Risk of increased food insecurity under stringent global

Nature Climate Change 8, 699-703

DOI: 10.1038/s41558-018-0230-x

Citation Report

#	Article	IF	CITATIONS
1	Macroeconomic Impacts of Climate Change Driven by Changes in Crop Yields. Sustainability, 2018, 10, 3673.	3.2	27
2	Impacts of intensifying or expanding cereal cropping in subâ€Saharan Africa on greenhouse gas emissions and food security. Global Change Biology, 2019, 25, 3720-3730.	9.5	51
3	Greenhouse gas abatement strategies and costs in French dairy production. Journal of Cleaner Production, 2019, 236, 117589.	9.3	17
4	Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: an integrated modelling study. Lancet Planetary Health, The, 2019, 3, e318-e329.	11.4	176
5	Energy security and environmental sustainability index of South Asian countries: A composite index approach. Ecological Indicators, 2019, 106, 105507.	6.3	190
6	Pathways Toward Sustainable Development. , 2019, , 510-543.		O
7	Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?. Water (Switzerland), 2019, 11, 2223.	2.7	24
9	Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annual Review of Environment and Resources, 2019, 44, 255-286.	13.4	181
10	On the financial viability of negative emissions. Nature Communications, 2019, 10, 1783.	12.8	59
11	Economic Impacts of a Low Carbon Economy on Global Agriculture: The Bumpy Road to Paris. Sustainability, 2019, 11, 2349.	3.2	13
12	Key determinants of global land-use projections. Nature Communications, 2019, 10, 2166.	12.8	123
13	A multi-model assessment of food security implications of climate change mitigation. Nature Sustainability, 2019, 2, 386-396.	23.7	152
14	Making the Paris agreement climate targets consistent with food security objectives. Global Food Security, 2019, 23, 93-103.	8.1	46
15	Climate change and developing country growth: the cases of Malawi, Mozambique, and Zambia. Climatic Change, 2019, 154, 335-349.	3.6	16
16	Global advanced bioenergy potential under environmental protection policies and societal transformation measures. GCB Bioenergy, 2019, 11, 1041-1055.	5.6	39
17	Pollen development and function under heat stress: from effects to responses. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	45
18	Global crop output and irrigation water requirements under a changing climate. Heliyon, 2019, 5, e01266.	3.2	15
19	The future of biomass and bioenergy deployment and trade: a synthesis of 15 years IEA Bioenergy Task 40 on sustainable bioenergy trade. Biofuels, Bioproducts and Biorefining, 2019, 13, 247-266.	3.7	47

#	ARTICLE	IF	CITATIONS
20	Quantifying the impacts of climate variability and human interventions on crop production and food security in the Yangtze River Basin, China, 1990–2015. Science of the Total Environment, 2019, 665, 379-389.	8.0	45
21	Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model. Earth System Dynamics, 2019, 10, 617-630.	7.1	22
22	Identifying trade-offs and co-benefits of climate policies in China to align policies with SDGs and achieve the 2 °C goal. Environmental Research Letters, 2019, 14, 124070.	5.2	21
23	The Human Cost of Anthropogenic Global Warming: Semi-Quantitative Prediction and the 1,000-Tonne Rule. Frontiers in Psychology, 2019, 10, 2323.	2.1	29
24	The Value of BECCS in IAMs: a Review. Current Sustainable/Renewable Energy Reports, 2019, 6, 107-115.	2.6	42
25	The Imperative for Climate Action to Protect Health. New England Journal of Medicine, 2019, 380, 263-273.	27.0	633
26	Agricultural investments and hunger in Africa modeling potential contributions to SDG2 – Zero Hunger. World Development, 2019, 116, 38-53.	4.9	83
27	Labor supply assumptions - A missing link in food security projections. Global Food Security, 2020, 25, 100328.	8.1	11
28	New challenges of food security in Northwest China: Water footprint and virtual water perspective. Journal of Cleaner Production, 2020, 245, 118939.	9.3	59
29	Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing. Journal of Experimental Botany, 2020, 71, 470-479.	4.8	184
30	Afforestation for climate change mitigation: Potentials, risks and tradeâ€offs. Global Change Biology, 2020, 26, 1576-1591.	9.5	162
31	Spatial patterns of largeâ€scale land transactions and their potential socioâ€environmental outcomes in Cambodia, Ethiopia, Liberia, and Peru. Land Degradation and Development, 2020, 31, 1241-1251.	3.9	21
32	Machine learning and its applications in plant molecular studies. Briefings in Functional Genomics, 2020, 19, 40-48.	2.7	44
33	Afforestation and avoided deforestation in a multi-regional integrated assessment model. Ecological Economics, 2020, 169, 106452.	5.7	3
34	Climate scenarios and their relevance and implications for impact studies., 2020,, 11-29.		1
35	Grand Challenges in Central Europe: The Relationship of Food Security, Climate Change, and Energy Use. Energies, 2020, 13, 5422.	3.1	17
36	Assessing nutritional, health, and environmental sustainability dimensions of agri-food production. Global Food Security, 2020, 26, 100406.	8.1	51
37	Global hunger and climate change adaptation through international trade. Nature Climate Change, 2020, 10, 829-835.	18.8	117

3

#	Article	IF	CITATIONS
38	The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection. Scientific Reports, 2020, 10, 19778.	3.3	85
39	Achievements and needs for the climate change scenario framework. Nature Climate Change, 2020, 10, 1074-1084.	18.8	245
40	Are scenario projections overly optimistic about future yield progress?. Global Environmental Change, 2020, 64, 102120.	7.8	11
41	Progress and barriers in understanding and preventing indirect landâ€use change. Biofuels, Bioproducts and Biorefining, 2020, 14, 924-934.	3.7	33
42	The climate change mitigation potential of bioenergy with carbon capture and storage. Nature Climate Change, 2020, 10, 1023-1029.	18.8	149
43	A Structural Analysis for the Categorization of the Negative Externalities of Transport and the Hierarchical Organization of Sustainable Mobility's Strategies. Sustainability, 2020, 12, 6011.	3.2	28
44	Food security under high bioenergy demand toward long-term climate goals. Climatic Change, 2020, 163, 1587-1601.	3.6	33
45	Improving Assessments of the Three Pillars of Climate Smart Agriculture: Current Achievements and Ideas for the Future. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	28
46	The Implications of Policy Uncertainty on Solar Photovoltaic Investment. Energies, 2020, 13, 6233.	3.1	5
47	Mapping potentials and bridging regional gaps of renewable resources in China. Renewable and Sustainable Energy Reviews, 2020, 134, 110337.	16.4	30
48	The GGCMI Phase 2 experiment: global gridded crop model simulations under uniform changes in CO ₂ , temperature, water, and nitrogen levels (protocol) Tj ETQq0 0 ()rgsBaT/Ov	erl os k 10 Tf 5
49	Reply to: An appeal to cost undermines food security risks of delayed mitigation. Nature Climate Change, 2020, 10, 420-421.	18.8	2
50	Optimization and Characterization of Essential Oil Nanoemulsions Using Ultrasound for New Ecofriendly Insecticides. ACS Sustainable Chemistry and Engineering, 2020, 8, 7981-7992.	6.7	27
51	Modelling food security: Bridging the gap between the micro and the macro scale. Global Environmental Change, 2020, 63, 102085.	7.8	47
52	Challenges and Prospects for Agricultural Greenhouse Gas Mitigation Pathways Consistent With the Paris Agreement. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	54
53	Stakeholder-designed scenarios for global food security assessments. Global Food Security, 2020, 24, 100352.	8.1	18
54	Modelling alternative futures of global food security: Insights from FOODSECURE. Global Food Security, 2020, 25, 100358.	8.1	35
55	Exploring the impacts of climate change and mitigation policies on UK feed barley supply and implications for national and transnational food security. SN Applied Sciences, 2020, 2, 1.	2.9	3

#	Article	IF	CITATIONS
56	The role of transport electrification in global climate change mitigation scenarios. Environmental Research Letters, 2020, 15, 034019.	5.2	148
57	Influence of climate change impacts and mitigation costs on inequality between countries. Climatic Change, 2020, 160, 15-34.	3.6	52
58	Climate change responses benefit from a global food system approach. Nature Food, 2020, 1, 94-97.	14.0	235
59	Decarbonization pathways and energy investment needs for developing Asia in line with †well below†2°C. Climate Policy, 2020, 20, 234-245.	5.1	18
60	Setting Climate Action as the Priority for the Common Agricultural Policy: AÂSimulation Experiment. Journal of Agricultural Economics, 2020, 71, 50-69.	3.5	17
61	GLOBAL MARKET AND ECONOMIC WELFARE IMPLICATIONS OF CHANGES IN AGRICULTURAL YIELDS DUE TO CLIMATE CHANGE. Climate Change Economics, 2020, 11, 2050005.	5.0	12
62	Climate smart agriculture and global food-crop production. PLoS ONE, 2020, 15, e0231764.	2.5	35
63	An appeal to cost undermines food security risks of delayed mitigation. Nature Climate Change, 2020, 10, 418-419.	18.8	5
64	Agronomic, physiological and molecular characterisation of rice mutants revealed the key role of reactive oxygen species and catalase in high-temperature stress tolerance. Functional Plant Biology, 2020, 47, 440.	2.1	50
65	Using food loss reduction to reach food security and environmental objectives – A search for promising leverage points. Food Policy, 2021, 98, 101915.	6.0	42
66	How are Victorian Local Governments' responding to climate change and food insecurity?. Health Promotion Journal of Australia, 2021, 32, 137-144.	1.2	5
67	How climate change interacts with inequity to affect nutrition. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e696.	8.1	19
68	Estimating virtual land use under future conditions: Application of a food balance approach using the UK. Land Use Policy, 2021, 101, 105132.	5.6	15
69	Comparing environmental impacts of Chinese Torreya plantations and regular forests using remote sensing. Environment, Development and Sustainability, 2021, 23, 133-150.	5.0	9
70	Physiological, Biochemical, and Molecular Mechanism of Nitric Oxide-Mediated Abiotic Stress Tolerance., 2021,, 217-238.		2
71	Quantifying Uncertainty in Food Security Modeling. Agriculture (Switzerland), 2021, 11, 33.	3.1	10
72	Food and agriculture systems foresight study: Implications for gender, poverty, and nutrition. Q Open, 2021, 1, .	1.7	2
73	Impacts of Climate Change on Livestock and Related Food Security Implications—Overview of the Situation in Pakistan and Policy Recommendations. , 2021, , 197-239.		3

#	Article	IF	CITATIONS
74	Security implications of climate change: A decade of scientific progress. Journal of Peace Research, 2021, 58, 3-17.	2.9	101
75	Land-based climate change mitigation potentials within the agenda for sustainable development. Environmental Research Letters, 2021, 16, 024006.	5. 2	32
76	Impacts of climate change on the livestock food supply chain; a review of the evidence. Global Food Security, 2021, 28, 100488.	8.1	177
77	Breathable Nanogenerators for an On-Plant Self-Powered Sustainable Agriculture System. ACS Nano, 2021, 15, 5307-5315.	14.6	99
78	Combining ambitious climate policies with efforts to eradicate poverty. Nature Communications, 2021, 12, 2342.	12.8	63
79	An overview of climate change impacts on the society in China. Advances in Climate Change Research, 2021, 12, 210-223.	5.1	27
80	Prioritizing Achievable Goals for Food Security in the Developing World. Global Journal of Medical Research, 2021, , 11-25.	0.1	1
81	Strong regional influence of climatic forcing datasets on global crop model ensembles. Agricultural and Forest Meteorology, 2021, 300, 108313.	4.8	17
82	The economics of bioenergy with carbon capture and storage (BECCS) deployment in a 1.5°C or 2°C world. Global Environmental Change, 2021, 68, 102262.	7.8	53
83	Restoring Nature at Lower Food Production Costs. Frontiers in Environmental Science, 2021, 9, .	3.3	6
84	Systematic review on effects of bioenergy from edible versus inedible feedstocks on food security. Npj Science of Food, 2021, 5, 9.	5 . 5	21
85	Determinants of farmers $\hat{a} \in \mathbb{N}$ adaptation decisions under changing climate: the case of Fars province in Iran. Climatic Change, 2021, 166, 1.	3. 6	6
86	Perceptions of Glacier Grafting: An Indigenous Technique of Water Conservation for Food Security in Gilgit-Baltistan, Pakistan. Sustainability, 2021, 13, 5208.	3.2	4
87	Finding and fixing food system emissions: the double helix of science and policy. Environmental Research Letters, 2021, 16, 061002.	5. 2	16
88	8. Food security and the moral differences between climate mitigation and geoengineering: the case of biofuels and BECCS., $2021, \dots$		2
89	Introduction: Justice and food security in a changing climate. , 2021, , .		7
90	Biodiversity–productivity relationships are key to nature-based climate solutions. Nature Climate Change, 2021, 11, 543-550.	18.8	77
91	Climate change risks to human development in sub-Saharan Africa: a review of the literature. Climate and Development, 2022, 14, 571-589.	3.9	8

#	Article	IF	CITATIONS
92	A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2021, 2, 494-501.	14.0	530
93	Impact of climate change on global agricultural markets under different shared socioeconomic pathways. Agricultural Economics (United Kingdom), 2021, 52, 963-984.	3.9	9
94	Extreme climate events increase risk of global food insecurity and adaptation needs. Nature Food, 2021, 2, 587-595.	14.0	119
95	Carbon price dynamics in ambitious climate mitigation scenarios: an analysis based on the IAMC 1.5 \hat{A}° C scenario explorer. Environmental Research Communications, 2021, 3, 081007.	2.3	4
96	The adverse consequences of global harvest and weather disruptions on economic activity. Nature Climate Change, 2021, 11, 665-672.	18.8	28
97	Resilience and Equity in a Time of Crises: Investing in Public Urban Greenspace Is Now More Essential Than Ever in the US and Beyond. International Journal of Environmental Research and Public Health, 2021, 18, 8420.	2.6	31
98	Cutting through the noise on negative emissions. Joule, 2021, 5, 1956-1970.	24.0	9
99	Transitioning to Low-Carbon Economies under the 2030 Agenda: Minimizing Trade-Offs and Enhancing Co-Benefits of Climate-Change Action for the SDGs. Sustainability, 2021, 13, 10774.	3.2	15
100	Reconciling regional nitrogen boundaries with global food security. Nature Food, 2021, 2, 700-711.	14.0	51
101	How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200452.	3.4	49
102	Equilibrium Modeling for Environmental Science: Exploring the Nexus of Economic Systems and Environmental Change. Earth's Future, 2021, 9, e2020EF001923.	6.3	6
103	More sensitive to drought of young tissues with weak water potential adjustment capacity in two desert shrubs. Science of the Total Environment, 2021, 790, 148103.	8.0	13
104	Understanding the impacts of the COVID-19 pandemic on sustainable agri-food system and agroecosystem decarbonization nexus: A review. Journal of Cleaner Production, 2021, 318, 128451.	9.3	40
105	The global cost of reaching a world without hunger: Investment costs and policy action opportunities. Food Policy, 2021, 104, 102151.	6.0	17
106	Greenhouse gas mitigation technologies in agriculture: Regional circumstances and interactions determine cost-effectiveness. Journal of Cleaner Production, 2021, 317, 128406.	9.3	13
107	CRISPR-mediated genome editing for developing climate-resilient monocot and dicot crops. , 2022, , 393-411.		1
108	Klima und Armut. , 2021, , 347-353.		0
109	Climate change–food security nexus in Burkina Faso. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	1.0	0

#	Article	IF	CITATIONS
110	Contextualizing Resilience Amidst Rapid Urbanization in Kenya Through Rural-Urban Linkages. Climate Change Management, 2021, , 55-73.	0.8	1
111	Impact of Climate Change on Agriculture: Evidence and Predictions. Green Energy and Technology, 2020, , 17-32.	0.6	6
112	Heat Stress in Crops: Driver of Climate Change Impacting Global Food Supply. , 2020, , 99-117.		5
113	Meeting the food security challenge for nine billion people in 2050: What impact on forests?. Global Environmental Change, 2020, 62, 102056.	7.8	86
114	Measuring the sustainable development implications of climate change mitigation. Environmental Research Letters, 2020, 15, 085004.	5.2	25
115	An assessment of the potential of using carbon tax revenue to tackle poverty. Environmental Research Letters, 2020, 15, 114063.	5.2	21
116	How food secure are the green, rocky and middle roads: food security effects in different world development paths. Environmental Research Communications, 2020, 2, 031002.	2.3	17
118	Biophysical and economic implications for agriculture of $+1.5 \hat{A}^{\circ}$ and $+2.0 \hat{A}^{\circ}$ C global warming using AgMIP Coordinated Global and Regional Assessments. Climate Research, 2018, 76, 17-39.	1.1	49
119	The GGCMI PhaseÂ2 emulators: global gridded crop model responses to changes in CO ₂ , temperature, water, and nitrogen (version 1.0). Geoscientific Model Development, 2020, 13, 3995-4018.	3.6	19
120	How much multilateralism do we need? Effectiveness of unilateral agricultural mitigation efforts in the global context. Environmental Research Letters, 2021, 16, 104038.	5.2	4
121	The Impact of Sustainability Goals on Productivity Growth: The Moderating Role of Global Warming. International Journal of Environmental Research and Public Health, 2021, 18, 11034.	2.6	10
122	Land-based implications of early climate actions without global net-negative emissions. Nature Sustainability, 2021, 4, 1052-1059.	23.7	27
123	Optimality-based modelling of climate impacts on global potential wheat yield. Environmental Research Letters, 2021, 16, 114013.	5.2	5
124	Hunger's toll looks set to grow with tough action on climate change. Nature, 2018, 560, 144-144.	27.8	0
125	DEVELOPMENT OF FUTURE SCENARIOS DATABASE FOR JAPAN AND ANALYSIS OF THE SCENARIOS FOCUSING ENERGY AND CARBON EMISSION STRUCTURE. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2019, 75, I_65-I_72.	0.1	0
126	Kýresel Gıda Güvencesinin İzlenmesi ve Haritalanması Üzerine Bir Değerlendirme. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 2019, 16, 237-244.	0.8	4
127	Justice in Renewable Energy Transitions for Climate Mitigation. , 2020, , .		0
129	Maximising Goal Coherence in Sustainable and Climate-Resilient Development? Polycentricity and Coordination in Governance., 2021,, 25-50.		5

#	Article	IF	CITATIONS
130	Global Warming and the Role of Environmental Policy in Protecting the U.S. Quality of Life. SSRN Electronic Journal, $0, \dots$	0.4	1
131	Salinity Stress Management in Field Crops: An Overview of the Agronomic Approaches. , 2020, , 1-16.		1
132	CLIMATE CHANGE MITIGATION EFFECTS ON HUMAN HEALTH THROUGH UNDERNOURISHMENT. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2020, 76, I_433-I_439.	0.1	0
133	Global flood impacts on food consumption and risk of hunger through changes in crop yields Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2020, 76, I_89-I_95.	0.1	0
134	CO-BENEFIT OF CLIMATE POLICY IN GLOBAL CROP YIELD CHANGES ASSOCIATED WITH TROPOSPHERIC OZONE DECREASES. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2020, 76, I_129-I_140.	0.1	4
135	A Review of Climate-Smart Agriculture Technology Adoption by Farming Households in Sub-Saharan Africa. Sustainability, 2021, 13, 12130.	3.2	12
136	Carbon stocks differ among land-uses in agroforestry systems in western Canada. Agricultural and Forest Meteorology, 2022, 313, 108756.	4.8	12
138	Towards Climate Neutrality in Poland by 2050: Assessment of Policy Implications in the Farm Sector. Energies, 2021, 14, 7595.	3.1	7
139	Cost and attainability of meeting stringent climate targets without overshoot. Nature Climate Change, 2021, 11, 1063-1069.	18.8	102
140	Global implications of cropâ€based bioenergy with carbon capture and storage for terrestrial vertebrate biodiversity. GCB Bioenergy, 2022, 14, 307-321.	5.6	18
141	Toward resilient food systems after COVID-19. Current Research in Environmental Sustainability, 2022, 4, 100110.	3.5	3
142	Can global models provide insights into regional mitigation strategies? A diagnostic model comparison study of bioenergy in Brazil. Climatic Change, 2022, 170, 1.	3.6	7
143	Implication of imposing fertilizer limitations on energy, agriculture, and land systems. Journal of Environmental Management, 2022, 305, 114391.	7.8	13
144	Global impacts of climate change mitigation through reduced surface ozone concentration on food consumption and risk of hunger. Journal of Japan Society of Civil Engineers Ser G (Environmental) Tj ETQq $1\ 1\ 0.7$	84 6.1 4 rgl	BT ‡Overlock
145	Financial stabilityÂrole on climate risks, and climate change mitigation: Implications for green economic recovery. Environmental Science and Pollution Research, 2022, 29, 33063-33074.	5.3	72
146	Tourism, renewable energy and CO2 emissions: evidence from Europe and Central Asia. Environment, Development and Sustainability, 2022, 24, 13282-13293.	5.0	31
147	The impact of agricultural trade approaches on global economic modeling. Global Environmental Change, 2022, 73, 102413.	7.8	11
148	Defining a sustainable development target space for 2030 and 2050. One Earth, 2022, 5, 142-156.	6.8	54

#	Article	IF	CITATIONS
149	Modeling the Economic and Environmental Impacts of Land Scarcity Under Deep Uncertainty. Earth's Future, 2022, 10 , .	6.3	8
150	Uncertainty or trust? Political trust, perceived uncertainty and public acceptance of personal carbon trading policy. Environmental Geochemistry and Health, 2022, 44, 3157-3171.	3.4	6
151	Food security in climate mitigation scenarios. Nature Food, 2022, 3, 98-99.	14.0	4
152	Impact of extreme temperatures on production of different rice types: A countyâ€level analysis for China. Applied Economic Perspectives and Policy, 2023, 45, 1097-1133.	5.6	0
153	Land-based climate change mitigation measures can affect agricultural markets and food security. Nature Food, 2022, 3, 110-121.	14.0	61
155	Uncertainties in estimating global potential yields and their impacts for long-term modeling. Food Security, 2022, 14, 1177-1190.	5.3	2
156	Quantifying synergies and trade-offs in the global water-land-food-climate nexus using a multi-model scenario approach. Environmental Research Letters, 2022, 17, 045004.	5.2	11
157	Attributing changes in food insecurity to a changing climate. Scientific Reports, 2022, 12, 4709.	3.3	36
158	Status of Food Security in East and Southeast Asia and Challenges of Climate Change. Climate, 2022, 10, 40.	2.8	28
159	Farmers' livelihood and adaptive capacity in the face of climate vulnerability. International Journal of Social Economics, 2022, 49, 669-684.	1.9	2
160	Socio-economic trajectories, urban area expansion and ecosystem conservation affect global potential supply of bioenergy. Biomass and Bioenergy, 2022, 159, 106426.	5.7	3
161	Bringing more players into play: Leveraging stress in genome wide association studies. Journal of Plant Physiology, 2022, 271, 153657.	3.5	11
162	A decade of temperature variation and agronomic traits of durum wheat (Triticum durum L.). Arabian Journal of Geosciences, 2022, 15 , 1 .	1.3	0
163	Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals. Applied Energy, 2022, 313, 118803.	10.1	58
164	Firms adaptation to climate change through product innovation. Journal of Cleaner Production, 2022, 350, 131436.	9.3	5
165	Food system development pathways for healthy, nature-positive and inclusive food systems. Nature Food, 2021, 2, 928-934.	14.0	24
166	Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer. International Journal of Environmental Research and Public Health, 2021, 18, 13065.	2.6	40
167	Guinea-Bissau. Exploring Alternative Futures of Development: Economic and Human Development Trends to 2040. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
168	Agricultural Market Competitiveness in the Context of Climate Change: A Systematic Review. Sustainability, 2022, 14, 3721.	3.2	7
169	Trends, intensification, attribution and uncertainty of projected heatwaves in India. International Journal of Climatology, 2022, 42, 7563-7582.	3.5	1
170	Global biomass supply modeling for long-run management of the climate system. Climatic Change, 2022, 172, .	3.6	8
171	WisDM Green: Harnessing Artificial Intelligence to Design and Prioritize Compound Combinations in Peat Moss for Sustainable Farming Applications. Advanced Intelligent Systems, 2022, 4, .	6.1	1
172	Dynamic linkages between globalization, human capital, and carbon dioxide emissions: empirical evidence from developing economies. Environment, Development and Sustainability, 2023, 25, 9307-9335.	5.0	29
174	Belowground processes and sustainability in agroecosystems with intercropping. Plant and Soil, 2022, 476, 263-288.	3.7	30
175	A generalizable framework for enhanced natural climate solutions. Plant and Soil, 2022, 479, 3-24.	3.7	6
176	Physiological trait networks enhance understanding of crop growth and water use in contrasting environments. Plant, Cell and Environment, 2022, 45, 2554-2572.	5.7	5
177	Edible insects: A bibliometric analysis and current trends of published studies (1953–2021). International Journal of Tropical Insect Science, 2022, 42, 3335-3355.	1.0	4
178	IPCC emission scenarios: How did critiques affect their quality and relevance 1990–2022?. Global Environmental Change, 2022, 75, 102538.	7.8	20
179	Multi-omics Approaches for Strategic Improvements of Crops Under Changing Climatic Conditions., 2022,, 57-92.		1
182	How many people is the COVID-19 pandemic pushing into poverty? A long-term forecast to 2050 with alternative scenarios. PLoS ONE, 2022, 17, e0270846.	2.5	20
183	Reproductive medicine in the face of climate change: a call for prevention through leadership. Fertility and Sterility, 2022, , .	1.0	2
184	Dietary Change and Global Sustainable Development Goals. Frontiers in Sustainable Food Systems, 0, 6,	3.9	16
185	Change in cereal production caused by climate change in Malaysia. Ecological Informatics, 2022, 70, 101741.	5.2	21
186	Building social resilience in North Korea can mitigate the impacts of climate change on food security. Nature Food, 2022, 3, 499-511.	14.0	6
187	Negative emissions at negative cost-an opportunity for a scalable niche. Frontiers in Energy Research, $0,10,.$	2.3	2
189	Expanding the scope of biogeochemical research to accelerate atmospheric carbon capture. Biogeochemistry, 2022, 161, 19-40.	3.5	6

#	Article	IF	CITATIONS
190	Integrating speed breeding with artificial intelligence for developing climate-smart crops. Molecular Biology Reports, 2022, 49, 11385-11402.	2.3	17
191	The effect of climate change on food insecurity in the Horn of Africa. Geo Journal, 2023, 88, 1829-1839.	3.1	5
192	Poverty and inequality implications of carbon pricing under the long-term climate target. Sustainability Science, 2022, 17, 2513-2528.	4.9	5
193	Exploring the spatiotemporal evolution and coordination of agricultural green efficiency and food security in China using ESTDA and CCD models. Journal of Cleaner Production, 2022, 374, 133967.	9.3	18
194	Role of agriculture in climate change and adaptability: Use of innovative technologies in the Russian agricultural sector for climate conservation and protection. BIO Web of Conferences, 2022, 52, 00082.	0.2	O
195	The risks of overstating the climate benefits of ecosystem restoration. Nature, 2022, 609, E1-E3.	27.8	11
196	Advocating afforestation, betting on BECCS: land-based negative emissions technologies (NETs) and agrarian livelihoods in the global South. Journal of Peasant Studies, 2023, 50, 185-214.	4.5	6
197	Demystifying artificial intelligence amidst sustainable agricultural water management. Current Directions in Water Scarcity Research, 2022, , 17-35.	0.6	6
198	The impact of 1.5°C and 2.0°C global warming on global maize production and trade. Scientific Reports, 2022, 12, .	3.3	5
199	Rescaling the land rush? Global political ecologies of land use and cover change in key scenario archetypes for achieving the 1.5â€Â°C Paris agreement target. Journal of Peasant Studies, 2023, 50, 262-294.	4.5	5
200	Prospects for Organic Farming in Coping with Climate Change and Enhancing Food Security in Southern Africa: A Systematic Literature Review. Sustainability, 2022, 14, 13489.	3.2	3
202	Global evidence of the exposure-lag-response associations between temperature anomalies and food markets. Journal of Environmental Management, 2023, 325, 116592.	7.8	6
203	The Role of Alternative Crops in an Upcoming Global Food Crisis: A Concise Review. Foods, 2022, 11, 3584.	4.3	7
204	HEAT RESPONSIVE PROTEIN regulates heat stress <i>via</i> fine-tuning ethylene/auxin signaling pathways in cotton. Plant Physiology, 0, , .	4.8	1
205	Gendered vulnerabilities in small scale agricultural households of Southern India. International Journal of Disaster Risk Reduction, 2023, 84, 103475.	3.9	0
206	CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Cells, 2022, 11, 3928.	4.1	16
207	Rural Development Index (RDI) and GHG emissions of agricultural and livestock production: a spatial analysis of the Brazilian states. Environment, Development and Sustainability, 2024, 26, 3147-3164.	5.0	0
208	A low-carbon and hunger-free future for Bangladesh: An ex- ante assessment of synergies and trade-offs in different transition pathways. Frontiers in Environmental Science, 0, 10, .	3.3	1

#	Article	IF	CITATIONS
209	Climate Change and Food Systems. , 2023, , 511-529.		3
210	Ensuring Access to Safe and Nutritious Food for All Through the Transformation of Food Systems. , 2023, , 31-58.		2
211	Severe climate change risks to food security and nutrition. Climate Risk Management, 2023, 39, 100473.	3.2	15
212	Integrated modeling framework for sustainable agricultural intensification. Frontiers in Sustainable Food Systems, 0, 6, .	3.9	4
213	Climate Change, Food and Nutrition Security, and Human Capital. , 2023, , 1-37.		0
214	The Global Cost of Reaching a World Without Hunger: Investment Costs and Policy Action Opportunities., 2023,, 625-660.		0
215	Socio-economic and energy-environmental impacts of technological change on China's agricultural development under the carbon neutrality strategy. Petroleum Science, 2023, 20, 1289-1299.	4.9	7
216	Unveiling of interactions between foliar-applied Cu nanoparticles and barley suffering from Cu deficiency. Environmental Pollution, 2023, 320, 121044.	7.5	9
217	Editing genomes to modify plant response to abiotic stress. , 2023, , 403-414.		0
219	Food Security and Resilience: The Potential for Coherence and the Reality of Fragmented Applications in Policy and Research. Palgrave Studies in Agricultural Economics and Food Policy, 2023, , 147-184.	0.2	0
221	On-farm soil organic carbon sequestration potentials are dominated by site effects, not by management practices. Geoderma, 2023, 433, 116466.	5.1	9
222	Seasonal climate conditions impact the effectiveness of improving photosynthesis to increase soybean yield. Field Crops Research, 2023, 296, 108907.	5.1	5
223	Climate policy uncertainty, oil price and agricultural commodity: From quantile and time perspective. Economic Analysis and Policy, 2023, 78, 256-272.	6.6	7
224	Optimality-based modelling of wheat sowing dates globally. Agricultural Systems, 2023, 206, 103608.	6.1	2
225	AN ASSESSMENT OF DIRECT AIR CAPTURE IN THE CLIMATE CHANGE MITIGATION SCENARIOS USING THE COMPUTABLE GENERAL EQUILIBRIUM MODEL. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2022, 78, I_417-I_427.	0.1	0
226	Agricultural, food consumption and land-use management system transformation to conserve biodiversity. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2022, 78, I_39-I_50.	0.1	0
227	Can Forest Management Practices Counteract Species Loss Arising from Increasing European Demand for Forest Biomass under Climate Mitigation Scenarios?. Environmental Science & Environmental Science	10.0	5
228	Climate risk, institutional quality, and total factor productivity. Technological Forecasting and Social Change, 2023, 189, 122365.	11.6	11

#	Article	IF	CITATIONS
229	Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nature Communications, 2023 , 14 , .	12.8	87
230	Global modeling of SDG indicators related to small-scale farmers: testing in a changing climate. Environmental Research Communications, 2023, 5, 031006.	2.3	2
231	Examining the drivers of agricultural carbon emissions in Africa: an application of FMOLS and DOLS approaches. Environmental Science and Pollution Research, 2023, 30, 56542-56557.	5 . 3	6
232	Agricultural Marketing Dynamics in the Face of Climate Change. Advances in Marketing, Customer Relationship Management, and E-services Book Series, 2023, , 174-195.	0.8	0
233	Understanding New Foods: Alternative Protein Sources. Sustainable Development Goals Series, 2023, , 135-146.	0.4	0
234	An Empirical Approach to Integrating Climate Reputational Risk in Long-Term Scenario Analysis. Sustainability, 2023, 15, 5886.	3.2	0
235	Assessing the Climate Change-Related Health Hazards in Africa. Climate Change Management, 2023, , 293-305.	0.8	1
236	Determinants of food security through statistical and fuzzy mathematical synergy. Environment, Development and Sustainability, 0, , .	5.0	2
237	Boosting domestic feed production with less environmental cost through optimized crop distribution. Resources, Conservation and Recycling, 2023, 194, 106996.	10.8	2
238	Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage. Climatic Change, 2023, 176, .	3.6	3
239	Heat and drought reduce subnational population growth in the global tropics. Population and Environment, 2023, 45, .	3.0	1
240	Review of Remote Sensing-Based Methods for Forest Aboveground Biomass Estimation: Progress, Challenges, and Prospects. Forests, 2023, 14, 1086.	2.1	10
241	Pantropical distribution of short-rotation woody plantations: spatial probabilities under current and future climate. Mitigation and Adaptation Strategies for Global Change, 2023, 28, .	2.1	1
242	å¦è;"å^†é‡Žãïã⊷ã∮ã®çµ±å•̂評価ãf¢ãf‡ãf«å^†é‡Žã®ç¹ä»‹ãïã,«ãf¼ãfœãf³ãf‹ãf¥ãf¼ãf^ãf©ãf«ç›®æ¨™ã∙	[®] ç ρμå §¿. Τ	re o ds in the
243	Linking genetic and environmental factors through marker effect networks to understand trait plasticity. Genetics, 2023, 224, .	2.9	1
244	Mainstreaming Agri-Compatible Virtual Resource Flows in Agri-Food System Adaptation to Climate Change in the Caribbean. Climate Change Management, 2023, , 411-426.	0.8	0
245	Can Domestic Food Production Provide Future Urban Populations with Food and Nutrition Security?—Insights from Bangladesh, Kenya and Uganda. Sustainability, 2023, 15, 9005.	3.2	1
246	Integrated modeling of global change impacts on land and water resources. Science of the Total Environment, 2023, 892, 164673.	8.0	3

#	Article	IF	CITATIONS
247	Smart Horticulture as an Emerging Interdisciplinary Field Combining Novel Solutions: Past Development, Current Challenges, and Future Perspectives. Horticultural Plant Journal, 2023, , .	5.0	3
249	Carbon pricing, health co-benefits and trade-offs: protocol for a systematic framework synthesis. Wellcome Open Research, 0, 8, 213.	1.8	1
250	Impacts of weather conditions on the US commodity markets systemic interdependence across multi-timescales. Energy Economics, 2023, 123, 106732.	12.1	3
251	Bioenergy-induced land-use-change emissions with sectorally fragmented policies. Nature Climate Change, 2023, 13, 685-692.	18.8	1
252	Assessing ambitious nature conservation strategies in a below 2-degree and food-secure world. Biological Conservation, 2023, 284, 110068.	4.1	0
253	Strategi Pengembangan dalam Pemenuhan Konsumsi Pangan Sivitas Yayasan Permaculture. Jurnal Ilmu Pertanian Indonesia, 2023, 28, 335-343.	0.3	0
254	Climate Change Mitigation in Agriculture: Barriers to the Adoption of Carbon Farming Policies in the EU. Sustainability, 2023, 15, 10452.	3.2	1
255	Security risks from climate change and environmental degradation: implications for sustainable land use transformation in the Global South. Current Opinion in Environmental Sustainability, 2023, 63, 101322.	6.3	26
256	Food, Climate Change, and the Challenge of Innovation. Encyclopedia, 2023, 3, 839-852.	4.5	3
257	Potential side effects of climate change mitigation on poverty and countermeasures. Sustainability Science, 0, , .	4.9	1
258	Research on Prediction of Global Climate Change Based on Grey Model and Climate Governance Partnership. Lecture Notes in Mechanical Engineering, 2023, , 429-439.	0.4	0
259	Alternative, but expensive, energy transition scenario featuring carbon capture and utilization can preserve existing energy demand technologies. One Earth, 2023, 6, 872-883.	6.8	3
260	Transcriptional response of Cu-deficient barley (Hordeum vulgare L.) to foliar-applied nano-Cu: Molecular crosstalk between Cu loading into plants and changes in Cu homeostasis genes. NanoImpact, 2023, 31, 100472.	4.5	3
261	Models can enhance science–policy–society alignments for climate change mitigation. Nature Food, 2023, 4, 632-635.	14.0	4
262	Development of AIM (Asia–Pacific Integrated Model) and its contribution to policy-making for the realization of decarbonized societies in Asia. Sustainability Science, 0, , .	4.9	1
263	Watershed environmental impact assessment for extreme climates based on shared socioeconomic pathway climate change scenarios. Ecological Indicators, 2023, 154, 110685.	6.3	0
264	Quantifying the dynamical interactions between carbon pricing and environmental protection tax in China. Energy Economics, 2023, 126, 106912.	12.1	1
265	Feeding climate and biodiversity goals with novel plant-based meat and milk alternatives. Nature Communications, 2023, 14 , .	12.8	10

#	Article	IF	CITATIONS
266	Assessing the impact of future climate scenarios on crop water requirements and agricultural water supply across different climatic zones of Pakistan. Frontiers in Earth Science, $0,11,.$	1.8	1
267	Envisioning a future with climate change. Nature Climate Change, 2023, 13, 874-876.	18.8	0
268	What enhances dairy system resilience? Empirical cases in Finland and Russia. Agricultural and Food Economics, 2023, 11 , .	3.2	0
269	Population and food systems: what does the future hold?. Population and Environment, 2023, 45, .	3.0	3
270	How many people will live in poverty because of climate change? A macro-level projection analysis to 2070. Climatic Change, 2023, 176, .	3.6	0
271	Characterization of rhizobia for beneficial traits that promote nodulation in legumes under abiotically stressed conditions. Letters in Applied Microbiology, 2023, 76, .	2.2	0
272	Evaluation of emission reduction and other societal and environmental outcomes: Structured decision making for the Louisiana climate action plan. Journal of Environmental Management, 2023, 345, 118936.	7.8	0
273	Impact of climate risk on global energy trade. Environmental Science and Pollution Research, 2023, 30, 103119-103129.	5.3	0
276	Using Film-Mulched Drip Irrigation to Improve the Irrigation Water Productivity of Cotton in the Tarim River Basin, Central Asia. Remote Sensing, 2023, 15, 4615.	4.0	2
277	High-throughput horticultural phenomics: The history, recent advances and new prospects. Computers and Electronics in Agriculture, 2023, 213, 108265.	7.7	0
278	Numerical calculation and experimental analysis of thermal environment in industrialized aquaculture facilities. PLoS ONE, 2023, 18, e0290449.	2.5	0
279	Prioritizing agronomic practices and uncertainty assessment under climate change for winter wheat in the loess plateau, China. Agricultural Systems, 2023, 212, 103770.	6.1	1
280	Agricultural emission reduction targets at country and global levels: a bottom-up analysis. Climate Policy, 0, , 1-17.	5.1	0
281	Forecasting disruptions in global food value chains to tackle food insecurity: The role of AI and big data analytics – A bibliometric and scientometric analysis. Journal of Agriculture and Food Research, 2023, 14, 100819.	2.5	4
282	Projecting Diversity Conflicts of Future Land System Pathways in China Under Anthropogenic and Climate Forcing. Earth's Future, 2023, 11, .	6.3	1
283	How are climate risk shocks connected to agricultural markets?. Journal of Commodity Markets, 2023, 32, 100367.	2.1	2
284	The Effect of Air Relative Humidity on the Drying Process of Sanitary Ware at Low Temperature: An Experimental Study. Processes, 2023, 11, 3112.	2.8	0
285	Mitigating Greenhouse Gas Emissions from Crop Production and Management Practices, and Livestock: A Review. Sustainability, 2023, 15, 15889.	3.2	0

#	ARTICLE	IF	Citations
286	Bioâ€Inspired Microreactors Continuously Synthesize Glucose Precursor from CO ₂ with an Energy Conversion Efficiency 3.3 Times of Rice. Advanced Science, 2024, 11, .	11.2	O
287	Comparing quasi-3D soil moisture derived from electromagnetic induction with 1D moisture sensors and correlation to barley yield in variable duplex soil. Soil and Tillage Research, 2024, 236, 105953.	5.6	0
288	Climate Change and Global Crop Production: An Inclusive Insight. , 2023, , 1-34.		0
289	Climate-Resilient Technology for Maize Production. , 2023, , 157-188.		1
290	Economic impacts of climate change on EU agriculture: will the farmers benefit from global climate change?. Environmental Research Letters, 2024, 19, 014027.	5.2	1
291	The Relationship between Climate Action and Poverty Reduction. World Bank Research Observer, 2024, 39, 1-46.	6.0	0
292	Assessing the distributional impacts of ambitious carbon pricing in China's agricultural sector. Ecological Economics, 2024, 217, 108082.	5.7	0
293	Compounding Uncertainties in Economic and Population Growth Increase Tail Risks for Relevant Outcomes Across Sectors. Earth's Future, 2024, 12, .	6.3	0
294	Climate Changes Affect Human Capital. Economics of Disasters and Climate Change, 2024, 8, 157-196.	2.2	0
295	The application of knowledge in soil microbiology, ecology, and biochemistry (SMEB) to the solution of today's and future societal needs. , 2024, , 493-536.		1
296	Side effects of climate mitigation and adaptation to sustainable development related to water and food. Environmental Research Letters, 2023, 18, 081005.	5.2	2
297	Stakeholder-driven transformative adaptation is needed for climate-smart nutrition security in sub-Saharan Africa. Nature Food, 2024, 5, 37-47.	14.0	1
298	Climate-resilient development in developing countries. Current Opinion in Environmental Sustainability, 2024, 66, 101391.	6.3	0
299	Impact of irrigation on vulnerability of winter wheat under extreme climate change scenario: a case study of North China Plain. Frontiers in Sustainable Food Systems, 0, 7, .	3.9	0
300	Net Zero requires ambitious greenhouse gas emission reductions on beef and sheep farms coordinated with afforestation and other land use change measures. Agricultural Systems, 2024, 215, 103852.	6.1	1
301	Food insecurity and affective well-being during COVID-19 in the Middle East and North Africa. Journal of Affective Disorders, 2024, 350, 741-745.	4.1	0
302	Climatic risks to adaptive capacity. Mitigation and Adaptation Strategies for Global Change, 2024, 29, .	2.1	0
303	Reduction potential of Greenhouse Gas Emissions from the Agriculture and Livestock sector in Central and Latin America. , 2023, 79, n/a.		0

#	Article	IF	CITATIONS
304	The spatiotemporal domains of natural climate solutions research and strategies for implementation in the Pacific Northwest, USA. Frontiers in Climate, 0, 6, .	2.8	0
305	Global Energy System Transitions. Review of Environmental Economics and Policy, 2024, 18, 2-25.	7.0	0
306	Climate Change and Children's Health: Building a Healthy Future for Every Child. Pediatrics, 2024, 153, .	2.1	0
307	Ein Modell zur Zuschreibung individueller Klimaschutzverantwortung. , 2024, , 175-192.		0
308	CRISPR/Cas system: A revolutionary tool for crop improvement. Biotechnology Journal, 2024, 19, .	3.5	0
309	Climate change and food security in South Asia: the importance of renewable energy and agricultural credit. Humanities and Social Sciences Communications, 2024, 11 , .	2.9	0
310	Land-Use Implications of Carbon Dioxide Removal: An Emerging Legal Issue?. International Yearbook of Soil Law and Policy, 2024, , 107-121.	0.3	0
311	Equity assessment of global mitigation pathways in the IPCC Sixth Assessment Report. Climate Policy, 0, , 1-20.	5.1	0
312	Stress salinity in plants: New strategies to cope with in the foreseeable scenario. Plant Physiology and Biochemistry, 2024, 208, 108507.	5.8	0
313	Non-carbon dioxide emissions modeling in integrated assessment models: A review. Energy Strategy Reviews, 2024, 52, 101358.	7.3	0
314	Impacts of Climate Change Scenarios on the Corn and Soybean Double-Cropping System in Brazil. Climate, 2024, 12, 42.	2.8	0
315	Trade-offs in land-based carbon removal measures under $1.5 \hat{a} \in \hat{A}^{\circ}C$ and $2 \hat{a} \in \hat{A}^{\circ}C$ futures. Nature Communications, 2024, 15, .	12.8	0
316	Early production of switchgrass (<i>Panicum virgatum</i> L.) and willow (<i>Salix</i> spp.) indicates carbon accumulation potential in Appalachian reclaimed mine and agriculture soil. Soil Science Society of America Journal, O, , .	2.2	0
317	Integration of energy system and computable general equilibrium models: An approach complementing energy and economic representations for mitigation analysis. Energy, 2024, 296, 131039.	8.8	0
318	Projecting a food insecure world: Equity implications of land-based mitigation in IPCC mitigation pathways. Environmental Science and Policy, 2024, 155, 103724.	4.9	0
319	Guinea Bissau: Exploring Alternative Futures of Development The Cost of Not Going Green. SSRN Electronic Journal, 0, , .	0.4	0