Branched aldehydes as linchpins for the enantioselective 1,3-aminoalcohols featuring a quaternary stereocentre

Nature Catalysis 1, 523-530

DOI: 10.1038/s41929-018-0093-6

Citation Report

#	Article	IF	CITATIONS
1	Chemo†and Regioselective Ring Construction Driven by Visibleâ€Light Photoredox Catalysis: an Access to Fluoroalkylated Oxazolidines Featuring an Allâ€Substituted Carbon Stereocenter. Advanced Synthesis and Catalysis, 2019, 361, 4082-4090.	2.1	19
2	Enantioselective Divergent Syntheses of (+)-Bulleyanaline and Related Isoquinoline Alkaloids from the Genus <i>Corydalis</i> . Journal of the American Chemical Society, 2019, 141, 16085-16092.	6.6	13
3	Synthesis of Chiral, Densely Substituted Pyrrolidones via Phosphine-Catalyzed Cycloisomerization. Organic Letters, 2019, 21, 1890-1894.	2.4	17
4	Tuning the Reactivity of Ketones through Unsaturation: Construction of Cyclic and Acyclic Quaternary Stereocenters via Zn-ProPhenol Catalyzed Mannich Reactions. ACS Catalysis, 2019, 9, 1549-1557.	5.5	37
5	Direct Enantio- and Diastereoselective Vinylogous Addition of Butenolides to Chromones Catalyzed by Zn-ProPhenol. Journal of the American Chemical Society, 2019, 141, 1489-1493.	6.6	71
6	1,3-Amino alcohols and their phenol analogs in heterocyclization reactions. Advances in Heterocyclic Chemistry, 2020, , 285-350.	0.9	6
7	Zweikernige Metallâ€ProPhenolâ€Katalysatoren: Entwicklung und Anwendungen in der Synthese. Angewandte Chemie, 2020, 132, 4268-4291.	1.6	13
8	Dinuclear Metalâ€ProPhenol Catalysts: Development and Synthetic Applications. Angewandte Chemie - International Edition, 2020, 59, 4240-4261.	7.2	68
9	Zn-ProPhenol Catalyzed Enantioselective Mannich Reaction of 2 <i>H</i> -Azirines with Alkynyl Ketones. Organic Letters, 2020, 22, 9683-9687.	2.4	15
10	Pd(0)-Catalyzed Chemo-, Diastereo-, and Enantioselective α-Quaternary Alkylation of Branched Aldehydes. ACS Catalysis, 2020, 10, 9496-9503.	5.5	26
11	Enantioselective Fluorination of \hat{l}_{\pm} -Branched \hat{l}_{\pm} -Ynone Esters Using a Cinchona-Based Phase-Transfer Catalyst. Journal of Organic Chemistry, 2020, 85, 12804-12812.	1.7	5
12	H-bond donor-directed switching of diastereoselectivity in the Michael addition of \hat{l} ±-azido ketones to nitroolefins. Chemical Science, 2020, 11, 3852-3861.	3.7	29
13	A unified approach for divergent synthesis of contiguous stereodiads employing a small boronyl group. Nature Communications, 2020, $11,792$.	5.8	20
14	Enantio- and Diastereoselective Double Mannich Reaction between Ketones and Imines Catalyzed by Zn-ProPhenol. Organic Letters, 2020, 22, 1675-1680.	2.4	17
15	Formaldehyde in multicomponent reactions. Green Chemistry, 2021, 23, 1447-1465.	4.6	46
16	Conjugated ynones in catalytic enantioselective reactions. Organic and Biomolecular Chemistry, 2021, 19, 2110-2145.	1.5	19
17	Recent advances and prospects in the Zn-catalysed Mannich reaction. RSC Advances, 2021, 11, 9098-9111.	1.7	15
18	Stereodivergent entry to \hat{l}^2 -branched \hat{l}^2 -trifluoromethyl \hat{l}_\pm -amino acid derivatives by sequential catalytic asymmetric reactions. Chemical Science, 2021, 12, 10233-10241.	3.7	15

#	Article	IF	CITATIONS
19	Direct Asymmetric αâ€Selective Mannich Reaction of β,γâ€Unsaturated Ketones with Cyclic αâ€Imino Ester: Divergent Synthesis of Cyclocanaline and Tetrahydro Pyridazinone Derivatives. Chemistry - A European Journal, 2021, 27, 5130-5135.	1.7	12
20	Catalyst-Directed Divergent Catalytic Approaches to Expand Structural and Functional Scaffold Diversity via Metallo-Enolcarbene Intermediates. ACS Catalysis, 2021, 11, 4712-4721.	5.5	18
21	Asymmetric Zinc Catalysis in Green One-pot Processes. Current Organic Chemistry, 2021, 25, 857-875.	0.9	6
22	Stereodivergent Synthesis of Enantioenriched 2,3-Disubstituted Dihydrobenzofurans via a One-Pot Câ€"H Functionalization/Oxa-Michael Addition Cascade. Journal of the American Chemical Society, 2021, 143, 8583-8589.	6.6	74
23	Ir-Catalyzed Regio- and Enantioselective Hydroalkynylation of Trisubstituted Alkene to Access All-Carbon Quaternary Stereocenters. Journal of the American Chemical Society, 2021, 143, 9639-9647.	6.6	38
24	Recent developments in enantioselective zinc-catalyzed transformations. Coordination Chemistry Reviews, 2021, 439, 213926.	9.5	10
25	Stereodivergent Construction of Vicinal Acyclic Quaternary–Tertiary Carbon Stereocenters by Michael-Type Alkylation of α,α-Disubstituted <i>N</i> - <i>tert</i> -Butanesulfinyl Ketimines. Organic Letters, 2021, 23, 7450-7455.	2.4	13
26	Stereodivergent synthesis <i>via</i> iridium-catalyzed asymmetric double allylic alkylation of cyanoacetate. Chemical Science, 2021, 12, 15882-15891.	3.7	15
27	Asymmetric construction of acyclic quaternary stereocenters via direct enantioselective additions of α-alkynyl ketones to allenamides. Nature Communications, 2021, 12, 6700.	5.8	23
28	Enantiocontrol over Acyclic Quaternary Stereocenters by Acylative Organocatalyzed Kinetic Resolution. European Journal of Organic Chemistry, 2022, 2022, .	1.2	0
29	Water enables diastereodivergency in bispidine-based chiral amine-catalyzed asymmetric Mannich reaction of cyclic <i>N</i> -sulfonyl ketimines with ketones. Chemical Science, 2022, 13, 4313-4320.	3.7	6
30	Desymmetric Partial Reduction of Malonic Esters. Journal of the American Chemical Society, 2022, 144, 6918-6927.	6.6	17
31	Advances in C1-deuterated aldehyde synthesis. Coordination Chemistry Reviews, 2022, 463, 214525.	9.5	13
32	One out of Four: Kinetic Resolution of Stereoisomeric Mixtures of Secondary Alcohols with a Quaternary Carbon Atom in the β-Position by Cu–H-Catalyzed Enantioselective Silylation. ACS Organic & Inorganic Au, 2022, 2, 164-168.	1.9	0
33	Construction of Acyclic Quaternary Stereocenters via Mannich-Type Addition of $\hat{l}_{\pm},\hat{l}_{\pm}$ -Disubstituted <i>N</i> - <i>tert</i> -Butanesulfinyl Ketimines to Isatin-Derived Ketimines. Organic Letters, 2022, 24, 2883-2888.	2.4	7
34	Highly Enantioselective Approach Toward Optically Active \hat{I}^3 -Amino Alcohols by Tin-Catalyzed Kinetic Resolution of 1,3-Amino alcohols. Chemical Communications, 0, , .	2.2	1
35	Stereodivergent Construction of 1,4â€Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angewandte Chemie, 2022, 134, .	1.6	8
36	Stereodivergent Construction of $1,4\hat{a}\in\mathbb{N}$ on adjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41

#	Article	IF	CITATION
37	Copper atalyzed Boroaminomethylation of Olefins to <i>γ</i> â€Boryl Amines with CO as C1 Source. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
38	Copperâ \in Catalyzed Boroaminomethylation of Olefins to \hat{I}^3 â \in Boryl Amines with CO as C1 Source. Angewandte Chemie, 0, , .	1.6	O
39	Asymmetric Three-Component Reaction to Assemble the Acyclic All-Carbon Quaternary Stereocenter via Visible Light and Phosphoric Acid Catalysis. ACS Catalysis, 2022, 12, 13282-13291.	5.5	13
41	Stereodivergent Construction of 1,3 hiral Centers via Tandem Asymmetric Conjugate Addition and Allylic Substitution Reaction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
42	Stereodivergent Construction of 1,3 \hat{a} Chiral Centers via Tandem Asymmetric Conjugate Addition and Allylic Substitution Reaction. Angewandte Chemie, 0, , .	1.6	0
43	Catalytic Asymmetric α-Functionalization of α-Branched Aldehydes. Molecules, 2023, 28, 2694.	1.7	9
44	Zn-ProPhenol catalyzed asymmetric inverse-electron-demand Diels–Alder reaction. Chemical Communications, 2023, 59, 6929-6932.	2.2	3