An object-based convolutional neural network (OCNN)

Remote Sensing of Environment 216, 57-70 DOI: 10.1016/j.rse.2018.06.034

Citation Report

#	Article	IF	CITATIONS
1	Mapping Paddy Rice Using a Convolutional Neural Network (CNN) with Landsat 8 Datasets in the Dongting Lake Area, China. Remote Sensing, 2018, 10, 1840.	1.8	90
2	Method for Mapping Rice Fields in Complex Landscape Areas Based on Pre-Trained Convolutional Neural Network from HJ-1 A/B Data. ISPRS International Journal of Geo-Information, 2018, 7, 418.	1.4	28
3	A Deep Convolution Neural Network Method for Land Cover Mapping: A Case Study of Qinhuangdao, China. Remote Sensing, 2018, 10, 2053.	1.8	48
4	A New Method for Region-Based Majority Voting CNNs for Very High Resolution Image Classification. Remote Sensing, 2018, 10, 1946.	1.8	53
5	Urban Landscape Change Analysis Using Local Climate Zones and Object-Based Classification in the Salt Lake Metro Region, Utah, USA. Remote Sensing, 2019, 11, 1615.	1.8	20
6	Deep Feature Fusion with Integration of Residual Connection and Attention Model for Classification of VHR Remote Sensing Images. Remote Sensing, 2019, 11, 1617.	1.8	24
7	Comparing Deep Neural Networks, Ensemble Classifiers, and Support Vector Machine Algorithms for Object-Based Urban Land Use/Land Cover Classification. Remote Sensing, 2019, 11, 1713.	1.8	129
8	Finer Resolution Mapping of Marine Aquaculture Areas Using WorldView-2 Imagery and a Hierarchical Cascade Convolutional Neural Network. Remote Sensing, 2019, 11, 1678.	1.8	28
9	A hybrid OSVM-OCNN Method for Crop Classification from Fine Spatial Resolution Remotely Sensed Imagery. Remote Sensing, 2019, 11, 2370.	1.8	14
10	Performance analysis and optimization for scalable deployment of deep learning models for countryâ€scale settlement mapping on Titan supercomputer. Concurrency Computation Practice and Experience, 2019, 31, e5305.	1.4	7
11	Mapping Tree Species Composition Using OHS-1 Hyperspectral Data and Deep Learning Algorithms in Changbai Mountains, Northeast China. Forests, 2019, 10, 818.	0.9	20
12	Initial Results on Landuse/Landcover Classification Using Pixel-Based Random Forest Algorithm on Sentinel-2 Imagery over Enrekang Region. IOP Conference Series: Earth and Environmental Science, 2019, 280, 012036.	0.2	2
13	Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data. Advances in Space Research, 2019, 64, 2233-2244.	1.2	92
14	UAV-Based Slope Failure Detection Using Deep-Learning Convolutional Neural Networks. Remote Sensing, 2019, 11, 2046.	1.8	73
15	Identifying a Slums' Degree of Deprivation from VHR Images Using Convolutional Neural Networks. Remote Sensing, 2019, 11, 1282.	1.8	39
16	A convolutional neural network regression for quantifying cyanobacteria using hyperspectral imagery. Remote Sensing of Environment, 2019, 233, 111350.	4.6	98
17	A segmented particle swarm optimization convolutional neural network for land cover and land use classification of remote sensing images. Remote Sensing Letters, 2019, 10, 1182-1191.	0.6	11
18	Fusion of Multiscale Convolutional Neural Networks for Building Extraction in Very High-Resolution Images. Remote Sensing, 2019, 11, 227.	1.8	61

#	Article	IF	CITATIONS
19	Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sensing, 2019, 11, 196.	1.8	485
20	Small Manhole Cover Detection in Remote Sensing Imagery with Deep Convolutional Neural Networks. ISPRS International Journal of Geo-Information, 2019, 8, 49.	1.4	16
21	Land Use Classification of the Deep Convolutional Neural Network Method Reducing the Loss of Spatial Features. Sensors, 2019, 19, 2792.	2.1	38
22	Coastal Wetland Mapping with Sentinel-2 MSI Imagery Based on Gravitational Optimized Multilayer Perceptron and Morphological Attribute Profiles. Remote Sensing, 2019, 11, 952.	1.8	18
23	Hyperspectral Dimensionality Reduction Based on Multiscale Superpixelwise Kernel Principal Component Analysis. Remote Sensing, 2019, 11, 1219.	1.8	19
24	Editorial: Analysis and synthesis of ecological data by machine learning. Ecological Informatics, 2019, 53, 100971.	2.3	2
25	Model Fusion for Building Type Classification from Aerial and Street View Images. Remote Sensing, 2019, 11, 1259.	1.8	65
26	Mapping of Coastal Cities Using Optimized Spectral–Spatial Features Based Multi-Scale Superpixel Classification. Remote Sensing, 2019, 11, 998.	1.8	3
27	Detecting Large-Scale Urban Land Cover Changes from Very High Resolution Remote Sensing Images Using CNN-Based Classification. ISPRS International Journal of Geo-Information, 2019, 8, 189.	1.4	95
28	Classification of hyperspectral imagery with a 3D convolutional neural network and J-M distance. Advances in Space Research, 2019, 64, 886-899.	1.2	26
29	Understanding urban landuse from the above and ground perspectives: A deep learning, multimodal solution. Remote Sensing of Environment, 2019, 228, 129-143.	4.6	90
30	Meta-analysis of deep neural networks in remote sensing: A comparative study of mono-temporal classification to support vector machines. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152, 192-210.	4.9	54
31	Statistics Learning Network Based on the Quadratic Form for SAR Image Classification. Remote Sensing, 2019, 11, 282.	1.8	3
32	Smallholder Crop Area Mapped with a Semantic Segmentation Deep Learning Method. Remote Sensing, 2019, 11, 888.	1.8	65
33	Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152, 166-177.	4.9	1,243
34	Deep Learning-Based Classification Methods for Remote Sensing Images in Urban Built-Up Areas. IEEE Access, 2019, 7, 36274-36284.	2.6	78
35	An object-based and heterogeneous segment filter convolutional neural network for high-resolution remote sensing image classiffation. International Journal of Remote Sensing, 2019, 40, 5892-5916.	1.3	19
36	Fully Convolutional Networks and Geographic Object-Based Image Analysis for the Classification of VHR Imagery. Remote Sensing, 2019, 11, 597.	1.8	49

#	Article	IF	Citations
37	Integration of Convolutional Neural Networks and Object-Based Post-Classification Refinement for Land Use and Land Cover Mapping with Optical and SAR Data. Remote Sensing, 2019, 11, 690.	1.8	88
38	Spatiotemporal evolution of urban agglomerations in four major bay areas of US, China and Japan from 1987 to 2017: Evidence from remote sensing images. Science of the Total Environment, 2019, 671, 232-247.	3.9	80
39	High-Resolution Urban Land Mapping in China from Sentinel 1A/2 Imagery Based on Google Earth Engine. Remote Sensing, 2019, 11, 752.	1.8	84
40	Automatic detection of woody vegetation in repeat landscape photographs using a convolutional neural network. Ecological Informatics, 2019, 50, 220-233.	2.3	34
41	Evaluation of Different Approaches of Convolutional Neural Networks for Land Use and Land Cover Classification Based on High Resolution Remote Sensing Images. , 2019, , .		2
42	Building Extraction from Very High Resolution Aerial Imagery Using Joint Attention Deep Neural Network. Remote Sensing, 2019, 11, 2970.	1.8	45
43	High-Resolution Imagery Classification Based on Different Levels of Information. Remote Sensing, 2019, 11, 2916.	1.8	9
44	Land Cover Change Detection from High-Resolution Remote Sensing Imagery Using Multitemporal Deep Feature Collaborative Learning and a Semi-supervised Chan–Vese Model. Remote Sensing, 2019, 11, 2787.	1.8	14
45	An Unsupervised SAR Change Detection Method Based on Stochastic Subspace Ensemble Learning. Remote Sensing, 2019, 11, 1314.	1.8	23
46	Accurate Building Extraction from Fused DSM and UAV Images Using a Chain Fully Convolutional Neural Network. Remote Sensing, 2019, 11, 2912.	1.8	34
47	Large-Scale Oil Palm Tree Detection from High-Resolution Satellite Images Using Two-Stage Convolutional Neural Networks. Remote Sensing, 2019, 11, 11.	1.8	93
48	Joint Deep Learning for land cover and land use classification. Remote Sensing of Environment, 2019, 221, 173-187.	4.6	285
49	On the versatility of popular and recently proposed supervised evaluation metrics for segmentation quality of remotely sensed images: An experimental case study of building extraction. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160, 275-290.	4.9	19
50	Automatic Identification of the Social Functions of Areas of Interest (AOIs) Using the Standard Hour-Day-Spectrum Approach. ISPRS International Journal of Geo-Information, 2020, 9, 7.	1.4	12
51	Flood susceptibility mapping using convolutional neural network frameworks. Journal of Hydrology, 2020, 582, 124482.	2.3	182
52	Scale Sequence Joint Deep Learning (SS-JDL) for land use and land cover classification. Remote Sensing of Environment, 2020, 237, 111593.	4.6	76
53	Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping. Remote Sensing of Environment, 2020, 237, 111563.	4.6	79
54	SO–CNN based urban functional zone fine division with VHR remote sensing image. Remote Sensing of Environment, 2020, 236, 111458.	4.6	93

#	Article	IF	CITATIONS
55	Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sensing of Environment, 2020, 237, 111322.	4.6	465
56	Urban Green Plastic Cover Mapping Based on VHR Remote Sensing Images and a Deep Semi-Supervised Learning Framework. ISPRS International Journal of Geo-Information, 2020, 9, 527.	1.4	8
57	Mapping Tea Plantations from VHR Images Using OBIA and Convolutional Neural Networks. Remote Sensing, 2020, 12, 2935.	1.8	13
58	Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: A semantic segmentation solution. Remote Sensing of Environment, 2020, 251, 112096.	4.6	57
59	Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review—Part II: Applications. Remote Sensing, 2020, 12, 3053.	1.8	102
60	An Ensemble Learning Approach for Urban Land Use Mapping Based on Remote Sensing Imagery and Social Sensing Data. Remote Sensing, 2020, 12, 3254.	1.8	36
61	Incorporating Deep Features into GEOBIA Paradigm for Remote Sensing Imagery Classification: A Patch-Based Approach. Remote Sensing, 2020, 12, 3007.	1.8	10
62	Coastal Wetland Classification with Deep U-Net Convolutional Networks and Sentinel-2 Imagery: A Case Study at the Tien Yen Estuary of Vietnam. Remote Sensing, 2020, 12, 3270.	1.8	30
63	Identifying and mapping individual plants in a highly diverse high-elevation ecosystem using UAV imagery and deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169, 280-291.	4.9	54
64	Automated detection of rock glaciers using deep learning and object-based image analysis. Remote Sensing of Environment, 2020, 250, 112033.	4.6	71
65	Object based convolutional neural network for cloud classification in very high-resolution hyperspectral imagery. IOP Conference Series: Earth and Environmental Science, 2020, 500, 012059.	0.2	0
66	EFN: Field-Based Object Detection for Aerial Images. Remote Sensing, 2020, 12, 3630.	1.8	5
67	Explainable Artificial Intelligence for Developing Smart Cities Solutions. Smart Cities, 2020, 3, 1353-1382.	5.5	35
68	Farmland Parcel Mapping in Mountain Areas Using Time-Series SAR Data and VHR Optical Images. Remote Sensing, 2020, 12, 3733.	1.8	16
69	Intelligent Mapping of Urban Forests from High-Resolution Remotely Sensed Imagery Using Object-Based U-Net-DenseNet-Coupled Network. Remote Sensing, 2020, 12, 3928.	1.8	15
70	Improving Urban Land Cover/Use Mapping by Integrating A Hybrid Convolutional Neural Network and An Automatic Training Sample Expanding Strategy. Remote Sensing, 2020, 12, 2292.	1.8	7
71	Geographic Object-Based Image Analysis: A Primer and Future Directions. Remote Sensing, 2020, 12, 2012.	1.8	43
72	Comparing Fully Deep Convolutional Neural Networks for Land Cover Classification with High-Spatial-Resolution Gaofen-2 Images. ISPRS International Journal of Geo-Information, 2020, 9, 478.	1.4	27

#	Article	IF	CITATIONS
73	Exploring multiscale object-based convolutional neural network (multi-OCNN) for remote sensing image classification at high spatial resolution. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168, 56-73.	4.9	72
74	Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery. , 2020, , .		143
75	An Unsupervised Segmentation Method For Remote Sensing Imagery Based On Conditional Random Fields. , 2020, , .		3
76	A comprehensive review of deep learning applications in hydrology and water resources. Water Science and Technology, 2020, 82, 2635-2670.	1.2	216
77	Objective grading of eye muscle area, intramuscular fat and marbling in Australian beef and lamb. Meat Science, 2021, 181, 108358.	2.7	17
78	Choosing an appropriate training set size when using existing data to train neural networks for land cover segmentation. Annals of GIS, 2020, 26, 329-342.	1.4	12
79	U-Net Convolutional Networks for Mining Land Cover Classification Based on High-Resolution UAV Imagery. IEEE Access, 2020, 8, 186257-186273.	2.6	48
80	POI Mining for Land Use Classification: A Case Study. ISPRS International Journal of Geo-Information, 2020, 9, 493.	1.4	50
81	Extraction and Analysis of Blue Steel Roofs Information Based on CNN Using Gaofen-2 Imageries. Sensors, 2020, 20, 4655.	2.1	8
82	Identifying Soil Erosion Processes in Alpine Grasslands on Aerial Imagery with a U-Net Convolutional Neural Network. Remote Sensing, 2020, 12, 4149.	1.8	12
83	Multi-resolution classification network for high-resolution UAV remote sensing images. Geocarto International, 2022, 37, 3116-3140.	1.7	3
84	Object-oriented multiscale deep features for hyperspectral image classification. International Journal of Remote Sensing, 2020, 41, 5549-5572.	1.3	12
85	Regional Mapping of Essential Urban Land Use Categories in China: A Segmentation-Based Approach. Remote Sensing, 2020, 12, 1058.	1.8	27
86	Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164, 152-170.	4.9	562
87	Open-source data-driven urban land-use mapping integrating point-line-polygon semantic objects: A case study of Chinese cities. Remote Sensing of Environment, 2020, 247, 111838.	4.6	64
88	Convolutional Neural Network to Retrieve Water Depth in Marine Shallow Water Area From Remote Sensing Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2888-2898.	2.3	32
89	A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution. Remote Sensing of Environment, 2020, 247, 111912.	4.6	75
90	A Bayesian characterization of urban land use configurations from VHR remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 2020, 92, 102175.	1.4	13

#	Article	IF	CITATIONS
91	Change Detection of Deforestation in the Brazilian Amazon Using Landsat Data and Convolutional Neural Networks. Remote Sensing, 2020, 12, 901.	1.8	123
92	Identification of waterlogging in Eastern China induced by mining subsidence: A case study of Google Earth Engine time-series analysis applied to the Huainan coal field. Remote Sensing of Environment, 2020, 242, 111742.	4.6	66
93	A novel architecture: Using convolutional neural networks for Kansei attributes automatic evaluation and labeling. Advanced Engineering Informatics, 2020, 44, 101055.	4.0	19
94	Deep learning-based remote and social sensing data fusion for urban region function recognition. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163, 82-97.	4.9	105
95	Multi-Structure Joint Decision-Making Approach for Land Use Classification of High-Resolution Remote Sensing Images Based on CNNs. IEEE Access, 2020, 8, 42848-42863.	2.6	14
96	A multi-level context-guided classification method with object-based convolutional neural network for land cover classification using very high resolution remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 2020, 88, 102086.	1.4	53
97	EMMCNN: An ETPS-Based Multi-Scale and Multi-Feature Method Using CNN for High Spatial Resolution Image Land-Cover Classification. Remote Sensing, 2020, 12, 66.	1.8	19
98	Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166, 241-254.	4.9	68
99	Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment, 2020, 241, 111716.	4.6	744
100	Two-Phase Object-Based Deep Learning for Multi-Temporal SAR Image Change Detection. Remote Sensing, 2020, 12, 548.	1.8	22
100 101		1.8 2.3	22 67
	Sensing, 2020, 12, 548. Very High Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Technique—Subtropical Area for Example. IEEE Journal of Selected Topics in Applied Earth		
101	 Sensing, 2020, 12, 548. Very High Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Techniqueâ€"Subtropical Area for Example. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 113-128. DFCNN-Based Semantic Recognition of Urban Functional Zones by Integrating Remote Sensing Data and 	2.3	67
101 102	 Sensing, 2020, 12, 548. Very High Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Techniqueâ€"Subtropical Area for Example. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 113-128. DFCNN-Based Semantic Recognition of Urban Functional Zones by Integrating Remote Sensing Data and POI Data. Remote Sensing, 2020, 12, 1088. Deep Learning to Unveil Correlations between Urban Landscape and Population Health. Sensors, 2020, 	2.3 1.8	67 58
101 102 103	 Sensing, 2020, 12, 548. Very High Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Techniqueâ€"Subtropical Area for Example. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 113-128. DFCNN-Based Semantic Recognition of Urban Functional Zones by Integrating Remote Sensing Data and POI Data. Remote Sensing, 2020, 12, 1088. Deep Learning to Unveil Correlations between Urban Landscape and Population Health. Sensors, 2020, 20, 2105. Different Spectral Domain Transformation for Land Cover Classification Using Convolutional Neural 	2.3 1.8 2.1	67 58 6
101 102 103 104	 Sensing, 2020, 12, 548. Very High Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Techniqueâ€"Subtropical Area for Example. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 113-128. DFCNN-Based Semantic Recognition of Urban Functional Zones by Integrating Remote Sensing Data and POI Data. Remote Sensing, 2020, 12, 1088. Deep Learning to Unveil Correlations between Urban Landscape and Population Health. Sensors, 2020, 20, 2105. Different Spectral Domain Transformation for Land Cover Classification Using Convolutional Neural Networks with Multi-Temporal Satellite Imagery. Remote Sensing, 2020, 12, 1097. Application of deep learning in ecological resource research: Theories, methods, and challenges. 	2.3 1.8 2.1 1.8	67 58 6 13
101 102 103 104 105	 Sensing, 2020, 12, 548. Very High Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Techniqueà€"Subtropical Area for Example. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 113-128. DFCNN-Based Semantic Recognition of Urban Functional Zones by Integrating Remote Sensing Data and POI Data. Remote Sensing, 2020, 12, 1088. Deep Learning to Unveil Correlations between Urban Landscape and Population Health. Sensors, 2020, 20, 2105. Different Spectral Domain Transformation for Land Cover Classification Using Convolutional Neural Networks with Multi-Temporal Satellite Imagery. Remote Sensing, 2020, 12, 1097. Application of deep learning in ecological resource research: Theories, methods, and challenges. Science China Earth Sciences, 2020, 63, 1457-1474. Transferable instance segmentation of dwellings in a refugee camp - integrating CNN and OBIA. 	2.3 1.8 2.1 1.8 2.3	67 58 6 13 53

		CITATION REPOR	Т	
#	Article	IF	C	Citations
109	Incorporating DeepLabv3+ and object-based image analysis for semantic segmentation of very high resolution remote sensing images. International Journal of Digital Earth, 2021, 14, 357-378.	1.6	6	52
110	Multitemporal Relearning With Convolutional LSTM Models for Land Use Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 3251-3265.	2.3	1	.8
111	Deep Subpixel Mapping Based on Semantic Information Modulated Network for Urban Land Use Mapping. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 10628-10646.	2.7	6	52
112	A Semi-Supervised Deep Rule-Based Approach for Complex Satellite Sensor Image Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, PP, 1-1.	9.7	′ 3	
113	Environmental Applications of Deep Learning. Water Science and Technology Library, 2021, , 191-2	04. 0.2	2 0)
114	Land-Use Mapping for High-Spatial Resolution Remote Sensing Image Via Deep Learning: A Review. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 5372-5391	IEEE 2.3 L.	2	25
115	An SOE-Based Learning Framework Using Multisource Big Data for Identifying Urban Functional Zor IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7336-	nes. 7348. 2.3	2	26
116	Rapid mapping of landslides in the Western Ghats (India) triggered by 2018 extreme monsoon rainf using a deep learning approach. Landslides, 2021, 18, 1937-1950.	fall 2.7	5	50
117	A Brief Review of Graph Convolutional Neural Network Based Learning for classifying remote sensin images. Procedia Computer Science, 2021, 191, 349-354.	g 1.2	9)
118	High spatial resolution remote sensing image segmentation based on the multiclassification model and the binary classification model. Neural Computing and Applications, 2023, 35, 3597-3604.	3.2	9	
119	Deep Learning-Based Spatiotemporal Fusion Approach for Producing High-Resolution NDVI Time-Se Datasets. Canadian Journal of Remote Sensing, 2021, 47, 182-197.	ries 1.1	9)
120	Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data: Random forests versus support vector regression. Remote Sensing of Environmen 2021, 255, 112294.	t, 4.6	5	51
121	Research on Intelligent Image Scrambling Transform Encryption Algorithm Based on Big Data Analys , 2021, , .	sis.	1	
122	Mining the features of spatial adjacency relationships to improve the classification of high resolution remote sensing images based on complex network. Applied Soft Computing Journal, 202 102, 107089.	1, 4.1	. 6	
123	An Innovative Intelligent System with Integrated CNN and SVM: Considering Various Crops through Hyperspectral Image Data. ISPRS International Journal of Geo-Information, 2021, 10, 242.	1.4	1	.2
124	Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Usir Comparison between Machine Learning Algorithms. Remote Sensing, 2021, 13, 1349.	ng a 1.8	6	51
125	Enhanced Convolutional-Neural-Network Architecture for Crop Classification. Applied Sciences (Switzerland), 2021, 11, 4292.	1.3	1	.0
126	Mapping and analyzing the local climate zones in China's 32 major cities using Landsat imagery on a novel convolutional neural network. Geo-Spatial Information Science, 2021, 24, 528-557.	v based 2.4	2	23

#	Article	IF	CITATIONS
127	Optimization Analysis of Hydrogen Fuel Cell Hybrid Power Based on Neural Network and Sensor Networks. , 2021, , .		0
128	Performance Evaluation of GIS-Based Novel Ensemble Approaches for Land Subsidence Susceptibility Mapping. Frontiers in Earth Science, 2021, 9, .	0.8	14
129	Automatic mapping of urban green spaces using a geospatial neural network. GIScience and Remote Sensing, 2021, 58, 624-642.	2.4	22
130	An Adaptive Capsule Network for Hyperspectral Remote Sensing Classification. Remote Sensing, 2021, 13, 2445.	1.8	13
131	A hierarchical deep learning framework for the consistent classification of land use objects in geospatial databases. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177, 38-56.	4.9	16
132	Mapping essential urban land use categories (EULUC) using geospatial big data: Progress, challenges, and opportunities. Big Earth Data, 2021, 5, 410-441.	2.0	35
133	Mapping dynamic peri-urban land use transitions across Canada using Landsat time series: Spatial and temporal trends and associations with socio-demographic factors. Computers, Environment and Urban Systems, 2021, 88, 101653.	3.3	15
134	Gradient Boosting Machine and Object-Based CNN for Land Cover Classification. Remote Sensing, 2021, 13, 2709.	1.8	19
135	A Scale Sequence Object-based Convolutional Neural Network (SS-OCNN) for crop classification from fine spatial resolution remotely sensed imagery. International Journal of Digital Earth, 2021, 14, 1528-1546.	1.6	14
136	Mapping large-scale and fine-grained urban functional zones from VHR images using a multi-scale semantic segmentation network and object based approach. Remote Sensing of Environment, 2021, 261, 112480.	4.6	56
137	Comprehensive analysis of water carrying capacity based on wireless sensor network and image texture of feature extraction. AEJ - Alexandria Engineering Journal, 2022, 61, 2877-2886.	3.4	2
138	Mapping essential urban land use categories with open big data: Results for five metropolitan areas in the United States of America. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178, 203-218.	4.9	42
139	Accurate Estimation of the Proportion of Mixed Land Use at the Street-Block Level by Integrating High Spatial Resolution Images and Geospatial Big Data. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 6357-6370.	2.7	30
140	A Deep Learning Approach to an Enhanced Building Footprint and Road Detection in High-Resolution Satellite Imagery. Remote Sensing, 2021, 13, 3135.	1.8	16
141	LRâ€RoadNet: A longâ€range contextâ€aware neural network for road extraction via highâ€resolution remote sensing images. IET Image Processing, 2021, 15, 3239-3253.	1.4	2
142	Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images. Remote Sensing, 2021, 13, 3065.	1.8	72
143	Machine Learning of Spatial Data. ISPRS International Journal of Geo-Information, 2021, 10, 600.	1.4	38
144	A recurrent curve matching classification method integrating within-object spectral variability and between-object spatial association. International Journal of Applied Earth Observation and Geoinformation, 2021, 101, 102367.	1.4	4

#	Article	IF	CITATIONS
145	Iterative Deep Learning (IDL) for agricultural landscape classification using fine spatial resolution remotely sensed imagery. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102437.	1.4	5
146	Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters. Remote Sensing of Environment, 2021, 265, 112636.	4.6	110
147	Evaluation of different DEMs for gully erosion susceptibility mapping using in-situ field measurement and validation. Ecological Informatics, 2021, 65, 101425.	2.3	36
148	A deep learning algorithm to detect and classify sun glint from high-resolution aerial imagery over shallow marine environments. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181, 20-26.	4.9	32
149	Simplified object-based deep neural network for very high resolution remote sensing image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181, 218-237.	4.9	21
150	Local climate zones mapping using object-based image analysis and validation of its effectiveness through urban surface temperature analysis in China. Building and Environment, 2021, 206, 108348.	3.0	13
151	Satellite Imagery Noising With Generative Adversarial Networks. International Journal of Cognitive Informatics and Natural Intelligence, 2021, 15, 16-25.	0.4	2
152	A semantic segmentation method with category boundary for Land Use and Land Cover (LULC) mapping of Very-High Resolution (VHR) remote sensing image. International Journal of Remote Sensing, 2021, 42, 3146-3165.	1.3	13
153	DR-Net: An Improved Network for Building Extraction from High Resolution Remote Sensing Image. Remote Sensing, 2021, 13, 294.	1.8	70
154	Geospatial Big Data Handling with High Performance Computing: Current Approaches and Future Directions. Geotechnologies and the Environment, 2020, , 53-76.	0.3	16
155	A global method to identify trees outside of closed-canopy forests with medium-resolution satellite imagery. International Journal of Remote Sensing, 2021, 42, 1713-1737.	1.3	12
156	Machine learning methods and classification of vegetation in Brest, France. , 2019, , .		1
157	Monitoring sustainable development by means of earth observation data and machine learning: a review. Environmental Sciences Europe, 2020, 32, .	2.6	32
159	Instance Segmentation for Large, Multi-Channel Remote Sensing Imagery Using Mask-RCNN and a Mosaicking Approach. Remote Sensing, 2021, 13, 39.	1.8	45
160	IMPROVING THE CLASSIFICATION OF LAND USE OBJECTS USING DENSE CONNECTIVITY OF CONVOLUTIONAL NEURAL NETWORKS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIII-B2-2020, 667-673.	0.2	2
161	Distance Weight-Graph Attention Model-Based High-Resolution Remote Sensing Urban Functional Zone Identification. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-18.	2.7	5
162	Pointnet: Learning Point Representation for High-Resolution Remote Sensing Imagery Land-Cover Classification. , 2021, , .		1
163	A Comparation of CNN and DenseNet for Landslide Detection. , 2021, , .		4

#	ARTICLE	IF	Citations
164	Rethinking the High Frequency Components in Deep Sub-Pixel Mapping Network. , 2021, , .		0
165	Zooming into Uncertainties: Towards Fusing Multi Zoom Level Imagery for Urban Land Use Segmentation. , 2021, , .		Ο
166	Image Network Teaching Resource Retrieval Algorithm Based on Deep Hash Algorithm. Scientific Programming, 2021, 2021, 1-7.	0.5	2
167	Improved object-based convolutional neural network (IOCNN) to classify very high-resolution remote sensing images. International Journal of Remote Sensing, 2021, 42, 8318-8344.	1.3	11
168	Uncovering the Nature of Urban Land Use Composition Using Multi-Source Open Big Data with Ensemble Learning. Remote Sensing, 2021, 13, 4241.	1.8	8
169	Scale-sets image classification with hierarchical sample enriching and automatic scale selection. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102605.	1.4	4
170	A Local–Global Dual-Stream Network for Building Extraction From Very-High-Resolution Remote Sensing Images. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 1269-1283.	7.2	36
171	Monitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183, 19-33.	4.9	15
172	Modeling salinized wasteland using remote sensing with the integration of decision tree and multiple validation approaches in Hetao irrigation district of China. Catena, 2022, 209, 105854.	2.2	8
173	Quantification of Urban Patterns and Processes through Space and Time Using Remote Sensing Data: A Comparative Study between Three Saudi Arabian Cities. Sustainability, 2021, 13, 12615.	1.6	4
174	A process-driven and need-oriented framework for review of technological contributions to disaster management. Heliyon, 2021, 7, e08405.	1.4	11
175	A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery. Remote Sensing, 2021, 13, 4547.	1.8	8
177	Research on Urban Renewal Public Space Design Based on Convolutional Neural Network Model. Security and Communication Networks, 2021, 2021, 1-9.	1.0	4
178	Unsupervised Domain Adaptation for Semantic Segmentation of High-Resolution Remote Sensing Imagery Driven by Category-Certainty Attention. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	2.7	20
179	MCANet: A joint semantic segmentation framework of optical and SAR images for land use classification. International Journal of Applied Earth Observation and Geoinformation, 2022, 106, 102638.	1.4	21
180	Urban Land-Use and Land-Cover Mapping Based on the Classification of Transport Demand and Remote Sensing Data. , 2020, , .		0
181	Applications of Convolutional Neural Network for Classification of Land Cover and Groundwater Potentiality Zones. Journal of Engineering (United States), 2022, 2022, 1-8.	0.5	9
182	A Review of Landcover Classification with Very-High Resolution Remotely Sensed Optical Images—Analysis Unit, Model Scalability and Transferability. Remote Sensing, 2022, 14, 646.	1.8	36

#	Article	IF	CITATIONS
183	Assessment of forest cover changes using multi-temporal Landsat observation. Environment, Development and Sustainability, 2023, 25, 1351-1360.	2.7	12
184	Object-Based Multigrained Cascade Forest Method for Wetland Classification Using Sentinel-2 and Radarsat-2 Imagery. Water (Switzerland), 2022, 14, 82.	1.2	10
185	Automatic generation of land use maps using aerial orthoimages and building floor data with a Conv-Depth Block (CDB) ResU-Net architecture. International Journal of Applied Earth Observation and Geoinformation, 2022, 107, 102678.	1.4	2
186	Convolutional Neural Network for Land Cover Classification and Mapping Using Landsat Images. Lecture Notes in Networks and Systems, 2022, , 221-232.	0.5	4
187	Monitoring of Soil Salinization in the Keriya Oasis Based on Deep Learning with PALSAR-2 and Landsat-8 Datasets. Sustainability, 2022, 14, 2666.	1.6	4
188	A Cloud-Based Mapping Approach Using Deep Learning and Very-High Spatial Resolution Earth Observation Data to Facilitate the SDG 11.7.1 Indicator Computation. Remote Sensing, 2022, 14, 1011.	1.8	3
189	Automatic Building Extraction on Satellite Images Using Unet and ResNet50. Computational Intelligence and Neuroscience, 2022, 2022, 1-12.	1.1	26
190	Literature review of accessibility measures and models used in land use and transportation planning in last 5 years. Journal of Chinese Geography, 2022, 32, 560-584.	1.5	10
191	Monitoring seasonal effects in vegetation areas with Sentinel-1 SAR and Sentinel-2 optic satellite images. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	2
192	Adaptive multiple kernel fusion model using spatial-statistical information for high resolution SAR image classification. Neurocomputing, 2022, 492, 382-395.	3.5	7
193	Research on Massive Image Retrieval Method of Mobile Terminal Based on Weighted Aggregation Depth Feature. Wireless Communications and Mobile Computing, 2022, 2022, 1-7.	0.8	0
194	Methodology for Precision Land Use Mapping towards Sustainable Urbanized Land Development. International Journal of Environmental Research and Public Health, 2022, 19, 3633.	1.2	4
195	A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance. International Journal of Applied Earth Observation and Geoinformation, 2022, 108, 102719.	1.4	11
196	Detecting and mapping tree crowns based on convolutional neural network and Google Earth images. International Journal of Applied Earth Observation and Geoinformation, 2022, 108, 102764.	1.4	12
197	Knowledge-guided land pattern depiction for urban land use mapping: A case study of Chinese cities. Remote Sensing of Environment, 2022, 272, 112916.	4.6	39
198	Geoscience-aware deep learning: A new paradigm for remote sensing. Science of Remote Sensing, 2022, 5, 100047.	2.2	17
199	Artificial Intelligence for Remote Sensing Data Analysis: A review of challenges and opportunities. IEEE Geoscience and Remote Sensing Magazine, 2022, 10, 270-294.	4.9	140
200	A Comparison between Sentinel-2 and Landsat 8 OLI Satellite Images for Soil Salinity Distribution Mapping Using a Deep Learning Convolutional Neural Network. Canadian Journal of Remote Sensing, 2022, 48, 452-468.	1.1	11

#	Article	IF	CITATIONS
201	Estimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network. Computers, Environment and Urban Systems, 2022, 95, 101802.	3.3	8
202	Fine-Grained Classification of Urban Functional Zones and Landscape Pattern Analysis Using Hyperspectral Satellite Imagery: A Case Study of Wuhan. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 3972-3991.	2.3	16
203	Global 10-m impervious surface area mapping: A big earth data based extraction and updating approach. International Journal of Applied Earth Observation and Geoinformation, 2022, 109, 102800.	0.9	12
204	Cross-sensor domain adaptation for high spatial resolution urban land-cover mapping: From airborne to spaceborne imagery. Remote Sensing of Environment, 2022, 277, 113058.	4.6	41
205	An active one-shot learning approach to recognizing land usage from class-wise sparse satellite imagery in smart urban sensing. Knowledge-Based Systems, 2022, 249, 108997.	4.0	2
206	GeolnFuse - A data-driven information fusion for intra-urban form classification in data-scarce heterogeneous cities. Cities, 2022, 127, 103762.	2.7	1
207	An Object-Oriented CNN Model Based on Improved Superpixel Segmentation for High-Resolution Remote Sensing Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4782-4796.	2.3	9
208	Application of Convolutional Neural Networks With Object-Based Image Analysis for Land Cover and Land Use Mapping in Coastal Areas: A Case Study in Ain Témouchent, Algeria. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 5177-5189.	2.3	12
209	Mining Spatial Correlation Patterns of the Urban Functional Areas in Urban Agglomeration: A Case Study of Four Typical Urban Agglomerations in China. Land, 2022, 11, 870.	1.2	6
210	Context-Aware Matrix Factorization for the Identification of Urban Functional Regions with POI and Taxi OD Data. ISPRS International Journal of Geo-Information, 2022, 11, 351.	1.4	5
211	Concordance between Regional Functions and Mobility Features Using Bike-sharing and Land-use Data near Metro Stations. Sustainable Cities and Society, 2022, 84, 104010.	5.1	6
212	How to accurately extract large-scale urban land? Establishment of an improved fully convolutional neural network model. Frontiers of Earth Science, 2022, 16, 1061-1076.	0.9	1
213	Performance evaluation of shallow and deep CNN architectures on building segmentation from high-resolution images. Earth Science Informatics, 2022, 15, 1801-1823.	1.6	5
214	Multimodal Fusion of Mobility Demand Data and Remote Sensing Imagery for Urban Land-Use and Land-Cover Mapping. Remote Sensing, 2022, 14, 3370.	1.8	1
215	Investigation of land use changes in rural areas using MCDM and CA-Markov chain and their effects on water quality and soil fertility in southÂof Iran. Environmental Science and Pollution Research, 2022, 29, 88644-88662.	2.7	2
216	A deep semantic vegetation health monitoring platform for citizen science imaging data. PLoS ONE, 2022, 17, e0270625.	1.1	0
217	Decision Calibration Network for Semantic Labeling of High-Resolution Remote Sensing Images. , 2022, , , .		0
218	Automated detection of coastal upwelling in the Western Indian Ocean: Towards an operational "Upwelling Watch―system. Frontiers in Marine Science, 0, 9, .	1.2	1

ARTICLE IF CITATIONS # Temporal Sequence Object-based CNN (TS-OCNN) for crop classification from fine resolution remote 219 2.3 12 sensing image time-series. Crop Journal, 2022, 10, 1507-1516. Role of local climate zone and space syntax on land surface temperature (case study: Tehran). Urban 2.4 Climate, 2022, 45, 101245. Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to 221 4.6 15 PlanetScope. Remote Sensing of Environment, 2022, 280, 113203. Open-Pit Mine Extraction from Very High-Resolution Remote Sensing Images Using OM-DeepLab. Natural Resources Research, 2022, 31, 3173-3194. Building Function Type Identification Using Mobile Signaling Data Based on a Machine Learning 223 1.8 0 Method. Remote Sensing, 2022, 14, 4697. Breaking the resolution barrier: A low-to-high network for large-scale high-resolution land-cover mapping using low-resolution labels. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 192, 224 244-267 A hybrid image segmentation method for building extraction from high-resolution RGB images. ISPRS 225 4.9 5 Journal of Photogrammetry and Remote Sensing, 2022, 192, 299-314. Hidden Path Selection Network for Semantic Segmentation of Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15. Fine-Scale Urban Informal Settlements Mapping by Fusing Remote Sensing Images and Building Data via 227 a Transformer-Based Multimodal Fusion Network. IEEE Transactions on Geoscience and Remote 2.7 6 Sensing, 2022, 60, 1-16. Adaptive Multiscale Superpixel Embedding Convolutional Neural Network for Land Use Classification. 2.3 IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 7631-7642. Enhanced DeepLabv3+ for Urban Land Use Classification Based on UAV-Borne Images., 2022, , . 229 3 Remote sensing image classification based on object-oriented convolutional neural network. 0.8 Frontiers in Earth Science, 0, 10, . Developing a Dual-Stream Deep-Learning Neural Network Model for Improving County-Level Winter 231 1.8 10 Wheat Yield Estimates in China. Remote Sensing, 2022, 14, 5280. Integration of Object-Based Image Analysis and Convolutional Neural Network for the Classification of High-Resolution Satellite Image: A Comparative Assessment. Applied Sciences (Switzerland), 2022, 12, 1.3 10890. Delineation and Analysis of Regional Geochemical Anomaly Using the Object-Oriented Paradigm and Deep Graph Learningâ€"A Case Study in Southeastern Inner Mongolia, North China. Applied Sciences 233 2 1.3 (Switzerland), 2022, 12, 10029. Application of novel framework approach for assessing rainfall induced future landslide hazard to world heritage sites in Indo-Nepal-Bhutan Himalayan region. Geocarto International, 2024, 37, 234 17742-17776. Understanding the scale effects of topographical variables on landslide susceptibility mapping in 235 1.7 9 Sikkim Himalaya using deep learning approaches. Geocarto International, 2024, 37, 17826-17852. Individual Tree Species Classification Based on a Hierarchical Convolutional Neural Network and 1.8 Multitemporal Google Earth Images. Remote Sensing, 2022, 14, 5124.

#	Article	IF	CITATIONS
237	A review of multi-class change detection for satellite remote sensing imagery. Geo-Spatial Information Science, 2024, 27, 1-15.	2.4	22
238	A Joint Bayesian Optimization for the Classification of Fine Spatial Resolution Remotely Sensed Imagery Using Object-Based Convolutional Neural Networks. Land, 2022, 11, 1905.	1.2	1
239	Assessing Spatiotemporal Changes of SDG Indicators at the Neighborhood Level in Guilin, China: A Geospatial Big Data Approach. Remote Sensing, 2022, 14, 4985.	1.8	8
240	CNN-Enhanced Heterogeneous Graph Convolutional Network: Inferring Land Use from Land Cover with a Case Study of Park Segmentation. Remote Sensing, 2022, 14, 5027.	1.8	7
241	Performance Evaluation of MLP and CNN Models for Flood Prediction. Lecture Notes in Networks and Systems, 2023, , 273-281.	0.5	1
242	Construction of a Scoring Evaluation Model for Identifying Urban Functional Areas Based on Multisource Data. Journal of the Urban Planning and Development Division, ASCE, 2022, 148, .	0.8	3
243	Classification of house buildings based on land size using the K-nearest neighbor algorithm. AIP Conference Proceedings, 2022, , .	0.3	0
244	Research on the application of neural network based external location element settlement method in object location of geographic information. Journal of King Saud University - Science, 2023, 35, 102463.	1.6	0
245	Intra-urban land use maps for a global sample of cities from Sentinel-2 satellite imagery and computer vision. Computers, Environment and Urban Systems, 2023, 100, 101917.	3.3	7
246	Weighted split-flow network auxiliary with hierarchical multitasking for urban land use classification of high-resolution remote sensing images. International Journal of Remote Sensing, 2022, 43, 6721-6740.	1.3	4
247	Marine aquaculture mapping using GF-1 WFV satellite images and full resolution cascade convolutional neural network. International Journal of Digital Earth, 2022, 15, 2047-2060.	1.6	2
248	Snowmelt Flood Susceptibility Assessment in Kunlun Mountains Based on the Swin Transformer Deep Learning Method. Remote Sensing, 2022, 14, 6360.	1.8	6
249	Using Multiple Sources of Data and "Voting Mechanisms―for Urban Land-Use Mapping. Land, 2022, 11, 2209.	1.2	0
250	Developing an integrated approach based on geographic object-based image analysis and convolutional neural network for volcanic and glacial landforms mapping. Scientific Reports, 2022, 12, .	1.6	6
251	Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection. Remote Sensing, 2023, 15, 519.	1.8	5
252	Classification of land use/land cover using artificial intelligence (ANN-RF). Frontiers in Artificial Intelligence, 0, 5, .	2.0	6
253	Tunicate Swarm Algorithm with Deep Learning Based Land Use and Cover Change Detection in Nallamalla Forest India. Applied Sciences (Switzerland), 2023, 13, 1173.	1.3	3
254	Investigating urban heat-related health risks based on local climate zones: A case study of Changzhou in China. Sustainable Cities and Society, 2023, 91, 104402.	5.1	17

#	Article	IF	CITATIONS
255	Assessment of Trees Outside Forest (TOF) in Urban Landscape Using High-Resolution Satellite Images and Deep Learning Techniques. Journal of the Indian Society of Remote Sensing, 2023, 51, 549-564.	1.2	1
256	Evaluation of Materials and Structures with a Multistatic Ultra-Wideband Impulse Radar: A Concept Validation. Applied Sciences (Switzerland), 2023, 13, 1636.	1.3	0
257	Prediction of regional carbon emissions using deep learning and mathematical–statistical model. Journal of Ambient Intelligence and Smart Environments, 2023, , 1-17.	0.8	0
258	Detecting Urban form Using Remote Sensing: Spatiotemporal Research Gaps for Sustainable Environment and Human Health. Atmosphere, Earth, Ocean & Space, 2023, , 185-217.	0.4	0
259	SBSS: Stacking-Based Semantic Segmentation Framework for Very High-Resolution Remote Sensing Image. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-14.	2.7	4
260	RSSFormer: Foreground Saliency Enhancement for Remote Sensing Land-Cover Segmentation. IEEE Transactions on Image Processing, 2023, 32, 1052-1064.	6.0	28
261	Brain-Inspired Remote Sensing Interpretation: A Comprehensive Survey. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 2992-3033.	2.3	7
262	Detecting local climate zone change and its effects on PM10 distribution using fuzzy machine learning in Tehran, Iran. Urban Climate, 2023, 49, 101506.	2.4	1
263	Coastal landscape classification using convolutional neural network and remote sensing data in Vietnam. Journal of Environmental Management, 2023, 335, 117537.	3.8	6
264	High resolution annual irrigation water use maps in China based-on input variables selection and convolutional neural networks. Journal of Cleaner Production, 2023, 405, 136974.	4.6	2
265	Object-based continuous monitoring of land disturbances from dense Landsat time series. Remote Sensing of Environment, 2023, 287, 113462.	4.6	9
266	Cultivated land recognition from remote sensing images based on improved deeplabv3 model. , 2022, , .		3
267	Identification of secondary functional areas and functional structure analysis based on multisource geographic data. Geocarto International, 2023, 38, .	1.7	1
268	Mapping stone walls in Northeastern USA using deep learning and LiDAR data. GIScience and Remote Sensing, 2023, 60, .	2.4	3
271	Development of a Deep Urban Time Series Using Historical Aerial Photos to Document the Evolution of Recreational Urban Spaces. , 2023, , .		0
272	Preliminary Study of Urban Land Use Classification Using Historical Aerial Photos and Al Technology. , 2023, , .		0
274	Building Usage Classification Using a Transformer-based Multimodal Deep Learning Method. , 2023, , .		2
292	OBViT:A high-resolution remote sensing crop classification model combining OBIA and Vision Transformer. , 2023, , .		0

#	Article	IF	CITATIONS
293	Convolutional neural network for remote sensing classification. AIP Conference Proceedings, 2023, , .	0.3	0
301	Classification of various crops with CNN deep learning model. , 2023, , .		0
302	Enhanced object classification accuracy of surveillance camera using recurrent neural network and compare with novel local colour histogram method. AIP Conference Proceedings, 2023, , .	0.3	0
305	Advancements in Image Recognition for Urban Land Use: Multi-Scale CNN Extraction. , 2023, , .		Ο
311	Revolutionizing Image Recommendations: A Novel Approach with Social Context and CNN. , 2023, , .		0