Single-cell RNA-seq reveals hidden transcriptional varia

ELife

7,

DOI: 10.7554/elife.33105

Citation Report

#	Article	IF	CITATIONS
1	Indispensable malaria genes. Science, 2018, 360, 490-491.	6.0	4
2	Dissecting human disease with single-cell omics: application in model systems and in the clinic. DMM Disease Models and Mechanisms, $2018,11,.$	1.2	39
3	Highlights on the Application of Genomics and Bioinformatics in the Fight Against Infectious Diseases: Challenges and Opportunities in Africa. Frontiers in Genetics, 2018, 9, 575.	1.1	23
4	A deadly dance: the choreography of host–pathogen interactions, as revealed by single-cell technologies. Nature Communications, 2018, 9, 4638.	5.8	34
5	Schizont transcriptome variation among clinical isolates and laboratory-adapted clones of the malaria parasite Plasmodium falciparum. BMC Genomics, 2018, 19, 894.	1.2	28
6	A synthetic promoter for multi-stage expression to probe complementary functions of Plasmodium adhesins. Journal of Cell Science, $2018,131,.$	1.2	10
7	Single-Cell Transcriptome Profiling of Protozoan and Metazoan Parasites. Trends in Parasitology, 2018, 34, 731-734.	1.5	4
8	Systems Biology-Based Investigation of Host–Plasmodium Interactions. Trends in Parasitology, 2018, 34, 617-632.	1.5	19
9	Regulation of Sexual Commitment and Gametocytogenesis in Malaria Parasites. Annual Review of Microbiology, 2018, 72, 501-519.	2.9	96
10	Genome-wide real-time in vivo transcriptional dynamics during Plasmodium falciparum blood-stage development. Nature Communications, 2018, 9, 2656.	5.8	73
11	Exploring parasite heterogeneity using single-cell RNA-seq reveals a gene signature among sexual stage Plasmodium falciparum parasites. Experimental Cell Research, 2018, 371, 130-138.	1.2	31
12	Global Inequities in Precision Medicine and Molecular Cancer Research. Frontiers in Oncology, 2018, 8, 346.	1.3	44
13	Landscape of the Plasmodium Interactome Reveals Both Conserved and Species-Specific Functionality. Cell Reports, 2019, 28, 1635-1647.e5.	2.9	49
14	The second life of Plasmodium in the mosquito host: gene regulation on the move. Briefings in Functional Genomics, 2019, 18, 313-357.	1.3	11
15	The Malaria Cell Atlas: Single parasite transcriptomes across the complete <i>Plasmodium</i> life cycle. Science, 2019, 365, .	6.0	198
16	Immunology Driven by Large-Scale Single-Cell Sequencing. Trends in Immunology, 2019, 40, 1011-1021.	2.9	62
17	Understanding P. falciparum Asymptomatic Infections: A Proposition for a Transcriptomic Approach. Frontiers in Immunology, 2019, 10, 2398.	2.2	27
18	Single cell ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190076.	1.8	11

#	ARTICLE	IF	CITATIONS
19	Plasmodium kinesin-8X associates with mitotic spindles and is essential for oocyst development during parasite proliferation and transmission. PLoS Pathogens, 2019, 15, e1008048.	2.1	43
20	Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Medicine, 2019, $11,63$.	3.6	54
21	Evaluation of DNA Extraction Methods on Individual Helminth Egg and Larval Stages for Whole-Genome Sequencing. Frontiers in Genetics, 2019, 10, 826.	1.1	30
22	Transcriptome analysis of Plasmodium berghei during exo-erythrocytic development. Malaria Journal, 2019, 18, 330.	0.8	46
23	Expression and Localization Profiles of Rhoptry Proteins in Plasmodium berghei Sporozoites. Frontiers in Cellular and Infection Microbiology, 2019, 9, 316.	1.8	14
24	Using single-cell transcriptomics to understand functional states and interactions in microbial eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190098.	1.8	20
25	Plasmodium vivax transcriptomes reveal stage-specific chloroquine response and differential regulation of male and female gametocytes. Nature Communications, 2019, 10, 371.	5.8	29
26	Post-Genomic Approaches to Understanding Malaria Parasite Biology: Linking Genes to Biological Functions. ACS Infectious Diseases, 2019, 5, 1269-1278.	1.8	20
27	Plasmodium pseudo-Tyrosine Kinase-like binds PP1 and SERA5 and is exported to host erythrocytes. Scientific Reports, 2019, 9, 8120.	1.6	9
28	Transcriptional variation in malaria parasites: why and how. Briefings in Functional Genomics, 2019, 18, 329-341.	1.3	23
29	The role of epigenetics and chromatin structure in transcriptional regulation in malaria parasites. Briefings in Functional Genomics, 2019, 18, 302-313.	1.3	25
30	Revisiting gametocyte biology in malaria parasites. FEMS Microbiology Reviews, 2019, 43, 401-414.	3.9	78
31	Immune Responses to the Sexual Stages of Plasmodium falciparum Parasites. Frontiers in Immunology, 2019, 10, 136.	2.2	17
32	Functional genomics of simian malaria parasites and host–parasite interactions. Briefings in Functional Genomics, 2019, 18, 270-280.	1.3	6
33	Latent transcriptional variations of individual Plasmodium falciparum uncovered by single-cell RNA-seq and fluorescence imaging. PLoS Genetics, 2019, 15, e1008506.	1.5	22
34	Genomics and precision medicine for malaria: A dream come true?., 2019,, 223-255.		0
35	Challenges in unsupervised clustering of single-cell RNA-seq data. Nature Reviews Genetics, 2019, 20, 273-282.	7.7	780
36	Deciphering host immunity to malaria using systems immunology. Immunological Reviews, 2020, 293, 115-143.	2.8	13

3

#	Article	IF	Citations
37	Micromanipulation System for Isolating a Single Cryptosporidium Oocyst. Micromachines, 2020, 11, 3.	1.4	6
38	EC-PGMGR: Ensemble Clustering Based on Probability Graphical Model With Graph Regularization for Single-Cell RNA-seq Data. Frontiers in Genetics, 2020, 11, 572242.	1.1	4
39	Histone modifications associated with gene expression and genome accessibility are dynamically enriched at Plasmodium falciparum regulatory sequences. Epigenetics and Chromatin, 2020, 13, 50.	1.8	28
40	Structure of the <i>Plasmodium</i> -interspersed repeat proteins of the malaria parasite. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32098-32104.	3.3	10
41	Genomic and transcriptomic evidence for descent from Plasmodium and loss of blood schizogony in Hepatocystis parasites from naturally infected red colobus monkeys. PLoS Pathogens, 2020, 16, e1008717.	2.1	18
42	Novel Method for the Separation of Male and Female Gametocytes of the Malaria Parasite <i>Plasmodium falciparum</i> That Enables Biological and Drug Discovery. MSphere, 2020, 5, .	1.3	5
43	Single-cell atlas of the first intra-mammalian developmental stage of the human parasite Schistosoma mansoni. Nature Communications, 2020, 11, 6411.	5 . 8	51
44	Advances and challenges in single-cell RNA-seq of microbial communities. Current Opinion in Microbiology, 2020, 57, 102-110.	2.3	24
45	Single-cell transcription analysis of Plasmodium vivax blood-stage parasites identifies stage- and species-specific profiles of expression. PLoS Biology, 2020, 18, e3000711.	2.6	53
46	Plasmodium vivax transcriptional profiling of low input cryopreserved isolates through the intraerythrocytic development cycle. PLoS Neglected Tropical Diseases, 2020, 14, e0008104.	1.3	17
47	Taking Insect Immunity to the Single-Cell Level. Trends in Immunology, 2020, 41, 190-199.	2.9	10
48	Defining the Skin Cellular Community Using Single-Cell Genomics to Advance Precision Medicine. Journal of Investigative Dermatology, 2021, 141, 255-264.	0.3	16
49	Modeling Relapsing Malaria: Emerging Technologies to Study Parasite-Host Interactions in the Liver. Frontiers in Cellular and Infection Microbiology, 2020, 10, 606033.	1.8	11
50	Single-cell RNA sequencing reveals developmental heterogeneity among Plasmodium berghei sporozoites. Scientific Reports, 2021, 11, 4127.	1.6	21
51	Mapping immune variation and var gene switching in naive hosts infected with Plasmodium falciparum. ELife, 2021, 10 , .	2.8	22
52	Application of single-cell transcriptomics to kinetoplastid research. Parasitology, 2021, 148, 1223-1236.	0.7	11
53	Identification of Three Novel Plasmodium Factors Involved in Ookinete to Oocyst Developmental Transition. Frontiers in Cellular and Infection Microbiology, 2021, 11, 634273.	1.8	12
54	Transcriptional heterogeneity and tightly regulated changes in gene expression during <i>Plasmodium berghei</i> sporozoite development. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32

#	Article	IF	Citations
55	Using scRNA-seq to Identify Transcriptional Variation in the Malaria Parasite Ookinete Stage. Frontiers in Cellular and Infection Microbiology, 2021, 11, 604129.	1.8	8
56	A suitable RNA preparation methodology for whole transcriptome shotgun sequencing harvested from Plasmodium vivax-infected patients. Scientific Reports, 2021, 11, 5089.	1.6	6
57	Plasmodium Reproduction, Cell Size, and Transcription: How to Cope With Increasing DNA Content?. Frontiers in Cellular and Infection Microbiology, 2021, 11, 660679.	1.8	4
58	Single-cell brain atlas of Parkinson's disease mouse model. Journal of Genetics and Genomics, 2021, 48, 277-288.	1.7	20
59	RA3 is a reference-guided approach for epigenetic characterization of single cells. Nature Communications, 2021, 12, 2177.	5.8	31
61	A single-cell atlas of Plasmodium falciparum transmission through the mosquito. Nature Communications, 2021, 12, 3196.	5.8	54
64	A Scalable Strand-Specific Protocol Enabling Full-Length Total RNA Sequencing From Single Cells. Frontiers in Genetics, 2021, 12, 665888.	1.1	2
65	Consensus clustering of single-cell RNA-seq data by enhancing network affinity. Briefings in Bioinformatics, 2021, 22, .	3.2	24
66	Single-Cell Analysis for Whole-Organism Datasets. Annual Review of Biomedical Data Science, 2021, 4, 207-226.	2.8	6
67	Drug Design for Malaria with Artificial Intelligence (AI). , 0, , .		4
68	The Transcriptome of Schistosoma mansoni Developing Eggs Reveals Key Mediators in Pathogenesis and Life Cycle Propagation. Frontiers in Tropical Diseases, 2021, 2, .	0.5	6
70	An Adaptive Genetic Algorithm with Recursive Feature Elimination Approach for Predicting Malaria Vector Gene Expression Data Classification using Support Vector Machine Kernels. Walailak Journal of Science and Technology, $2021, 18, \ldots$	0.5	5
71	Variation in selective constraints along the Plasmodium life cycle. Infection, Genetics and Evolution, 2021, 92, 104908.	1.0	1
72	Single-Cell RNA Sequencing Reveals Cellular Heterogeneity and Stage Transition under Temperature Stress in Synchronized Plasmodium falciparum Cells. Microbiology Spectrum, 2021, 9, e0000821.	1.2	16
73	Understanding the pathogenesis of infectious diseases by single-cell RNA sequencing. Microbial Cell, 2021, 8, 208-222.	1.4	7
74	There and back again: malaria parasite single-cell transcriptomics comes full circle. Trends in Parasitology, 2021, 37, 850-852.	1.5	7
76	Dynamic Chromatin Structure and Epigenetics Control the Fate of Malaria Parasites. Trends in Genetics, 2021, 37, 73-85.	2.9	18
81	Probing Plasmodium falciparum sexual commitment at the single-cell level. Wellcome Open Research, 2018, 3, 70.	0.9	25

#	Article	IF	CITATIONS
82	Probing Plasmodium falciparum sexual commitment at the single-cell level. Wellcome Open Research, 0, 3, 70.	0.9	17
83	Probing Plasmodium falciparum sexual commitment at the single-cell level. Wellcome Open Research, 2018, 3, 70.	0.9	50
84	Genomic and transcriptomic comparisons of closely related malaria parasites differing in virulence and sequestration pattern. Wellcome Open Research, 2018, 3, 142.	0.9	13
85	Genomic and transcriptomic comparisons of closely related malaria parasites differing in virulence and sequestration pattern. Wellcome Open Research, 2018, 3, 142.	0.9	11
86	From Genes to Transcripts, a Tightly Regulated Journey in Plasmodium. Frontiers in Cellular and Infection Microbiology, 2020, 10, 618454.	1.8	29
87	An Efficient PCA Ensemble Learning Approach for Prediction of RNA-Seq Malaria Vector Gene Expression Data Classification. International Journal of Engineering Research and Technology, 2020, 13, 163.	0.3	10
88	A single-parasite transcriptional atlas of Toxoplasma Gondii reveals novel control of antigen expression. ELife, 2020, 9, .	2.8	47
89	A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast. ELife, 2020, 9, .	2.8	43
91	Nonâ€coding <scp>RNAs</scp> in malaria infection. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1697.	3.2	11
93	A cell–cell atlas approach for understanding symbiotic interactions between microbes. Current Opinion in Microbiology, 2021, 64, 47-59.	2.3	4
97	Landscape of the <i>Plasmodium</i> Interactome. SSRN Electronic Journal, 0, , .	0.4	1
101	ECBN: Ensemble Clustering based on Bayesian Network inference for Single-cell RNA-seq Data. , 2020, , .		1
103	Analysis of pir gene expression across the Plasmodium life cycle. Malaria Journal, 2021, 20, 445.	0.8	9
105	Contribution of Transcriptome to Elucidate the Biology of Plasmodium spp. Current Topics in Medicinal Chemistry, 2022, 22, 169-187.	1.0	2
106	A reproducible and sensitive method for generating highâ€quality transcriptomes from single whitefly salivary glands and other lowâ€input tissues. Insect Science, 2022, , .	1.5	0
107	ROSIE: RObust Sparse ensemble for outliEr detection and gene selection in cancer omics data. Statistical Methods in Medical Research, 2022, , 096228022110724.	0.7	1
109	Single-cell transcriptomics reveals expression profiles of Trypanosoma brucei sexual stages. PLoS Pathogens, 2022, 18, e1010346.	2.1	12
111	Sources of transcription variation in Plasmodium falciparum. Journal of Genetics and Genomics, 2022, 49, 965-974.	1.7	2

#	Article	IF	CITATIONS
120	Antimalarial Drug Strategies to Target Plasmodium Gametocytes. Parasitologia, 2022, 2, 101-124.	0.6	5
121	Pervasive sequence-level variation in the transcriptome of <i>Plasmodium falciparum</i> Genomics and Bioinformatics, 2022, 4, Iqac036.	1.5	3
122	A Hashing-Based Framework for Enhancing Cluster Delineation of High-Dimensional Single-Cell Profiles. Phenomics, 2022, 2, 323-335.	0.9	3
123	Stochastic expression of invasion genes in Plasmodium falciparum schizonts. Nature Communications, 2022, 13 , .	5.8	9
124	Single-cell views of the Plasmodium life cycle. Trends in Parasitology, 2022, 38, 748-757.	1.5	5
126	Differential Trafficking and Expression of PIR Proteins in Acute and Chronic Plasmodium Infections. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
127	Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Frontiers in Cellular and Infection Microbiology, $0,12,.$	1.8	2
128	Genomic epidemiological models describe pathogen evolution across fitness valleys. Science Advances, 2022, 8, .	4.7	2
129	Determination of the Stage Composition of <i>Plasmodium</i> Infections from Bulk Gene Expression Data. MSystems, 2022, 7, .	1.7	14
132	Genome-wide functional analysis reveals key roles for kinesins in the mammalian and mosquito stages of the malaria parasite life cycle. PLoS Biology, 2022, 20, e3001704.	2.6	8
133	Single-cell RNA profiling ofÂPlasmodium vivax-infected hepatocytes reveals parasite- and host- specific transcriptomic signaturesÂand therapeutic targets. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	14
134	Decrypting the complexity of the human malaria parasite biology through systems biology approaches. Frontiers in Systems Biology, 0, 2, .	0.5	2
135	Naturally Acquired Kelch13 Mutations in Plasmodium falciparum Strains Modulate <i>In Vitro</i> Ring-Stage Artemisinin-Based Drug Tolerance and Parasite Survival in Response to Hyperoxia. Microbiology Spectrum, 2022, 10, .	1.2	4
136	Comparative single-cell transcriptional atlases of Babesia species reveal conserved and species-specific expression profiles. PLoS Biology, 2022, 20, e3001816.	2.6	9
137	Single cell RNA sequencing reveals hemocyte heterogeneity in Biomphalaria glabrata: Plasticity over diversity. Frontiers in Immunology, 0, 13 , .	2.2	4
138	A novel deep learning-assisted hybrid network for plasmodium falciparum parasite mitochondrial proteins classification. PLoS ONE, 2022, 17, e0275195.	1.1	0
139	Repurposing of Plasmodium falciparum var genes beyond the blood stage. Current Opinion in Microbiology, 2022, 70, 102207.	2.3	4
141	Molecular mechanisms of cellular quiescence in apicomplexan parasites. Current Opinion in Microbiology, 2022, 70, 102223.	2.3	0

#	Article	IF	Citations
142	Transcriptomic complexity of the human malaria parasite Plasmodium falciparum revealed by long-read sequencing. PLoS ONE, 2022, 17, e0276956.	1.1	3
145	A non-coding GWAS variant impacts anthracycline-induced cardiotoxic phenotypes in human iPSC-derived cardiomyocytes. Nature Communications, 2022, 13, .	5.8	3
146	Long read single cell RNA sequencing reveals the isoform diversity of Plasmodium vivax transcripts. PLoS Neglected Tropical Diseases, 2022, 16, e0010991.	1.3	5
147	A transcriptional switch controls sex determination in Plasmodium falciparum. Nature, 2022, 612, 528-533.	13.7	15
148	RefTM: reference-guided topic modeling of single-cell chromatin accessibility data. Briefings in Bioinformatics, 2023, 24, .	3.2	2
149	scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network. Briefings in Bioinformatics, 2023, 24, .	3.2	10
152	A Microtubule-Associated Protein Is Essential for Malaria Parasite Transmission. MBio, 0, , .	1.8	4
153	Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biology, 2023, 24, .	3.8	24
154	Regulators of male and female sexual development are critical for the transmission of a malaria parasite. Cell Host and Microbe, 2023, 31, 305-319.e10.	5.1	20
156	PbAP2-FG2 and PbAP2R-2 function together as a transcriptional repressor complex essential for Plasmodium female development. PLoS Pathogens, 2023, 19, e1010890.	2.1	4
157	Single-Cell Transcriptomics To Define Plasmodium falciparum Stage Transition in the Mosquito Midgut. Microbiology Spectrum, 2023, 11 , .	1.2	6
158	Ribosome heterogeneity and specialization of Plasmodium parasites. PLoS Pathogens, 2023, 19, e1011267.	2.1	3
159	Identification of gametocyte-associated pir genes in the rodent malaria parasite, Plasmodium chabaudi chabaudi AS. BMC Research Notes, 2023, 16, .	0.6	0