Eosinophils suppress Th1 responses and restrict bactering inflammation

Journal of Experimental Medicine 215, 2055-2072 DOI: 10.1084/jem.20172049

Citation Report

#	Article	IF	CITATIONS
1	Eosinophils can more than kill. Journal of Experimental Medicine, 2018, 215, 1967-1969.	4.2	16
2	Anti-IL-13Rα2 therapy promotes recovery in a murine model of inflammatory bowel disease. Mucosal Immunology, 2019, 12, 1174-1186.	2.7	36
3	Exosomal CagA derived from Helicobacter pylori-infected gastric epithelial cells induces macrophage foam cell formation and promotes atherosclerosis. Journal of Molecular and Cellular Cardiology, 2019, 135, 40-51.	0.9	52
4	Activated Eosinophils Exert Antitumorigenic Activities in Colorectal Cancer. Cancer Immunology Research, 2019, 7, 388-400.	1.6	113
5	Intravital imaging allows real-time characterization of tissue resident eosinophils. Communications Biology, 2019, 2, 181.	2.0	26
6	Impact of Helicobacter pylori Virulence Factors on the Host Immune Response and Gastric Pathology. Current Topics in Microbiology and Immunology, 2019, 421, 21-52.	0.7	19
7	High-resolution mapping reveals that microniches in the gastric glands control Helicobacter pylori colonization of the stomach. PLoS Biology, 2019, 17, e3000231.	2.6	72
8	Schistosoma mansoni Coinfection Attenuates Murine Toxoplasma gondii-Induced Crohn's-Like lleitis by Preserving the Epithelial Barrier and Downregulating the Inflammatory Response. Frontiers in Immunology, 2019, 10, 442.	2.2	13
9	Dietary Omega-3 Fatty Acid Dampens Allergic Rhinitis via Eosinophilic Production of the Anti-Allergic Lipid Mediator 15-Hydroxyeicosapentaenoic Acid in Mice. Nutrients, 2019, 11, 2868.	1.7	37
10	The role of the changing human microbiome in the asthma pandemic. Journal of Allergy and Clinical Immunology, 2019, 144, 1457-1466.	1.5	34
12	Impact of eosinophil-peroxidase (EPX) deficiency on eosinophil structure and function in mouse airways. Journal of Leukocyte Biology, 2018, 105, 151-161.	1.5	13
13	Deciphering the role of eosinophils in solid organ transplantation. American Journal of Transplantation, 2020, 20, 924-930.	2.6	11
14	The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. International Archives of Allergy and Immunology, 2020, 181, 11-23.	0.9	65
15	Disrupting Bordetella Immunosuppression Reveals a Role for Eosinophils in Coordinating the Adaptive Immune Response in the Respiratory Tract. Microorganisms, 2020, 8, 1808.	1.6	13
16	The GM-CSF–IRF5 signaling axis in eosinophils promotes antitumor immunity through activation of type 1 T cell responses. Journal of Experimental Medicine, 2020, 217, .	4.2	45
17	Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. Journal of Experimental Medicine, 2020, 217, .	4.2	51
18	Eosinophils in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1273, 1-28.	0.8	20
19	APRIL-producing eosinophils are involved in gastric MALT lymphomagenesis induced by Helicobacter sp infection. Scientific Reports, 2020, 10, 14858.	1.6	15

ATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
20	Eosinophils Control Liver Damage by Modulating Immune Responses Against Fasciola hepatica. Frontiers in Immunology, 2020, 11, 579801.	2.2	12
21	The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Frontiers in Immunology, 2020, 11, 940.	2.2	423
22	Intravital imaging of eosinophils: Unwrapping the enigma. Journal of Leukocyte Biology, 2020, 108, 83-91.	1.5	3
23	Microbial Regulation of Enteric Eosinophils and Its Impact on Tissue Remodeling and Th2 Immunity. Frontiers in Immunology, 2020, 11, 155.	2.2	36
24	Hematological indices as indicators of silent inflammation in achalasia patients. Medicine (United) Tj ETQq0 0 0 r	gBT /Over 0.4	ock 10 Tf 50

25	In vivo evidence for extracellular DNA trap formation. Cell Death and Disease, 2020, 11, 300.	2.7	67
26	Control of myeloid cell density in barrier tissues. FEBS Journal, 2021, 288, 405-426.	2.2	6
27	Synergistic effects of cagA+ Helicobacter pylori co-infected with Opisthorchis viverrini on hepatobiliary pathology in hamsters. Acta Tropica, 2021, 213, 105740.	0.9	10
28	Eosinophils are dispensable for the regulation of IgA and Th17 responses in <i>Giardia muris</i> infection. Parasite Immunology, 2021, 43, e12791.	0.7	4
29	Myeloid-derived suppressor cell and regulatory T cell frequencies in canine myasthenia gravis: A pilot study. Veterinary Journal, 2021, 267, 105581.	0.6	2
30	Reply to Chen and Vitetta. Journal of Infectious Diseases, 2021, 223, 1660-1662.	1.9	1
31	ATG5 promotes eosinopoiesis but inhibits eosinophil effector functions. Blood, 2021, 137, 2958-2969.	0.6	11
32	Eosinophils attenuate hepatic ischemia-reperfusion injury in mice through ST2-dependent IL-13 production. Science Translational Medicine, 2021, 13, .	5.8	31
33	Heterogeneity of Intestinal Tissue Eosinophils: Potential Considerations for Next-Generation Eosinophil-Targeting Strategies. Cells, 2021, 10, 426.	1.8	19
35	Physiology and pathology of eosinophils: Recent developments. Scandinavian Journal of Immunology, 2021, 93, e13032.	1.3	4
36	Eosinophils and COVID-19: diagnosis, prognosis, and vaccination strategies. Seminars in Immunopathology, 2021, 43, 383-392.	2.8	36
37	Intestinal eosinophils: multifaceted roles in tissue homeostasis and disease. Seminars in Immunopathology, 2021, 43, 307-317.	2.8	10
38	Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Annual Review of Immunology, 2021, 39, 719-757.	9.5	69

CITATION REPORT

#	Article	IF	CITATIONS
39	Intestinal eosinophils, homeostasis and response to bacterial intrusion. Seminars in Immunopathology, 2021, 43, 295-306.	2.8	21
40	Lessons learned from targeting eosinophils in human disease. Seminars in Immunopathology, 2021, 43, 459-475.	2.8	10
42	The Enigma of Eosinophil Degranulation. International Journal of Molecular Sciences, 2021, 22, 7091.	1.8	37
43	Gastric eosinophils are detrimental for Helicobacter pylori vaccine efficacy. Vaccine, 2021, 39, 3590-3601.	1.7	2
44	Eosinophils and Bacteria, the Beginning of a Story. International Journal of Molecular Sciences, 2021, 22, 8004.	1.8	18
45	Paeoniflorin protects against dextran sulfate sodium (DSS)-induced colitis in mice through inhibition of inflammation and eosinophil infiltration. International Immunopharmacology, 2021, 97, 107667.	1.7	15
46	Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. Journal of Experimental Medicine, 2021, 218, .	4.2	38
47	What we know and still ignore on COVIDâ€19 immune pathogenesis and a proposal based on the experience of allergic disorders. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1114-1128.	2.7	6
48	Mechanisms of persistence, innate immune activation and immunomodulation by the gastric pathogen Helicobacter pylori. Current Opinion in Microbiology, 2020, 54, 1-10.	2.3	33
50	Eosinophils downregulate lung alloimmunity by decreasing TCR signal transduction. JCI Insight, 2019, 4, .	2.3	23
51	Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World Journal of Gastroenterology, 2019, 25, 3503-3526.	1.4	63
53	Immunoregulatory Cells in Myasthenia Gravis. Frontiers in Neurology, 2020, 11, 593431.	1.1	13
54	NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions. Immune Network, 2021, 21, e42.	1.6	9
55	Intestinal Barrier Function and Immune Homeostasis Are Missing Links in Obesity and Type 2 Diabetes Development. Frontiers in Endocrinology, 2021, 12, 833544.	1.5	28
56	Safety of eosinophil depletion. , 2022, , 238-252.		2
57	Influence of <i>Helicobacter pylori</i> infection on PDâ€1/PDâ€L1 blockade therapy needs more attention. Helicobacter, 2022, 27, e12878.	1.6	15
58	TGF-β production by eosinophils drives the expansion of peripherally induced neuropilinâ^' RORγt+ regulatory T-cells during bacterial and allergen challenge. Mucosal Immunology, 2022, 15, 504-514.	2.7	11
59	The aryl hydrocarbon receptor contributes to tissue adaptation of intestinal eosinophils in mice. Journal of Experimental Medicine, 2022, 219, .	4.2	22

CITATION REPORT

#	Article	IF	CITATIONS
60	Transcriptional Profiling of Mouse Eosinophils Identifies Distinct Gene Signatures Following Cellular Activation. Frontiers in Immunology, 2021, 12, 802839.	2.2	19
61	Solving the Conundrum of Eosinophils in Alloimmunity. Transplantation, 2022, 106, 1538-1547.	0.5	3
66	The regulatory role of eosinophils in viral, bacterial, and fungal infections. Clinical and Experimental Immunology, 2022, 209, 72-82.	1.1	13
67	Small intestinal resident eosinophils maintain gut homeostasis following microbial colonization. Immunity, 2022, 55, 1250-1267.e12.	6.6	29
68	Living without eosinophils: evidence from mouse and man. European Respiratory Journal, 2023, 61, 2201217.	3.1	8
69	Faecalibaculum rodentium remodels retinoic acid signaling to govern eosinophil-dependent intestinal epithelial homeostasis. Cell Host and Microbe, 2022, 30, 1295-1310.e8.	5.1	32
70	Eosinophil–lymphocyte interactions in the tumor microenvironment and cancer immunotherapy. Nature Immunology, 2022, 23, 1309-1316.	7.0	39
72	Expression of Eosinophilic Subtype Markers in Patients with Kawasaki Disease. International Journal of Molecular Sciences, 2022, 23, 10093.	1.8	2
74	Recent advances in understanding the role of eosinophils. Faculty Reviews, 0, 11, .	1.7	5
76	Eosinophils Recruited during Pulmonary Vaccination Regulate Mucosal Antibody Production. American Journal of Respiratory Cell and Molecular Biology, 2023, 68, 186-200.	1.4	2
77	Significance and Potential Role of Eosinophils in Non-Cystic Fibrosis Bronchiectasis. Journal of Allergy and Clinical Immunology: in Practice, 2023, 11, 1089-1099.	2.0	10
78	Eosinophils: A Friend or Foe in Human Health and Diseases. Kidney Diseases (Basel, Switzerland), 2023, 9, 26-38.	1.2	4
79	Active eosinophils regulate host defence and immune responses in colitis. Nature, 2023, 615, 151-157.	13.7	33
80	Helicobacter pylori Chronic-Stage Inflammation Undergoes Fluctuations That Are Altered in <i>tlpA</i> Mutants. Infection and Immunity, 0, , .	1.0	0
81	Metabolism in type 2 immune responses. Immunity, 2023, 56, 723-741.	6.6	7
82	Extracellular distribution of galectin-10 in the esophageal mucosa of patients with eosinophilic esophagitis. Clinical and Experimental Immunology, 0, , .	1.1	0
83	Commensal Bacteria and the Lung Environment Are Responsible for Th2-Mediated Memory Yielding Natural IgE in MyD88-Deficient Mice. Journal of Immunology, 2023, 210, 959-972.	0.4	1
90	Immune Biology and Persistence of Helicobacter pylori in Gastric Diseases. Current Topics in Microbiology and Immunology, 2023, , 83-115.	0.7	0

ARTICLE

IF CITATIONS