Soft Biomimetic Fish Robot Made of Dielectric Elastome

Soft Robotics 5, 466-474

DOI: 10.1089/soro.2017.0062

Citation Report

#	Article	IF	CITATIONS
1	Modelling and Control of a Dielectric Elastomer Actuator. , 2018, , .		0
2	Multisegment annular dielectric elastomer actuators for soft robots. Smart Materials and Structures, 2018, 27, 115024.	1.8	28
3	Soft robots based on dielectric elastomer actuators: a review. Smart Materials and Structures, 2019, 28, 103002.	1.8	176
4	Effect of actuation parameters and environment on the breakdown voltage of silicone dielectric elastomer films. Smart Materials and Structures, 2019, 28, 094002.	1.8	17
5	Towards efficient elastic actuation in bio-inspired robotics using dielectric elastomer artificial muscles. Smart Materials and Structures, 2019, 28, 095015.	1.8	24
6	A Focus on Soft Actuation. Actuators, 2019, 8, 74.	1.2	12
7	An Environmental Perception Framework for Robotic Fish Formation Based on Machine Learning Methods. Applied Sciences (Switzerland), 2019, 9, 3573.	1.3	7
8	The effects of static pre-stretching on the short and long-term reliability of dielectric elastomer actuators. Smart Materials and Structures, 2019, 28, 125014.	1.8	14
9	3D computational models explain muscle activation patterns and energetic functions of internal structures in fish swimming. PLoS Computational Biology, 2019, 15, e1006883.	1.5	14
10	Bioinspiriertes Design und additive Fertigung von weichen Materialien, Maschinen, Robotern und haptischen Schnittstellen. Angewandte Chemie, 2019, 131, 11300-11324.	1.6	5
11	Bioâ€inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces. Angewandte Chemie - International Edition, 2019, 58, 11182-11204.	7.2	120
12	Design of dielectric elastomer actuators for vibration control at high frequencies. International Journal of Mechanical Sciences, 2019, 157-158, 849-857.	3.6	34
13	Self-fueled liquid metal motors. Journal Physics D: Applied Physics, 2019, 52, 353002.	1.3	24
14	Feedforward Control of the Rate-Dependent Viscoelastic Hysteresis Nonlinearity in Dielectric Elastomer Actuators. IEEE Robotics and Automation Letters, 2019, 4, 2340-2347.	3.3	44
15	A soft breaststroke-inspired swimming robot actuated by dielectric elastomers. Smart Materials and Structures, 2019, 28, 045006.	1.8	33
16	Design and Modeling of a Biomimetic Wire-driven Soft Robotic Fish. , 2019, , .		2
17	Underwater oscillation performance and 3D vortex distribution generated by miniature caudal fin-like propulsion with macro fiber composite actuation. Sensors and Actuators A: Physical, 2020, 303, 111587.	2.0	19
18	Body Wave Generation for Anguilliform Locomotion Using a Fiber-Reinforced Soft Fluidic Elastomer Actuator Array Toward the Development of the Eel-Inspired Underwater Soft Robot. Soft Robotics, 2020, 7, 233-250.	4.6	45

#	Article	IF	CITATIONS
19	Bidirectional tactile display driven by electrostatic dielectric elastomer actuator. Smart Materials and Structures, 2020, 29, 035007.	1.8	24
20	Cephalopodâ€Inspired Swimming Robot Using Dielectric Elastomer Synthetic Jet Actuator. Advanced Engineering Materials, 2020, 22, 1901130.	1.6	21
21	Bending behavior of biomimetic scale covered beam with tunable stiffness scales. Scientific Reports, 2020, 10, 17083.	1.6	7
22	Global Vision-Based Formation Control of Soft Robotic Fish Swarm. Soft Robotics, 2021, 8, 310-318.	4.6	29
23	A Cephalopod-Inspired Soft-Robotic Siphon for Thrust Vectoring and Flow Rate Regulation. Soft Robotics, 2021, 8, 416-431.	4.6	10
24	Control-oriented Modeling of Soft Robotic Swimmer with Koopman Operators. , 2020, , .		8
25	High- <i>k</i> , Ultrastretchable Self-Enclosed Ionic Liquid-Elastomer Composites for Soft Robotics and Flexible Electronics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 37561-37570.	4.0	51
26	Design and Preliminary Evaluation of A Biomimetic Underwater Robot with Undulating Fin Propulsion. IOP Conference Series: Materials Science and Engineering, 2020, 790, 012160.	0.3	4
27	A shape memory alloy–actuated soft crawling robot based on adaptive differential friction and enhanced antagonistic configuration. Journal of Intelligent Material Systems and Structures, 2020, 31, 1920-1934.	1.4	21
28	Dynamic modeling of dielectric elastomer actuator with conical shape. PLoS ONE, 2020, 15, e0235229.	1.1	11
29	Bio-inspired Tensegrity Fish Robot. , 2020, , .		20
30	Dynamic Modeling for Dielectric Elastomer Actuators Based on LSTM Deep Neural Network. , 2020, , .		5
31	Inkjet Printing of Complex Soft Machines with Densely Integrated Electrostatic Actuators. Advanced Intelligent Systems, 2020, 2, 2000136.	3.3	20
32	Biohybrid robotics with living cell actuation. Chemical Society Reviews, 2020, 49, 4043-4069.	18.7	105
33	A dielectric elastomer membrane integrated with protective passive layers under explicit and implicit prestretch. International Journal of Mechanics and Materials in Design, 2020, 16, 733-748.	1.7	0
34	A Biomimetic Fish Fin-Like Robot Based on Textile Reinforced Silicone. Micromachines, 2020, 11, 298.	1.4	28
35	Fluid–Structure Coupling Model and Experimental Validation of Interaction Between Pneumatic Soft Actuator and Lower Limb. Soft Robotics, 2020, 7, 627-638.	4.6	11
36	Hemispherical Cell-Inspired Soft Actuator. Frontiers in Bioengineering and Biotechnology, 2020, 8, 20.	2.0	6

#	Article	IF	Citations
37	A Super-Lightweight and Soft Manipulator Driven by Dielectric Elastomers. Soft Robotics, 2020, 7, 512-520.	4.6	47
38	Sunlight-Driven Continuous Flapping-Wing Motion. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6460-6470.	4.0	18
39	Low-Voltage-Driven Large-Amplitude Soft Actuators Based on Phase Transition. Soft Robotics, 2020, 7, 688-699.	4.6	21
40	Development of an annelid-like peristaltic crawling soft robot using dielectric elastomer actuators. Bioinspiration and Biomimetics, 2020, 15, 046012.	1.5	24
41	Biomimetic underwater self-perceptive actuating soft system based on highly compliant, morphable and conductive sandwiched thin films. Nano Energy, 2021, 81, 105617.	8.2	29
42	Materials, Actuators, and Sensors for Soft Bioinspired Robots. Advanced Materials, 2021, 33, e2003139.	11.1	209
43	Additive manufacturing aimed to soft robots fabrication: A review. Extreme Mechanics Letters, 2021, 42, 101079.	2.0	81
44	Experimental validation of vibration control in membrane structures using dielectric elastomer actuators in a vacuum environment. International Journal of Mechanical Sciences, 2021, 191, 106049.	3.6	26
45	Cantilever-based micro thrust measurement and pressure field distribution of biomimetic robot fish actuated by macro fiber composites (MFCs) actuators. Smart Materials and Structures, 2021, 30, 035001.	1.8	14
46	Biomimetic soft micro-swimmers: from actuation mechanisms to applications. Biomedical Microdevices, 2021, 23, 6.	1.4	26
47	Soft Robots for Ocean Exploration and Offshore Operations: A Perspective. Soft Robotics, 2021, 8, 625-639.	4.6	66
48	Adaptively reconstructing network of soft elastomers to increase strand rigidity: towards free-standing electro-actuation strain over 100%. Materials Horizons, 2021, 8, 2834-2841.	6.4	17
49	Hydrodynamics around long vibrating beams. Journal of Fluids and Structures, 2021, 101, 103203.	1.5	6
50	Nonlinear analysis of compliant robotic fish locomotion. JVC/Journal of Vibration and Control, 2022, 28, 1673-1685.	1.5	3
51	High humidity sensing by †hygromorphic' dielectric elastomer actuator. Sensors and Actuators B: Chemical, 2021, 329, 129268.	4.0	13
52	Humidity Effect on Dynamic Electromechanical Properties of Polyacrylic Dielectric Elastomer: An Experimental Study. Polymers, 2021, 13, 784.	2.0	6
53	Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming. Bioinspiration and Biomimetics, 2021, 16, 026019.	1.5	71
54	Modeling and Control of a Soft Robotic Fish with Integrated Soft Sensing. Advanced Intelligent Systems, 2023, 5, 2000244.	3.3	29

#	Article	IF	Citations
55	Hydrodynamic forces acting on the elliptic cylinder performing high-frequency low-amplitude multi-harmonic oscillations in a viscous fluid. Journal of Fluid Mechanics, $2021,913,\ldots$	1.4	5
56	Water hydraulic soft actuators for underwater autonomous robotic systems. Applied Ocean Research, 2021, 109, 102551.	1.8	37
57	Liquid vaporization actuated soft structures with active cooling and heat loss control. Smart Materials and Structures, 2021, 30, 055007.	1.8	3
58	Bistable Actuation in Multi-DoF Soft Robotic Modules Driven by Rolled Dielectric Elastomer Actuators. , 2021, , .		6
59	Cartilage structure increases swimming efficiency of underwater robots. Scientific Reports, 2021, 11, 11288.	1.6	8
60	Predicting energy harvesting performance of a random nonlinear dielectric elastomer pendulum. Applied Energy, 2021, 289, 116696.	5.1	15
61	Research status of bionic amphibious robots: A review. Ocean Engineering, 2021, 227, 108862.	1.9	56
62	Automated test setup to quantify the lifetime of dielectric elastomer actuators under a wide range of operating conditions. Smart Materials and Structures, 2021, 30, 065020.	1.8	8
63	Micro thrust measurement experiment and pressure field evolution of bionic robotic fish with harmonic actuation of macro fiber composites. Mechanical Systems and Signal Processing, 2021, 153, 107538.	4.4	14
64	Multi-Layers Planar Dielectric Elastomer Actuator Toward Reducing Control Voltage in In-Plane Actuation Applications. International Journal of Applied Mechanics, 2021, 13, 2150044.	1.3	2
65	Adjustable stiffness elastic composite soft actuator for fast-moving robots. Science China Technological Sciences, 2021, 64, 1663-1675.	2.0	12
66	Fast-moving piezoelectric micro-robotic fish with double caudal fins. Robotics and Autonomous Systems, 2021, 140, 103733.	3.0	42
67	A multi-motion bionic soft hexapod robot driven by self-sensing controlled twisted artificial muscles. Bioinspiration and Biomimetics, 2021, 16, 045003.	1.5	24
68	Dielectric Elastomer Grippers. International Journal of Engineering and Advanced Technology, 2021, 10, 33-36.	0.2	0
69	Modelling and implementation of soft bio-mimetic turtle using echo state network and soft pneumatic actuators. Scientific Reports, 2021, 11, 12076.	1.6	21
70	Anguilliform Swimming Performance of an Eel-Inspired Soft Robot. Soft Robotics, 2022, 9, 425-439.	4.6	21
71	Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots. Advanced Intelligent Systems, 2021, 3, 2000282.	3.3	111
72	Novel insights into the design of stretchable electrical systems. Science Advances, 2021, 7, .	4.7	3

#	Article	IF	Citations
73	Underwater Soft Robot Modeling and Control With Differentiable Simulation. IEEE Robotics and Automation Letters, 2021, 6, 4994-5001.	3.3	39
74	Dynamic modeling for soft dielectric elastomer actuator considering different input frequencies and external loads. Journal of Intelligent Material Systems and Structures, 2022, 33, 1087-1100.	1.4	0
75	Tunable stiffness enables fast and efficient swimming in fish-like robots. Science Robotics, 2021, 6, .	9.9	75
76	Visible Light-Driven Jellyfish-like Miniature Swimming Soft Robot. ACS Applied Materials & Samp; Interfaces, 2021, 13, 47147-47154.	4.0	36
77	Shape memory alloy-driven undulatory locomotion of a soft biomimetic ray robot. Bioinspiration and Biomimetics, 2021, 16, 066006.	1.5	12
78	3D printing highly stretchable conductors for flexible electronics with low signal hysteresis. Virtual and Physical Prototyping, 2022, 17, 19-32.	5.3	14
79	Artificial Eyes with Emotion and Light Responsive Pupils for Realistic Humanoid Robots. Informatics, 2021, 8, 64.	2.4	1
80	Experimental evaluation of frequency response and firmness of apples based on an excitation technique using a dielectric elastomer actuator. Sensors and Actuators A: Physical, 2021, 330, 112830.	2.0	5
81	Fully 3D printed multi-material soft bio-inspired frog for underwater synchronous swimming. International Journal of Mechanical Sciences, 2021, 210, 106725.	3.6	39
82	Dielectric Elastomer Intelligent Devices for Soft Robots. Studies in Systems, Decision and Control, 2021, , 311-339.	0.8	0
83	High-Speed, Helical and Self-Coiled Dielectric Polymer Actuator. Actuators, 2021, 10, 15.	1.2	9
84	Mechanics of dielectric elastomer structures: A review. Extreme Mechanics Letters, 2020, 38, 100752.	2.0	105
85	Nonlinear out-of-plane resonation of a circular dielectric elastomer. Smart Materials and Structures, 2020, 29, 045003.	1.8	10
86	Design of a Command-Shaping Scheme for Mitigating Residual Vibrations in Dielectric Elastomer Actuators. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	31
87	Dielectric Elastomer Actuator for Soft Robotics Applications and Challenges. Applied Sciences (Switzerland), 2020, 10, 640.	1.3	129
88	Development of Biomimetic Soft Underwater Robot. Transactions of the Society of Instrument and Control Engineers, 2019, 55, 252-259.	0.1	5
89	Oratosquilla Oratoria-Like Amphibious Robot Based on Dielectric Elastomer. Lecture Notes in Computer Science, 2021, , 293-301.	1.0	0
90	Deep Reinforcement Learning Framework for Underwater Locomotion of Soft Robot., 2021,,.		12

#	Article	IF	CITATIONS
92	Bistable electroactive polymers for refreshable tactile displays. , 2019, , .		2
93	Shape Memory Alloy Based Caudal Fin for a Robotic Fish., 2019,,.		5
94	Three-Fingered Soft Pneumatic Gripper Integrating Joint-Tuning Capability. Soft Robotics, 2022, 9, 948-959.	4.6	12
95	Textiles in soft robots: Current progress and future trends. Biosensors and Bioelectronics, 2022, 196, 113690.	5. 3	50
96	Hydrodynamics Modeling of a Piezoelectric Micro-Robotic Fish With Double Caudal Fins. Journal of Mechanisms and Robotics, 2022, 14, .	1,5	7
97	A Miniature Underwater Robot Inspired by the Movement of Tadpoles. , 2021, , .		0
98	Fundamentals and working mechanisms of artificial muscles with textile application in the loop. Smart Materials and Structures, 2022, 31, 023001.	1.8	7
99	Review of soft fluidic actuators: classification and materials modeling analysis. Smart Materials and Structures, 2022, 31, 013001.	1.8	31
100	Tunable stiffness in fish robotics: mechanisms and advantages. Bioinspiration and Biomimetics, 2022, 17, 011002.	1.5	25
101	A Design Concept and Kinematic Model for a Soft Aquatic Robot with Complex Bio-mimicking Motion. Journal of Bionic Engineering, 2022, 19, 16-28.	2.7	9
102	An Untethered Bionic Robotic Fish Using SMA Actuators. , 2020, , .		5
103	Applications and challenges. , 0, , .		0
104	A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers. Journal of Marine Science and Engineering, 2022, 10, 77.	1,2	0
105	A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. Advanced Science, 2022, 9, e2104347.	5.6	29
106	A Stretchable Fiber with Tunable Stiffness for Programmable Shape Change of Soft Robots. Soft Robotics, 2022, 9, 1052-1061.	4.6	5
107	Effects of actuator-substrate ratio on hydrodynamic and propulsion performances of underwater oscillating flexible structure actuated by macro fiber composites. Mechanical Systems and Signal Processing, 2022, 170, 108824.	4.4	10
108	Electrode material effect on electromechanical properties of dielectric elastomers in different ambient humidity. Europhysics Letters, 0, , .	0.7	1
109	Shape Memory Alloyâ€Based Soft Amphibious Robot Capable of Sealâ€Inspired Locomotion. Advanced Materials Technologies, 2022, 7, .	3.0	25

#	ARTICLE	IF	CITATIONS
110	A Twisted and Coiled Polymer Artificial Muscles Driven Soft Crawling Robot Based on Enhanced Antagonistic Configuration. SSRN Electronic Journal, 0, , .	0.4	O
111	Development of a Butterfly Fractional-Order Backlash-Like Hysteresis Model for Dielectric Elastomer Actuators. IEEE Transactions on Industrial Electronics, 2023, 70, 1794-1801.	5.2	3
112	Nonlinear Modeling and Analysis of a Novel Robot Fish with Compliant Fluidic Actuator as a Tail. Journal of Bionic Engineering, 2022, 19, 629-642.	2.7	3
113	A Twisted and Coiled Polymer Artificial Muscles Driven Soft Crawling Robot Based on Enhanced Antagonistic Configuration. Machines, 2022, 10, 142.	1.2	11
114	Surface instabilities of soft dielectric elastomers with implementation of electrode stiffness. Mathematics and Mechanics of Solids, 2023, 28, 479-500.	1.5	4
115	A unimorph nanocomposite dielectric elastomer for large out-of-plane actuation. Science Advances, 2022, 8, eabm6200.	4.7	40
116	Design of Beaver-like Hind Limb and Analysis of Two Swimming Gaits for Underwater Narrow Space Exploration. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 104, 1.	2.0	5
117	Dynamic analysis of dielectric elastomer membrane for actuation in soft fish robots. Journal of Intelligent Material Systems and Structures, 2022, 33, 2357-2372.	1.4	4
118	Origami-inspired folding assembly of dielectric elastomers for programmable soft robots. Microsystems and Nanoengineering, 2022, 8, 37.	3.4	14
119	Biomimetic omnidirectional multi-tail underwater robot. Mechanical Systems and Signal Processing, 2022, 173, 109056.	4.4	10
120	Dielectric Elastomer Fiber Actuators with Aqueous Electrode. Polymers, 2021, 13, 4310.	2.0	8
121	Coolingâ€Accelerated Nanowireâ€Nitinol Hybrid Muscle for Versatile Prosthetic Hand and Biomimetic Retractable Claw. Advanced Functional Materials, 2022, 32, .	7.8	13
122	Development of a Thin Dielectric Elastomer Actuator with 3DOFs., 2021,,.		2
123	Effect of Geometrical Parameters on PneuNet Bending Performance. , 2021, , .		2
125	Soft robotic tentacle arm element actuated by rolled dielectric elastomer artificial muscles., 2022,,.		0
126	Nonlinear free and forced vibrations of a dielectric elastomer-based microcantilever for atomic force microscopy. Continuum Mechanics and Thermodynamics, 0 , 1 .	1.4	5
127	A Review of Smart Materials for the Boost of Soft Actuators, Soft Sensors, and Robotics Applications. Chinese Journal of Mechanical Engineering (English Edition), 2022, 35, .	1.9	30
129	Multiresponsive Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Actuators Enabled by Dual-Mechanism Synergism for Soft Robotics. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21474-21485.	4.0	30

#	Article	IF	CITATIONS
130	A Humidity-Powered Soft Robot with Fast Rolling Locomotion. Research, 2022, 2022, .	2.8	14
131	Multi-material Bio-inspired Soft Octopus Robot for Underwater Synchronous Swimming. Journal of Bionic Engineering, 2022, 19, 1229-1241.	2.7	23
132	Bioinspired Soft Robotic Fish for Wireless Underwater Control of Gliding Locomotion. Advanced Intelligent Systems, 2022, 4, .	3.3	14
133	A Proprioceptive Soft Robot Module Based on Supercoiled Polymer Artificial Muscle Strings. Polymers, 2022, 14, 2265.	2.0	6
134	A comprehensive review on fish-inspired robots. International Journal of Advanced Robotic Systems, 2022, 19, 172988062211037.	1.3	15
135	A Multiâ€Mode, Multiâ€Frequency Dielectric Elastomer Actuator. Advanced Functional Materials, 2022, 32,	7.8	20
136	Direct and remote induced actuation in artificial muscles based on electrospun fiber networks. Scientific Reports, 2022, 12 , .	1.6	2
137	Nonlinear Optimal Control of a Soft Robotic Structure Actuated by Dielectric Elastomer Artificial Muscles. , 2022, , .		2
138	Using inverse learning for controlling bionic robotic fish with SMA actuators. MRS Advances, 2022, 7, 649-655.	0.5	2
139	Development of Bendable Elliptical Cone Dielectric Elastomer Actuator. , 2022, , .		3
140	Printing of self-healable gelatin conductors engineered for improving physical and electrical functions: Exploring potential application in soft actuators and sensors. Journal of Industrial and Engineering Chemistry, 2022, 116, 171-179.	2.9	7
141	A bi-stable soft robotic bendable module driven by silicone dielectric elastomer actuators: design, characterization, and parameter study. Smart Materials and Structures, 2022, 31, 114002.	1.8	5
142	Research Development on Fish Swimming. Chinese Journal of Mechanical Engineering (English) Tj ETQq0 0 0 rgBT	/Oyerlock	. 10 Tf 50 26
143	Design and Closed‣oop Motion Planning of an Untethered Swimming Soft Robot Using 2D Discrete Elastic Rods Simulations. Advanced Intelligent Systems, 2022, 4, .	3.3	6
144	Magnetorheological Fluid-Based Bending Actuator for Magnetic Sensing. IEEE Robotics and Automation Letters, 2022, 7, 12169-12176.	3.3	0
145	High-performance electrified hydrogel actuators based on wrinkled nanomembrane electrodes for untethered insect-scale soft aquabots. Science Robotics, 2022, 7, .	9.9	24
146	Study on the Actuation Properties of Polyurethane Fiber Membranes Filled with PEG-SWNTs Dielectric Microcapsules. Membranes, 2022, 12, 1026.	1.4	1
147	Soft Underwater Swimming Robots Based on Artificial Muscle. Advanced Materials Technologies, 2023, 8, .	3.0	12

#	Article	IF	Citations
148	The Fabrication of Gas-driven Bionic Soft Flytrap Blade and Related Feasibility Tests. Journal of Bionic Engineering, $0, \dots$	2.7	1
149	Rolled Dielectric Elastomer Antagonistic Actuators for Biomimetic Underwater Robots. Polymers, 2022, 14, 4549.	2.0	4
150	Recent progress of dielectric polymer composites for bionics. Science China Materials, 2023, 66, 22-34.	3.5	3
151	Manta Ray Inspired Soft Robot Fish with Tough Hydrogels as Structural Elements. ACS Applied Materials & Samp; Interfaces, 2022, 14, 52430-52439.	4.0	5
152	A Hybrid Territorial Aquatic Bionic Soft Robot with Controllable Transition Capability. Journal of Bionic Engineering, 2023, 20, 568-583.	2.7	8
153	Nonlinear Dynamics of a Resonant-Impact Dielectric Elastomer Actuator. Applied System Innovation, 2022, 5, 122.	2.7	2
154	A Bioinspired Cownose Ray Robot for Seabed Exploration. Biomimetics, 2023, 8, 30.	1.5	6
155	One-Shot 3D Printed Soft Device Actuated Using Metal-Filled Channels and Sensed with Embedded Strain Gauge. 3D Printing and Additive Manufacturing, 0, , .	1.4	5
156	Nanomaterials and nanotechnology for biomedical soft robots. Materials Today Advances, 2023, 17, 100338.	2.5	19
157	Planar Modeling and Sim-to-Real of a Tethered Multimaterial Soft Swimmer Driven by Peano-HASELs. , 2022, , .		4
158	Amoeba-inspired swimming through isoperimetric modulation of body shape. , 2022, , .		0
159	Design and control of a soft saddle-shaped dielectric elastomer actuator. Journal of Applied Physics, 2022, 132, .	1.1	1
160	Soft Robotics: A Systematic Review and Bibliometric Analysis. Micromachines, 2023, 14, 359.	1.4	12
161	A 5 cmâ€Scale Piezoelectric Jetting Agile Underwater Robot. Advanced Intelligent Systems, 2023, 5, .	3.3	6
162	Research on flexible collapsible fluid-driven bionic robotic fish. Ocean Engineering, 2023, 276, 114203.	1.9	5
163	Soft-body dynamics induces energy efficiency in undulatory swimming: A deep learning study. Frontiers in Robotics and Al, 0, 10 , .	2.0	0
164	Electrically Driven Robotic Pistons Exploiting Liquid-Vapor Phase Transition for Underwater Applications. IEEE Robotics and Automation Letters, 2023, 8, 2118-2125.	3.3	0
165	3D Printing of Biomimetic Functional Nanocomposites <i>via</i> Vat Photopolymerization., 0,,.		0

#	Article	IF	CITATIONS
166	Macro Fiber Composite-Actuated Soft Robotic Fish: A Gray Box Model-Predictive Motion Planning Strategy Under Limited Actuation. Soft Robotics, 2023, 10, 948-958.	4.6	4
167	Dielectric elastomer artificial muscle materials advancement and soft robotic applications. SmartMat, 2023, 4, .	6.4	8
168	Modeling of Rate-Dependent Butterfly Hysteresis in Dielectric Elastomer Actuators. , 2022, , .		0
169	A Highly Robust Amphibious Soft Robot with Imperceptibility Based on a Waterâ€Stable and Selfâ€Healing Ionic Conductor. Advanced Materials, 2023, 35, .	11.1	15
170	Reconfigurable Innervation of Modular Soft Machines via Soft, Sticky, and Instant Electronic Adhesive Interlocking. Advanced Intelligent Systems, 2023, 5, .	3.3	0
173	Scaled-down of high-voltage circuits for dielectric elastomer actuators. , 2023, , .		O
178	Development of a Modular and Submersible Soft Robotic Arm and Corresponding Learned Kinematics Models., 2023,,.		2
179	Mixed $\mathcal{H}_{\infty}/\mathcal{H}_{\infty}$ Mixed \mathcal{H}_{∞} Control of a Soft Robotic Structure Actuated by Dielectric Elastomers. , 2022, , .		0
187	Composite elastomers with on-demand convertible phase separations achieve large and healable electro-actuation. Materials Horizons, $0, \dots$	6.4	0
200	Soft Actuators. Natural Computing Series, 2023, , 219-267.	2.2	0
201	Performance Characterization of a Resonant-Impact Crawling Robot Driven by Dielectric Elastomer Actuator*., 2023,,.		0
204	Design andÂControl ofÂaÂMiniature Soft Robotic Fish Actuated byÂArtificial Muscles. Lecture Notes in Computer Science, 2023, , 597-609.	1.0	0
205	Review of research and control technology of underwater bionic robots. , 2023, 1, .		1
211	A Fabrication and Simulation Recipe for Untethering Soft-Rigid Robots with Cable-Driven Stiffness Modulation. , 2023, , .		0
213	A Soft Actuation Method for Underwater Robot Based on Dielectric Elastomer Actuator., 2023,,.		0
217	Vibration Experiment for a Conductive Structure with Curved Surface Using a Dielectric Elastomer Actuator with Electro Adhesion Technique. , 2024, , .		O