8	12
402	Ultrathin NiPt Single-Atom Alloy for Synergistically Accelerating Alkaline Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 15136-15145.	2.5	6
403	Superior HER Activity of rGO@AuNRs@SAC-Pt Promoted by Maximized Electronic Interaction and Plasmonic Hot Carriers. Journal of Physical Chemistry C, 2022, 126, 20235-20242.	1.5	0
404	Engineering Single-Atom Sites into Pore-Confined Nanospaces of Porphyrinic Metal–Organic Frameworks for the Highly Efficient Photocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2022, 144, 22747-22758.	6.6	53
405	Ni optimizes Ir reaction pathway through IrNi alloy synergistic effect to improve overall water splitting efficiency. International Journal of Hydrogen Energy, 2023, 48, 8440-8449.	3.8	7
406	Understanding the Atomic and Defective Interface Effect on Ruthenium Clusters for the Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 49-59.	5.5	47
407	Ultralow Pt Catalyst Loading Prepared by the Electroreduction of a Supramolecular Assembly for the Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 15597-15604.	2.5	9
408	Transition metals incorporated on phosphorene sheet as cost-effective single atom catalysts for hydrogen evolution reaction: A DFT study. Computational and Theoretical Chemistry, 2023, 1220, 113998.	1.1	3
409	Two-dimensional ruthenium boride: a Dirac nodal loop quantum electrocatalyst for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 3717-3724.	5.2	4
410	The enhancement in the performance of ultra-small core–shell Au@AuPt nanoparticles toward HER and ORR by surface engineering. Nanoscale, 2023, 15, 4378-4387.	2.8	3
411	Metastable-phase platinum oxide for clarifying the Pt–O active site for the hydrogen evolution reaction. Energy and Environmental Science, 2023, 16, 574-583.	15.6	27
412	B ₄ C enhances the supported platinum DER/HER performance. Journal of Materials Chemistry A, 2023, 11, 4000-4006.	5.2	8
413	Graphitic carbon nitride embedded with single-atom Pt for photo-enhanced electrocatalytic hydrogen evolution reaction. Applied Surface Science, 2023, 615, 156372.	3.1	5
414	General Synergistic Hybrid Catalyst Synthesis Method Using a Natural Enzyme Scaffold-Confined Metal Nanocluster. ACS Applied Materials & Interfaces, 2023, 15, 761-771.	4.0	2
415	Synthesis of Platinum Nanocrystals Dispersed on Nitrogen-Doped Hierarchically Porous Carbon with Enhanced Oxygen Reduction Reaction Activity and Durability. Nanomaterials, 2023, 13, 444.	1.9	2
416	Nâ€Doped Carbon Shells Encapsulated Ruâ€Ni Nanoalloys for Efficient Hydrogen Evolution Reaction. ChemSusChem, 2023, 16, .	3.6	8
417	Interface engineering of porous Co(OH) ₂ /La(OH) ₃ @Cu nanowire heterostructures for high efficiency hydrogen evolution and overall water splitting. Journal of Materials Chemistry A, 2023, 11, 4355-4364.	5.2	9
418	Rational Design of Atomically Dispersed Metal Site Electrocatalysts for Oxygen Reduction Reaction. Advanced Science, 2023, 10, .	5.6	14

#	Article	IF	CITATIONS
419	Sowing Single Atom Seeds: A Versatile Strategy for Hyper‣ow Noble Metal Loading to Boost Hydrogen Evolution Reaction. Advanced Energy Materials, 2023, 13, .	10.2	14
420	Ag@Pt core-shell icosahedral nanocrystals with solid solution interface improve pH-Universal hydrogen evolution at large current densities. Composites Part B: Engineering, 2023, 254, 110600.	5.9	5
421	Top-down and matchable interfacial engineering to construct hierarchical deformed NiS/NiCoP for hydrogen evolution reaction over a broad pH range. Applied Surface Science, 2023, 622, 156896.	3.1	5
422	Dual-phase cobalt phosphide/phosphate hybrid interactions via iridium nanocluster interfacial engineering toward efficient overall seawater splitting. Applied Catalysis B: Environmental, 2023, 327, 122467.	10.8	15
423	Metal/CeO2â^'x with regulated heterointerface, interfacial oxygen vacancy and electronic structure for highly efficient hydrogen evolution reaction. Applied Surface Science, 2023, 626, 157248.	3.1	2
424	Theoretical calculation of hydrogen evolution reaction in two-dimensional As2X3(X=S, Se, Te) doped with transition metal atoms. Applied Surface Science, 2023, 616, 156475.	3.1	6
425	Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes. Nature Communications, 2023, 14, .	5.8	31
426	Developments in electrocatalysts for electrocatalytic hydrogen evolution reaction with reference to bio-inspired phthalocyanines. International Journal of Hydrogen Energy, 2023, 48, 16569-16592.	3.8	13
427	CNTs/CNF-supported multi-active components as highly efficient bifunctional oxygen electrocatalysts and their applications in zinc-air batteries. Nano Research, 2023, 16, 4793-4802.	5.8	7
428	First-principles study of the effect of the local coordination environment on the electrochemical activity of Pd1-CxNy single atom catalysts. Chemical Engineering Science, 2023, 270, 118551.	1.9	2
429	Reâ€Dispersion of Platinum From CNTs Substrate to <i>α</i> â€MoC _{1Ââ€Âx} to Boost the Hydrogen Evolution Reaction. Small, 2023, 19, .	5.2	2
430	Hydrogen Production from Water Electrolysis: The Role of OER and HER Electrocatalysts. ACS Symposium Series, 0, , 73-119.	0.5	1
431	Highâ€₽erforming Atomic Electrocatalyst for Chlorine Evolution Reaction. Small, 2023, 19, .	5.2	8
432	Surface Unsaturated Sulfur Modulates Pt Subâ€Nanoparticles on Tandem Homojunction CdS for Efficient Electron Extraction. Advanced Energy Materials, 2023, 13, .	10.2	10
433	Recent Development of Fuel Cell Core Components and Key Materials: A Review. Energies, 2023, 16, 2099.	1.6	3
434	Evaluation of thermal plasma-synthesized cobalt boride nanoparticles as efficient water-splitting catalysts. Journal of Environmental Chemical Engineering, 2023, 11, 109578.	3.3	2
435	Encapsulating dual-phase WC-W2C nanoparticles into hollow carbon dodecahedrons for all-pH electrocatalytic hydrogen evolution. Chemical Engineering Journal, 2023, 462, 142132.	6.6	7
436	Research progress on single atom and particle synergistic catalysts for electrocatalytic reactions. Materials Chemistry Frontiers, 2023, 7, 1992-2013.	3.2	7

#	Article	IF	CITATIONS
437	Highâ€Throughput Screening of Electrocatalysts for Nitrogen Reduction Reactions Accelerated by Interpretable Intrinsic Descriptor. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
438	Highâ€Throughput Screening of Electrocatalysts for Nitrogen Reduction Reactions Accelerated by Interpretable Intrinsic Descriptor. Angewandte Chemie, 2023, 135, .	1.6	0
439	Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells. Nature Communications, 2023, 14, .	5.8	33
440	Defectâ€Rich PdIr Bimetallene Nanoribbons with Interatomic Charge Localization for Isopropanolâ€Assisted Seawater Splitting. Small, 2023, 19, .	5.2	7
441	N-doped carbon wrapped CoFe alloy nanoparticles with MoS2 nanosheets as electrocatalyst for hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2023, 48, 22032-22043.	3.8	11
442	A cobalt–manganese modified theophrastite phase of nickel hydroxide nanoflower arrays on nickel foam as a self-standing bifunctional electrode for overall water electrolysis. Sustainable Energy and Fuels, 2023, 7, 2428-2440.	2.5	5
443	IrPd Nanoalloyâ€Structured Bifunctional Electrocatalyst for Efficient and pHâ€Universal Water Splitting. Small, 2023, 19, .	5.2	8
444	FeC6N monolayer with ideal properties for water splitting. Applied Surface Science, 2023, 626, 157203.	3.1	2
445	Recent Advances in Water-Splitting Electrocatalysts Based on Electrodeposition. Materials, 2023, 16, 3044.	1.3	8
446	Recent Progress on Nonâ€Carbonâ€Supported Singleâ€Atom Catalysts for Electrochemical Conversion of Green Energy. Small Science, 2023, 3, .	5.8	3
447	Electrocatalytic Hydrogen Evolution Reaction from Acetic Acid over Gold Immobilized Glassy Carbon Surface. Catalysts, 2023, 13, 744.	1.6	2
448	Electronic Structure Engineering of Pt Species over Pt/WO ₃ toward Highly Efficient Electrocatalytic Hydrogen Evolution. Small, 2023, 19, .	5.2	13
449	Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis. Nano Research, 2023, 16, 12186-12195.	5.8	5
450	Synergistic Acid Hydrogen Evolution of Neighboring Pt Single Atoms and Clusters: Understanding Their Superior Activity and Mechanism. Inorganic Chemistry, 2023, 62, 6856-6863.	1.9	6
457	One-step synthesis of MoS ₂ /NiS heterostructures with a stable 1T phase for an efficient hydrogen evolution reaction. Dalton Transactions, 2023, 52, 8530-8535.	1.6	1
464	Pd nanoparticle-decorated covalent organic frameworks for enhanced photocatalytic tetracycline hydrochloride degradation and hydrogen evolution. Chemical Communications, 2023, 59, 6387-6390.	2.2	4
492	High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions. Frontiers in Energy, 0, , .	1.2	2
501	A critical review on amorphous–crystalline heterostructured electrocatalysts for efficient water splitting. Materials Chemistry Frontiers, 2023, 7, 6254-6280.	3.2	3

		CITATION RE	CITATION REPORT		
#	Article		IF	CITATIONS	
518	Single-atom catalysts supported on a hybrid structure of boron nitride/graphene for effinite nitrogen fixation <i>via</i> synergistic interfacial interactions. Nanoscale, 0, , .	ficient	2.8	0	
521	Highly efficient sustainable strategies toward carbon-neutral energy production. Energ Environmental Science, 2024, 17, 1007-1045.	gy and	15.6	1	
524	Enhancement of Acidic HER by Fe Doped CoP with Bimetallic Synergy. Springer Procee 2024, , 465-474.	dings in Physics,	0.1	0	