MEDI0382, a GLP-1 and glucagon receptor dual agonist, with type 2 diabetes: a randomised, controlled, double-l study

Lancet, The 391, 2607-2618

DOI: 10.1016/s0140-6736(18)30726-8

Citation Report

#	Article	IF	Citations
2	Involvement of Glucagon in Preventive Effect of Menthol Against High Fat Diet Induced Obesity in Mice. Frontiers in Pharmacology, 2018, 9, 1244.	1.6	28
3	Twice the benefits with twincretins?. Lancet, The, 2018, 392, 2142-2144.	6.3	5
4	LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Molecular Metabolism, 2018, 18, 3-14.	3.0	400
6	Agonism of receptors in the gut–pancreas axis in type 2 diabetes: are two better than one?. Lancet, The, 2018, 391, 2577-2578.	6.3	6
7	No Guts, No Loss: Toward the Ideal Treatment for Obesity in the Twenty-First Century. Frontiers in Endocrinology, 2018, 9, 442.	1.5	22
8	Glucagon Control on Food Intake and Energy Balance. International Journal of Molecular Sciences, 2019, 20, 3905.	1.8	32
10	Novel approaches to anti-obesity drug discovery with gut hormones over the past 10 years. Expert Opinion on Drug Discovery, 2019, 14, 1151-1159.	2.5	9
12	The future of new drugs for diabetes management. Diabetes Research and Clinical Practice, 2019, 155, 107785.	1.1	28
13	Glucagon Receptor Signaling and Glucagon Resistance. International Journal of Molecular Sciences, 2019, 20, 3314.	1.8	113
14	The Liver–α-Cell Axis and Type 2 Diabetes. Endocrine Reviews, 2019, 40, 1353-1366.	8.9	110
15	Designing Poly-agonists for Treatment of Metabolic Diseases: Challenges and Opportunities. Drugs, 2019, 79, 1187-1197.	4.9	15
16	Hyperglucagonemia in youth is associated with high plasma free fatty acids, visceral adiposity, and impaired glucose tolerance. Pediatric Diabetes, 2019, 20, 880-891.	1.2	17
17	Glucagon Regulation of Energy Expenditure. International Journal of Molecular Sciences, 2019, 20, 5407.	1.8	70
18	Will medications that mimic gut hormones or target their receptors eventually replace bariatric surgery?. Metabolism: Clinical and Experimental, 2019, 100, 153960.	1.5	16
19	Glucagon-like peptide 1 (GLP-1). Molecular Metabolism, 2019, 30, 72-130.	3.0	850
20	Emerging Role of SGLT-2 Inhibitors for the Treatment of Obesity. Drugs, 2019, 79, 219-230.	4.9	170
21	Combined GLP-1, Oxyntomodulin, and Peptide YY Improves Body Weight and Glycemia in Obesity and Prediabetes/Type 2 Diabetes: A Randomized, Single-Blinded, Placebo-Controlled Study. Diabetes Care, 2019, 42, 1446-1453.	4.3	84
22	Exciting advances in GPCR-based drugs discovery for treating metabolic disease and future perspectives. Expert Opinion on Drug Discovery, 2019, 14, 421-431.	2.5	11

#	Article	IF	CITATIONS
23	Weight change is associated with increased all-cause mortality and non-cardiac mortality among patients with type 2 diabetes mellitus. Endocrine, 2019, 64, 82-89.	1.1	17
25	Weight loss variability with SGLT2 inhibitors and GLP†receptor agonists in type 2 diabetes mellitus and obesity: Mechanistic possibilities. Obesity Reviews, 2019, 20, 816-828.	3.1	139
26	Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacology and Translational Science, 2019, 2, 66-91.	2.5	28
27	Intranasal glucagon acutely increases energy expenditure without inducing hyperglycaemia in overweight/obese adults. Diabetes, Obesity and Metabolism, 2019, 21, 1357-1364.	2.2	11
28	Gut Peptide Agonism in the Treatment of Obesity and Diabetes. , 2019, 10, 99-124.		4
29	Omentin-1 in diabetes mellitus: AÂsystematic review and meta-analysis. PLoS ONE, 2019, 14, e0226292.	1.1	37
30	Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. Nature Reviews Endocrinology, 2019, 15, 90-104.	4.3	92
31	Cracking the combination: Gut hormones for the treatment of obesity and diabetes. Journal of Neuroendocrinology, 2019, 31, e12664.	1.2	29
32	New advances and novel approaches in obesity pharmacotherapy. Current Opinion in Endocrine and Metabolic Research, 2019, 4, 75-82.	0.6	1
33	Pharmacotherapy of obesity: Available medications and drugs under investigation. Metabolism: Clinical and Experimental, 2019, 92, 170-192.	1.5	184
34	Repositioning Glucagon Action in the Physiology and Pharmacology of Diabetes. Diabetes, 2020, 69, 532-541.	0.3	77
35	Recent Developments in Therapeutic Peptides for the Glucagon-like Peptide 1 and 2 Receptors. Journal of Medicinal Chemistry, 2020, 63, 905-927.	2.9	34
36	Efficacy, Safety, and Mechanistic Insights of Cotadutide, a Dual Receptor Glucagon-Like Peptide-1 and Glucagon Agonist. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 803-820.	1.8	75
37	New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. Journal of Molecular Biology, 2020, 432, 1347-1366.	2.0	40
38	Role of endogenous glucagonâ€like peptideâ€1 enhanced by vildagliptin in the glycaemic and energy expenditure responses to intraduodenal fat infusion in type 2 diabetes. Diabetes, Obesity and Metabolism, 2020, 22, 383-392.	2.2	10
39	Novel glucagon- and OXM-based peptides acting through glucagon and GLP-1 receptors with body weight reduction and anti-diabetic properties. Bioorganic Chemistry, 2020, 95, 103538.	2.0	9
40	Anorectic state of obesity medications in the United States. Are leaner times ahead?. Expert Opinion on Pharmacotherapy, 2020, 21, 167-172.	0.9	4
41	Dual glucagonâ€like peptideâ€1 receptor/glucagon receptor agonist SAR425899 improves betaâ€cell function in type 2 diabetes. Diabetes, Obesity and Metabolism, 2020, 22, 640-647.	2.2	27

3

#	Article	IF	CITATIONS
42	Selection and progression of unimolecular agonists at the GIP, GLP-1, and glucagon receptors as drug candidates. Peptides, 2020, 125, 170225.	1.2	30
43	A dual GLP-1 and Gcg receptor agonist rescues spatial memory and synaptic plasticity in APP/PS1 transgenic mice. Hormones and Behavior, 2020, 118, 104640.	1.0	10
44	Developing an injectable co-formulation of two antidiabetic drugs: Excipient impact on peptide aggregation and pharmacokinetic properties. International Journal of Pharmaceutics, 2020, 576, 119019.	2.6	6
45	Obesity medications in development. Expert Opinion on Investigational Drugs, 2020, 29, 63-71.	1.9	30
46	Agonist-activated glucagon receptors are deubiquitinated at early endosomes by two distinct deubiquitinases to facilitate Rab4a-dependent recycling. Journal of Biological Chemistry, 2020, 295, 16630-16642.	1.6	14
47	Evaluation of biased agonism mediated by dual agonists of the GLP-1 and glucagon receptors. Biochemical Pharmacology, 2020, 180, 114150.	2.0	23
48	Age, sex, disease severity, and diseaseÂduration difference in placebo response: implications from a meta-analysis of diabetes mellitus. BMC Medicine, 2020, 18, 322.	2.3	5
49	Amino acids are sensitive glucagon receptorâ€specific biomarkers for glucagonâ€like peptideâ€l receptor/glucagon receptor dual agonists. Diabetes, Obesity and Metabolism, 2020, 22, 2437-2450.	2.2	17
50	Appetite control: hormones or diet strategies?. Current Opinion in Clinical Nutrition and Metabolic Care, 2020, 23, 328-335.	1.3	18
51	Gut-Pancreas-Liver Axis as a Target for Treatment of NAFLD/NASH. International Journal of Molecular Sciences, 2020, 21, 5820.	1.8	38
52	Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide. Journal of Biological Chemistry, 2020, 295, 9313-9325.	1.6	31
53	Gastrointestinal Peptides as Therapeutic Targets to Mitigate Obesity and Metabolic Syndrome. Current Diabetes Reports, 2020, 20, 26.	1.7	17
54	The Fight Against Obesity Escalates: New Drugs on the Horizon and Metabolic Implications. Current Obesity Reports, 2020, 9, 136-149.	3.5	18
55	Insights into incretin-based therapies for treatment of diabetic dyslipidemia. Advanced Drug Delivery Reviews, 2020, 159, 34-53.	6.6	21
56	Resolution of NASH and hepatic fibrosis by the GLP-1R and GCGR dual-agonist cotadutide via modulating mitochondrial function and lipogenesis. Nature Metabolism, 2020, 2, 413-431.	5.1	131
57	An emerging new concept for the management of type 2 diabetes with a paradigm shift from the glucose-centric to beta cell-centric concept of diabetes - an Asian perspective. Expert Opinion on Pharmacotherapy, 2020, 21, 1565-1577.	0.9	13
58	Antidiabetic Therapy in the Treatment of Nonalcoholic Steatohepatitis. International Journal of Molecular Sciences, 2020, 21, 1907.	1.8	42
59	Glucagon-based therapy: Past, present and future. Peptides, 2020, 127, 170296.	1.2	22

#	Article	IF	Citations
60	Leveraging the Gut to Treat Metabolic Disease. Cell Metabolism, 2020, 31, 679-698.	7.2	53
61	Incretin combination therapy for the treatment of nonâ€elcoholic steatohepatitis. Diabetes, Obesity and Metabolism, 2020, 22, 1328-1338.	2.2	26
62	New Generation Oxyntomodulin Peptides with Improved Pharmacokinetic Profiles Exhibit Weight Reducing and Anti-Steatotic Properties in Mice. Bioconjugate Chemistry, 2020, 31, 1167-1176.	1.8	21
63	Glucagonâ€Like Peptideâ€1: Actions and Influence on Pancreatic Hormone Function. , 2020, 10, 577-595.		16
64	Multiagonist Unimolecular Peptides for Obesity and Type 2 Diabetes: Current Advances and Future Directions. Clinical Medicine Insights: Endocrinology and Diabetes, 2020, 13, 117955142090584.	1.0	17
65	Metabolically Healthy Obesity. Endocrine Reviews, 2020, 41, .	8.9	445
66	Chitosan oligosaccharide ameliorated obesity by reducing endoplasmic reticulum stress in diet-induced obese rats. Food and Function, 2020, 11, 6285-6296.	2.1	24
67	The Implication of Gut Hormones in the Regulation of Energy Homeostasis and Their Role in the Pathophysiology of Obesity. Current Obesity Reports, 2020, 9, 255-271.	3.5	39
68	Combination of Lorcaserin and GLP-1/glucagon Coagonist Improves Metabolic Dysfunction in Diet Induced-obese Mice. Drug Research, 2020, 70, 376-384.	0.7	1
69	What is on the horizon for type 2 diabetes pharmacotherapy? – An overview of the antidiabetic drug development pipeline. Expert Opinion on Drug Discovery, 2020, 15, 1253-1265.	2.5	6
70	Improving understanding of type 2 diabetes remission: research recommendations from Diabetes UK's 2019 remission workshop. Diabetic Medicine, 2020, 37, 1944-1950.	1.2	3
71	Effects of GLP-1 and Its Analogs on Gastric Physiology in Diabetes Mellitus and Obesity. Advances in Experimental Medicine and Biology, 2020, 1307, 171-192.	0.8	64
72	Revisiting the Pharmacological Value of Glucagon: An Editorial for the Special Issue "The Biology and Pharmacology of Glucagonâ€₁ International Journal of Molecular Sciences, 2020, 21, 383.	1.8	0
73	Current and new pharmacotherapy options for non-alcoholic steatohepatitis. Expert Opinion on Pharmacotherapy, 2020, 21, 953-967.	0.9	28
74	Drug Therapy in Obesity: A Review of Current and Emerging Treatments. Diabetes Therapy, 2020, 11, 1199-1216.	1.2	123
75	Acute Effects of Glucagon on Reproductive Hormone Secretion in Healthy Men. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1899-1905.	1.8	3
76	Effect of the glucagonâ€like peptideâ€1 analogue liraglutide versus placebo treatment on circulating proglucagonâ€derived peptides that mediate improvements in body weight, insulin secretion and action: A randomized controlled trial. Diabetes, Obesity and Metabolism, 2021, 23, 489-498.	2.2	14
77	Behavioural and neurochemical mechanisms underpinning the feeding-suppressive effect of GLP-1/CCK combinatorial therapy. Molecular Metabolism, 2021, 43, 101118.	3.0	8

#	ARTICLE	IF	CITATIONS
78	Glucagon Resistance and Decreased Susceptibility to Diabetes in a Model of Chronic Hyperglucagonemia. Diabetes, 2021, 70, 477-491.	0.3	13
79	G-protein–coupled receptors controlling pancreatic β-cell functional mass for the treatment of type 2 diabetes. Current Opinion in Endocrine and Metabolic Research, 2021, 16, 113-118.	0.6	2
80	Nuclear hormone and peptide hormone therapeutics for NAFLD and NASH. Molecular Metabolism, 2021, 46, 101153.	3.0	10
81	Incretin Hormones in Obesity and Related Cardiometabolic Disorders: The Clinical Perspective. Nutrients, 2021, 13, 351.	1.7	28
82	Narrative review of current and emerging pharmacological therapies for nonalcoholic steatohepatitis. Translational Gastroenterology and Hepatology, 2021, 6, 60-60.	1.5	7
83	Efficacy and safety of glucagonâ€like peptideâ€1/glucagon receptor coâ€agonist <scp>JNJ</scp> â€64565111 in individuals with type 2 diabetes mellitus and obesity: A randomized doseâ€ranging study. Clinical Obesity, 2021, 11, e12433.	1.1	26
84	Gut Hormones in Health and Obesity: The Upcoming Role of Short Chain Fatty Acids. Nutrients, 2021, 13, 481.	1.7	39
85	Design and Evaluation of Peptide Dual-Agonists of GLP-1 and NPY2 Receptors for Glucoregulation and Weight Loss with Mitigated Nausea and Emesis. Journal of Medicinal Chemistry, 2021, 64, 1127-1138.	2.9	21
86	Therapeutics for type-2 diabetes mellitus: a glance at the recent inclusions and novel agents under development for use in clinical practice. Therapeutic Advances in Endocrinology and Metabolism, 2021, 12, 204201882110421.	1.4	12
87	Design of novel Xenopus GLP-1-based dual glucagon-like peptide 1 (GLP-1)/glucagon receptor agonists. European Journal of Medicinal Chemistry, 2021, 212, 113118.	2.6	11
88	<scp>Nonalcoholic fatty liver disease</scp> as a metabolic disease in humans: A literature review. Diabetes, Obesity and Metabolism, 2021, 23, 1069-1083.	2.2	104
89	An update on pharmacotherapeutic strategies for obesity. Expert Opinion on Pharmacotherapy, 2021, 22, 1305-1318.	0.9	6
90	Safety and efficacy of an extendedâ€release peptide <scp>YY</scp> analogue for obesity: A randomized, placeboâ€controlled, phase <scp>1</scp> trial. Diabetes, Obesity and Metabolism, 2021, 23, 1471-1483.	2.2	9
92	The gut–brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Molecular Metabolism, 2021, 46, 101175.	3.0	29
94	Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Molecular Metabolism, 2021, 46, 101090.	3.0	150
95	Promising areas of pharmacotherapy for obesity. Russian Journal of Cardiology, 2021, 26, 4279.	0.4	3
96	Glucagon's Metabolic Action in Health and Disease. , 2021, 11, 1759-1783.		21
97	Liver-targeting drugs and their effect on blood glucose and hepatic lipids. Diabetologia, 2021, 64, 1461-1479.	2.9	21

#	Article	IF	CITATIONS
98	Proglucagon-Derived Peptides as Therapeutics. Frontiers in Endocrinology, 2021, 12, 689678.	1.5	34
99	Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends in Endocrinology and Metabolism, 2021, 32, 264-294.	3.1	22
100	Pharmacokinetics, safety, tolerability and efficacy of cotadutide, a glucagonâ€like peptideâ€1 and glucagon receptor dual agonist, in phase ⟨scp⟩1 and 2⟨/scp⟩ trials in overweight or obese participants of ⟨scp⟩Sian descent with or without type 2 diabetes. Diabetes, Obesity and Metabolism, 2021, 23, 1859-1867.	2.2	19
101	Novel therapies with precision mechanisms for type 2 diabetes mellitus. Nature Reviews Endocrinology, 2021, 17, 364-377.	4.3	70
102	Effects of Cotadutide on Metabolic and Hepatic Parameters in Adults With Overweight or Obesity and Type 2 Diabetes: A 54-Week Randomized Phase 2b Study. Diabetes Care, 2021, 44, 1433-1442.	4.3	151
103	The therapeutic potential of GLPâ€1 receptor biased agonism. British Journal of Pharmacology, 2022, 179, 492-510.	2.7	27
104	Post-pancreatitis diabetes mellitus: investigational drugs in preclinical and clinical development and therapeutic implications. Expert Opinion on Investigational Drugs, 2021, 30, 737-747.	1.9	13
105	New Aspects of Diabetes Research and Therapeutic Development. Pharmacological Reviews, 2021, 73, 1001-1015.	7.1	10
106	Comparison of islet cell function, insulin sensitivity, and incretin axis between Asian-Indians with either impaired fasting glucose or impaired glucose tolerance, and normal healthy controls. Diabetes Research and Clinical Practice, 2021, 176, 108846.	1,1	2
107	A Metabolomic Signature of Glucagon Action in Healthy Individuals With Overweight/Obesity. Journal of the Endocrine Society, 2021, 5, bvab118.	0.1	11
108	Therapeutic Peptides Targeting PPI in Clinical Development: Overview, Mechanism of Action and Perspectives. Frontiers in Molecular Biosciences, 2021, 8, 697586.	1.6	64
109	Anti-diabetic drugs and NASH: from current options to promising perspectives. Expert Opinion on Investigational Drugs, 2021, 30, 813-825.	1.9	16
110	Combined medical strategies for the management of type 2 diabetes mellitus and obesity in adults. Expert Opinion on Pharmacotherapy, 2021, 22, 1-22.	0.9	2
111	Stapled, Long-Acting Xenopus GLP-1-Based Dual GLP-1/Glucagon Receptor Agonists with Potent Therapeutic Efficacy for Metabolic Disease. Molecular Pharmaceutics, 2021, 18, 2906-2923.	2.3	2
112	Emerging glucagon-like peptide 1 receptor agonists for the treatment of obesity. Expert Opinion on Emerging Drugs, 2021, 26, 231-243.	1.0	51
113	Pharmacotherapy of obesity: An update. Pharmacological Research, 2021, 169, 105649.	3.1	28
114	Pharmacological Therapeutics: Current Trends for Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). Journal of Clinical and Translational Hepatology, 2021, 000, 000-000.	0.7	8
115	Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes and Endocrinology,the, 2021, 9, 525-544.	5 . 5	121

#	Article	IF	CITATIONS
116	Novel approaches to pharmacological management of type 2 diabetes in Japan. Expert Opinion on Pharmacotherapy, 2021, 22, 2235-2249.	0.9	2
117	Glucagonâ€like peptideâ€l in diabetes care: Can glycaemic control be achieved without nausea and vomiting?. British Journal of Pharmacology, 2022, 179, 542-556.	2.7	19
118	Partial agonism improves the anti-hyperglycaemic efficacy of an oxyntomodulin-derived GLP-1R/GCGR co-agonist. Molecular Metabolism, 2021, 51, 101242.	3.0	7
119	Insulin resistance and insulin sensitizing agents. Metabolism: Clinical and Experimental, 2021, 125, 154892.	1.5	86
120	Striking the Balance: GLP-1/Glucagon Co-Agonism as a Treatment Strategy for Obesity. Frontiers in Endocrinology, 2021, 12, 735019.	1.5	39
121	Amplifying the antidiabetic actions of glucagonâ€like peptideâ€1: Potential benefits of new adjunct therapies. Diabetic Medicine, 2021, 38, e14699.	1.2	8
122	Application in medicine: obesity and satiety control., 2021,, 629-664.		0
123	Long-Term Efficacy and Safety of Anti-Obesity Treatment: Where Do We Stand?. Current Obesity Reports, 2021, 10, 14-30.	3.5	136
124	Pharmacological treatment of hyperglycemia in type 2 diabetes. Journal of Clinical Investigation, 2021, 131, .	3.9	102
125	CNS-targeting pharmacological interventions for the metabolic syndrome. Journal of Clinical Investigation, 2019, 129, 4058-4071.	3.9	24
126	Nonclassical Islet Peptides: Pancreatic and Extrapancreatic Actions. Clinical Medicine Insights: Endocrinology and Diabetes, 2019, 12, 117955141988887.	1.0	12
127	Combination gut hormones: prospects and questions for the future of obesity and diabetes therapy. Journal of Endocrinology, 2020, 246, R65-R74.	1.2	18
128	Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocrine Reviews, 2022, 43, 507-557.	8.9	39
129	Effect of the Gintonin-Enriched Fraction on Glucagon-Like-Protein-1 Release. Molecules, 2021, 26, 6298.	1.7	1
130	Pharmacotherapy for Type 2 Diabetes Mellitus: What's Up and Coming in the Glucagon-Like Peptide-1 (GLP-1) Pipeline?. Journal of Pharmacy Practice, 2021, , 089719002110490.	0.5	0
132	The role of incretin-based therapies in the management of type 2 diabetes mellitus: perspectives on the past, present and future. Diabetes Mellitus, 2019, 22, 461-466.	0.5	1
133	The incretin/glucagon system as a target for pharmacotherapy of obesity. Obesity Reviews, 2022, 23, .	3.1	26
134	Insights into the molecular targets and emerging pharmacotherapeutic interventions for nonalcoholic fatty liver disease. Metabolism: Clinical and Experimental, 2022, 126, 154925.	1.5	134

#	Article	IF	CITATIONS
136	The current significance and prospects for the use of dual receptor agonism GLP-1/Glucagon. Life Sciences, 2022, 288, 120188.	2.0	13
137	An oral GLP-1 and GIP dual receptor agonist improves metabolic disorders in high fat-fed mice. European Journal of Pharmacology, 2022, 914, 174635.	1.7	4
139	A glucagon analogue decreases body weight in mice via signalling in the liver. Scientific Reports, 2021, 11, 22577.	1.6	6
140	Gap junction coupling and islet delta-cell function in health and disease. Peptides, 2022, 147, 170704.	1.2	10
141	Efficacy and safety of highâ€dose glucagonâ€like peptideâ€1, glucagonâ€like peptideâ€1/glucoseâ€dependent insulinotropic peptide, and glucagonâ€like peptideâ€1/glucagon receptor agonists in type 2 diabetes. Diabetes, Obesity and Metabolism, 2022, 24, 788-805.	2.2	17
142	The metabolic triad of nonâ€alcoholic fatty liver disease, visceral adiposity and type 2 diabetes: Implications for treatment. Diabetes, Obesity and Metabolism, 2022, 24, 15-27.	2.2	24
143	Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metabolism, 2022, 34, 59-74.e10.	7.2	92
144	Is polypharmacy the future for pharmacological management of obesity?. Current Opinion in Endocrine and Metabolic Research, 2022, 23, 100322.	0.6	5
145	Novel Drugs for Diabetes Therapy. Handbook of Experimental Pharmacology, 2022, , 1.	0.9	0
146	The Design and Optimization of Monomeric Multitarget Peptides for the Treatment of Multifactorial Diseases. Journal of Medicinal Chemistry, 2022, 65, 3685-3705.	2.9	1
147	Recent Advances in Incretin-Based Pharmacotherapies for the Treatment of Obesity and Diabetes. Frontiers in Endocrinology, 2022, 13, 838410.	1.5	42
148	Population Pharmacokinetics of Cotadutide in Subjects with Type 2 Diabetes. Clinical Pharmacokinetics, 2022, 61, 833-845.	1.6	7
150	A novel integrated QSP model of in vivo human glucose regulation to support the development of a glucagon/GLP†dual agonist. CPT: Pharmacometrics and Systems Pharmacology, 2022, 11, 302-317.	1.3	3
151	Design of a highly potent GLP-1R and GCGR dual-agonist for recovering hepatic fibrosis. Acta Pharmaceutica Sinica B, 2022, 12, 2443-2461.	5.7	12
152	Efficacy and safety of cotadutide, a dual glucagonâ€like peptideâ€l and glucagon receptor agonist, in a randomized phase 2a study of patients with type 2 diabetes and chronic kidney disease. Diabetes, Obesity and Metabolism, 2022, 24, 1360-1369.	2.2	28
153	Is Glucagon Receptor Activation the Thermogenic Solution for Treating Obesity?. Frontiers in Endocrinology, 2022, 13, 868037.	1.5	11
154	Impact of Cotadutide drug on patients with type 2 diabetes mellitus: a systematic review and meta-analysis. BMC Endocrine Disorders, 2022, 22, 113.	0.9	11
155	Anti-obesity Medications for the Management of Nonalcoholic Fatty Liver Disease. Current Obesity Reports, 2022, 11, 166-179.	3.5	18

#	Article	IF	CITATIONS
156	Examining the evidence for weight management in individuals with type 2 diabetes. Diabetes, Obesity and Metabolism, 2022, 24, 1411-1422.	2.2	1
157	Breakthroughs in therapies for NASH and remaining challenges. Journal of Hepatology, 2022, 76, 1263-1278.	1.8	66
158	Multiagonists of the "incretin axis―as a promising tool for managing cardiometabolic risk in visceral obesity. Russian Journal of Cardiology, 2022, 27, 4755.	0.4	0
159	Pharmacotherapy for Non-alcoholic Fatty Liver Disease Associated with Diabetes Mellitus Type 2. Journal of Clinical and Translational Hepatology, 2022, 10, 965-971.	0.7	2
161	Cross Talk Between Insulin and Glucagon Receptor Signaling in the Hepatocyte. Diabetes, 2022, 71, 1842-1851.	0.3	5
162	Multiagonists of the "incretin axis―as a promising tool for managing cardiometabolic risk in visceral obesity. Russian Journal of Cardiology, 2022, 27, 4755.	0.4	1
163	A phase 1b randomised controlled trial of a glucagon-like peptide-1 and glucagon receptor dual agonist IBI362 (LY3305677) in Chinese patients with type 2 diabetes. Nature Communications, 2022, 13, .	5.8	21
164	Hepatocyte cholesterol content modulates glucagon receptor signalling. Molecular Metabolism, 2022, 63, 101530.	3.0	4
166	Next generation GLP-1/GIP/glucagon triple agonists normalize body weight in obese mice. Molecular Metabolism, 2022, 63, 101533.	3.0	43
167	Glucagon receptor signaling at white adipose tissue does not regulate lipolysis. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E389-E401.	1.8	8
168	Derivatization with fatty acids in peptide and protein drug discovery. Nature Reviews Drug Discovery, 2023, 22, 59-80.	21.5	19
169	Effects of site-directed mutagenesis of GLP-1 and glucagon receptors on signal transduction activated by dual and triple agonists. Acta Pharmacologica Sinica, 2023, 44, 421-433.	2.8	2
170	LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: From discovery to clinical proof of concept. Cell Metabolism, 2022, 34, 1234-1247.e9.	7.2	77
171	Glucagon-like peptide 1 and fibroblast growth factor-21 in non-alcoholic steatohepatitis: An experimental to clinical perspective. Pharmacological Research, 2022, 184, 106426.	3.1	6
172	Therapie von Begleiterkrankungen: Diabetes mellitus und DyslipoproteinÃ m ie. , 2022, , 211-225.		0
173	Hepatic Glucagon Receptor Signaling Controls Amino Acid Metabolism and Regulates Alpha Cell Mass. SSRN Electronic Journal, 0, , .	0.4	0
174	Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	72
175	Novel Therapies for Cardiometabolic Disease: Recent Findings in Studies with Hormone Peptide-Derived G Protein Coupled Receptor Agonists. Nutrients, 2022, 14, 3775.	1.7	2

#	ARTICLE	IF	Citations
176	Opposing effects of chronic glucagon receptor agonism and antagonism on amino acids, hepatic gene expression, and alpha cells. IScience, 2022, 25, 105296.	1.9	10
177	Safety and efficacy of a GLP-1 and glucagon receptor dual agonist mazdutide (IBI362) 9 mg and 10 mg in Chinese adults with overweight or obesity: A randomised, placebo-controlled, multiple-ascending-dose phase 1b trial. EClinicalMedicine, 2022, 54, 101691.	3.2	23
178	Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacological Research, 2022, 186, 106550.	3.1	30
180	Emerging pharmacological treatment options for MAFLD. Therapeutic Advances in Endocrinology and Metabolism, 2022, 13, 204201882211424.	1.4	4
181	The Effects of Dual GLP-1/Glucagon Receptor Agonists with Different Receptor Selectivity in Mouse Models of Obesity and Nonalcoholic Steatohepatitis. Journal of Pharmacology and Experimental Therapeutics, 2023, 384, 406-416.	1.3	5
182	New therapies for obesity. Cardiovascular Research, 2024, 119, 2825-2842.	1.8	16
183	GLP-1R Signaling and Functional Molecules in Incretin Therapy. Molecules, 2023, 28, 751.	1.7	7
184	GLP-1 Receptor Agonists in Non-Alcoholic Fatty Liver Disease: Current Evidence and Future Perspectives. International Journal of Molecular Sciences, 2023, 24, 1703.	1.8	31
185	Emerging roles of oxyntomodulin-based glucagon-like peptide-1/glucagon co-agonist analogs in diabetes and obesity. Peptides, 2023, 162, 170955.	1.2	5
186	Variation in responses to incretin therapy: Modifiable and non-modifiable factors. Frontiers in Molecular Biosciences, 0, 10, .	1.6	1
187	Newly discovered knowledge pertaining to glucagon and its clinical applications. Journal of Diabetes Investigation, 2023, 14, 829-837.	1.1	4
188	The molecular pharmacology of glucagon agonists in diabetes and obesity. Peptides, 2023, 165, 171003.	1.2	8
189	A newly developed glucagon sandwich <scp>ELISA</scp> is useful for more accurate glucagon evaluation than the currently used sandwich <scp>ELISA</scp> in subjects with elevated plasma proglucagonâ€derived peptide levels. Journal of Diabetes Investigation, 2023, 14, 648-658.	1.1	3
190	Pharmacological Support for the Treatment of Obesity—Present and Future. Healthcare (Switzerland), 2023, 11, 433.	1.0	6
191	Obesity Pharmacotherapy: a Review of Current Practices and Future Directions. Current Treatment Options in Gastroenterology, 2023, 21, 27-47.	0.3	0
192	Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nature Reviews Endocrinology, 2023, 19, 321-335.	4.3	28
193	Diabesity and the Kidney. Frontiers in Clinical Drug Research Diabetes and Obesity, 2023, , 168-207.	0.1	0
194	Perspectives in weight control in diabetes – SGLT2 inhibitors and GLP-1–glucagon dual agonism. Diabetes Research and Clinical Practice, 2023, 199, 110669.	1.1	1

#	Article	IF	Citations
195	Is retatrutide (LY3437943), a GLP-1, GIP, and glucagon receptor agonist a step forward in the treatment of diabetes and obesity? Expert Opinion on Investigational Drugs, 2023, 32, 355-359.	1.9	6
196	Gut hormone-based pharmacology: novel formulations and future possibilities for metabolic disease therapy. Diabetologia, 2023, 66, 1796-1808.	2.9	20
203	Gut hormone co-agonists for the treatment of obesity: from bench to bedside. Nature Metabolism, 2023, 5, 933-944.	5.1	15
219	Glucagon and the metabolic syndrome. , 2024, , 337-350.		0
220	Next-Generation Therapies for Type 2 Diabetes Mellitus., 2024,, 347-376.		0
221	Hepatic glucose metabolism in the steatotic liver. Nature Reviews Gastroenterology and Hepatology, 0, , .	8.2	0