Aspartate is an endogenous metabolic limitation for tur

Nature Cell Biology 20, 782-788 DOI: 10.1038/s41556-018-0125-0

Citation Report

#	Article	IF	CITATIONS
1	Metabolic Frugality Marks Cancer Cells for Immune Targeting. Cell, 2018, 174, 1344-1346.	13.5	5
2	Rewiring urea cycle metabolism inÂcancer to support anabolism. Nature Reviews Cancer, 2018, 18, 634-645.	12.8	192
3	Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nature Cell Biology, 2018, 20, 775-781.	4.6	311
4	Cytosolic Aspartate Availability Determines Cell Survival When Glutamine Is Limiting. Cell Metabolism, 2018, 28, 706-720.e6.	7.2	132
5	Reprogramming of Amino Acid Transporters to Support Aspartate and Glutamate Dependency Sustains Endocrine Resistance in Breast Cancer. Cell Reports, 2019, 28, 104-118.e8.	2.9	67
6	Glutamine Metabolism in Brain Tumors. Cancers, 2019, 11, 1628.	1.7	53
7	<scp>SLC</scp> 1A3 contributes to Lâ€asparaginase resistance in solid tumors. EMBO Journal, 2019, 38, e102147.	3.5	41
8	Maintaining cytosolic aspartate levels is a major function of the TCA cycle in proliferating cells. Molecular and Cellular Oncology, 2019, 6, e1536843.	0.3	19
9	Cellular redox state constrains serine synthesis and nucleotide production to impact cell proliferation. Nature Metabolism, 2019, 1, 861-867.	5.1	107
10	Metabolic reprogramming and tumor immunity under hypoxic microenvironment. Current Opinion in Physiology, 2019, 7, 53-59.	0.9	9
11	Enzyme-mediated depletion of l-cyst(e)ine synergizes with thioredoxin reductase inhibition for suppression of pancreatic tumor growth. Npj Precision Oncology, 2019, 3, 16.	2.3	28
12	Diverse Stakeholders of Tumor Metabolism: An Appraisal of the Emerging Approach of Multifaceted Metabolic Targeting by 3-Bromopyruvate. Frontiers in Pharmacology, 2019, 10, 728.	1.6	11
13	Superfluous glutamine synthetase activity in Chinese Hamster Ovary cells selected under glutamine limitation is growth limiting in glutamineâ€replete conditions and can be inhibited by serine. Biotechnology Progress, 2019, 35, e2856.	1.3	0
14	Circadian Clocks and Cancer: Timekeeping Governs Cellular Metabolism. Trends in Endocrinology and Metabolism, 2019, 30, 445-458.	3.1	73
15	HSP60 silencing promotes Warburg-like phenotypes and switches the mitochondrial function from ATP production to biosynthesis in ccRCC cells. Redox Biology, 2019, 24, 101218.	3.9	44
16	The Diverse Functions of Non-Essential Amino Acids in Cancer. Cancers, 2019, 11, 675.	1.7	119
17	The molecular rationale for therapeutic targeting of glutamine metabolism in pulmonary hypertension. Expert Opinion on Therapeutic Targets, 2019, 23, 511-524.	1.5	19
18	The Fate of Glutamine in Human Metabolism. The Interplay with Glucose in Proliferating Cells. Metabolites, 2019, 9, 81.	1.3	20

ITATION REDO

# 19	ARTICLE SOX12 promotes colorectal cancer cell proliferation and metastasis by regulating asparagine synthesis. Cell Death and Disease, 2019, 10, 239.	lF 2.7	Citations 63
20	Metabolic regulation of cell growth and proliferation. Nature Reviews Molecular Cell Biology, 2019, 20, 436-450.	16.1	577
21	Repurposed Biguanide Drugs in Glioblastoma Exert Antiproliferative Effects via the Inhibition of Intracellular Chloride Channel 1 Activity. Frontiers in Oncology, 2019, 9, 135.	1.3	21
22	HIF11± Suppresses Tumor Cell Proliferation through Inhibition of Aspartate Biosynthesis. Cell Reports, 2019, 26, 2257-2265.e4.	2.9	69
23	Reactive metabolite production is a targetable liability of glycolytic metabolism in lung cancer. Nature Communications, 2019, 10, 5604.	5.8	45
24	A Humanized Bone Niche Model Reveals Bone Tissue Preservation Upon Targeting Mitochondrial Complex I in Pseudo-Orthotopic Osteosarcoma. Journal of Clinical Medicine, 2019, 8, 2184.	1.0	8
25	Metabolomics of Small Intestine Neuroendocrine Tumors and Related Hepatic Metastases. Metabolites, 2019, 9, 300.	1.3	8
26	Starvation and Pseudo-Starvation as Drivers of Cancer Metastasis through Translation Reprogramming. Cell Metabolism, 2019, 29, 254-267.	7.2	88
27	Fuelling cancer cells. Nature Reviews Endocrinology, 2019, 15, 71-72.	4.3	10
28	Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. Journal of Hepatology, 2019, 70, 710-721.	1.8	122
29	Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metabolism, 2019, 29, 399-416.e10.	7.2	190
30	Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nature Metabolism, 2019, 1, 158-171.	5.1	141
31	Coordinative metabolism of glutamine carbon and nitrogen in proliferating cancer cells under hypoxia. Nature Communications, 2019, 10, 201.	5.8	140
32	Epigenetic upregulation and functional role of the mitochondrial aspartate/glutamate carrier isoform 1 in hepatocellular carcinoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 38-47.	1.8	42
33	Mitochondria-driven elimination of cancer and senescent cells. Biological Chemistry, 2019, 400, 141-148.	1.2	13
34	Tumor-Stroma Mechanics Coordinate Amino Acid Availability to Sustain Tumor Growth and Malignancy. Cell Metabolism, 2019, 29, 124-140.e10.	7.2	232
35	Reconciling environment-mediated metabolic heterogeneity with the oncogene-driven cancer paradigm in precision oncology. Seminars in Cell and Developmental Biology, 2020, 98, 202-210.	2.3	23
36	The multifaceted effects of metformin on tumor microenvironment. Seminars in Cell and Developmental Biology, 2020, 98, 90-97.	2.3	57

#	Article	IF	CITATIONS
37	The mitochondrial carrier Citrin plays a role in regulating cellular energy during carcinogenesis. Oncogene, 2020, 39, 164-175.	2.6	16
38	Metabolomic Profile of Aggressive Meningiomas by Using High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance. Journal of Proteome Research, 2020, 19, 292-299.	1.8	10
39	Metabolic Fitness and Plasticity in Cancer Progression. Trends in Cancer, 2020, 6, 49-61.	3.8	76
40	Activation of Oxidative Stress Response in Cancer Generates a Druggable Dependency on Exogenous Non-essential Amino Acids. Cell Metabolism, 2020, 31, 339-350.e4.	7.2	103
41	Targeting extracellular nutrient dependencies of cancer cells. Molecular Metabolism, 2020, 33, 67-82.	3.0	50
42	TCA Cycle Rewiring as Emerging Metabolic Signature of Hepatocellular Carcinoma. Cancers, 2020, 12, 68.	1.7	57
43	Disruption of redox homeostasis for combinatorial drug efficacy in K-Ras tumors as revealed by metabolic connectivity profiling. Cancer & Metabolism, 2020, 8, 22.	2.4	10
44	Respiratory Supercomplexes Promote Mitochondrial Efficiency and Growth in Severely Hypoxic Pancreatic Cancer. Cell Reports, 2020, 33, 108231.	2.9	70
45	Functional screening identifies aryl hydrocarbon receptor as suppressor of lung cancer metastasis. Oncogenesis, 2020, 9, 102.	2.1	24
46	Deficiency of malate-aspartate shuttle component SLC25A12 induces pulmonary metastasis. Cancer & Metabolism, 2020, 8, 26.	2.4	11
47	A second Warburgâ€like effect in cancer metabolism: The metabolic shift of glutamineâ€derived nitrogen. BioEssays, 2020, 42, e2000169.	1.2	25
48	Treatment of ErbB2 breast cancer by mitochondrial targeting. Cancer & Metabolism, 2020, 8, 17.	2.4	5
49	Metabolic plasticity of IDH1-mutant glioma cell lines is responsible for low sensitivity to glutaminase inhibition. Cancer & Metabolism, 2020, 8, 23.	2.4	14
50	Inhibiting both proline biosynthesis and lipogenesis synergistically suppresses tumor growth. Journal of Experimental Medicine, 2020, 217, .	4.2	37
51	Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer. Molecules, 2020, 25, 3984.	1.7	16
52	Oncogenic Mechanisms and Therapeutic Targeting of Metabolism in Leukemia and Lymphoma. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a035477.	2.9	2
53	The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1731-1775.	0.8	6
54	Metabolic Constrains Rule Metastasis Progression. Cells, 2020, 9, 2081.	1.8	13

#	Article	IF	CITATIONS
55	KRAS Controls Pancreatic Cancer Cell Lipid Metabolism and Invasive Potential through the Lipase HSL. Cancer Research, 2020, 80, 4932-4945.	0.4	72
56	Free Asparagine or Die: Cancer Cells Require Proteasomal Protein Breakdown to Survive Asparagine Depletion. Cancer Discovery, 2020, 10, 1632-1634.	7.7	1
57	Metformin Restores Tetracyclines Susceptibility against Multidrug Resistant Bacteria. Advanced Science, 2020, 7, 1902227.	5.6	104
58	<p>In vitro and in vivo Anti-Tumor Effects of Pan-HER Inhibitor Varlitinib on Cholangiocarcinoma Cell Lines</p> . Drug Design, Development and Therapy, 2020, Volume 14, 2319-2334.	2.0	11
59	Serine Catabolism Feeds NADH when Respiration Is Impaired. Cell Metabolism, 2020, 31, 809-821.e6.	7.2	118
60	Glutaminase-1 (GLS1) inhibition limits metastatic progression in osteosarcoma. Cancer & Metabolism, 2020, 8, 4.	2.4	69
61	Nitrogen Metabolism in Cancer and Immunity. Trends in Cell Biology, 2020, 30, 408-424.	3.6	72
62	Redox Debt Leads to Metabolic Bankruptcy in Tumors. Trends in Cancer, 2020, 6, 359-361.	3.8	2
63	Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165759.	1.8	73
64	Dietary modifications for enhanced cancer therapy. Nature, 2020, 579, 507-517.	13.7	219
65	Metabolic effects of bezafibrate in mitochondrial disease. EMBO Molecular Medicine, 2020, 12, e11589.	3.3	45
66	Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature, 2020, 585, 288-292.	13.7	205
67	Nitrogen Trapping as a Therapeutic Strategy in Tumors with Mitochondrial Dysfunction. Cancer Research, 2020, 80, 3492-3506.	0.4	8
68	Metabolic pathway alterations in microvascular endothelial cells in response to hypoxia. PLoS ONE, 2020, 15, e0232072.	1.1	14
69	Sugar Alcohols Have a Key Role in Pathogenesis of Chronic Liver Disease and Hepatocellular Carcinoma in Whole Blood and Liver Tissues. Cancers, 2020, 12, 484.	1.7	11
70	Associations between metabolites and pancreatic cancer risk in a large prospective epidemiological study. Gut, 2020, 69, 2008-2015.	6.1	33
70	Associations between metabolites and pancreatic cancer risk in a large prospective epidemiological	6.1 1.9	33 88

#	Article	IF	CITATIONS
73	Biochemical and structural insights into how amino acids regulate pyruvate kinase muscle isoform 2. Journal of Biological Chemistry, 2020, 295, 5390-5403.	1.6	13
74	Amino Acid Oncometabolism and Immunomodulation of the Tumor Microenvironment in Lung Cancer. Frontiers in Oncology, 2020, 10, 276.	1.3	23
75	New insights into molecules and pathways of cancer metabolism and therapeutic implications. Cancer Communications, 2021, 41, 16-36.	3.7	61
76	Metabolic markers for diagnosis and risk-prediction of multiple myeloma. Life Sciences, 2021, 265, 118852.	2.0	15
77	Uncovering the Metabolic Origin of Aspartate for Tumor Growth Using an Integrated Molecular Deactivator. Nano Letters, 2021, 21, 778-784.	4.5	13
78	Lack of Electron Acceptors Contributes to Redox Stress and Growth Arrest in Asparagine-Starved Sarcoma Cells. Cancers, 2021, 13, 412.	1.7	1
79	Mitochondrial and Metabolic Pathways Regulate Nuclear Gene Expression to Control Differentiation, Stem Cell Function, and Immune Response in Leukemia. Cancer Discovery, 2021, 11, 1052-1066.	7.7	24
80	Autophagy sustains glutamate and aspartate synthesis in Saccharomyces cerevisiae during nitrogen starvation. Nature Communications, 2021, 12, 57.	5.8	24
81	Therapeutic Assessment of Targeting ASNS Combined with <scp>l</scp> -Asparaginase Treatment in Solid Tumors and Investigation of Resistance Mechanisms. ACS Pharmacology and Translational Science, 2021, 4, 327-337.	2.5	13
82	Tumor Cells and Cancer-Associated Fibroblasts: An Updated Metabolic Perspective. Cancers, 2021, 13, 399.	1.7	27
84	Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Molecular Cell, 2021, 81, 691-707.e6.	4.5	232
85	Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites, 2021, 11, 112.	1.3	21
86	Cystine supplementation rebalances the redox homeostasis of microenvironment in non-small cell lung cancer cells and reverses their resistance to docetaxel. Acta Pharmacologica Sinica, 2021, 42, 2132-2143.	2.8	9
87	Towards a Framework for Better Understanding of Quiescent Cancer Cells. Cells, 2021, 10, 562.	1.8	25
88	Metabolomic Alteration of Oral Keratinocytes and Fibroblasts in Hypoxia. Journal of Clinical Medicine, 2021, 10, 1156.	1.0	2
89	An expanded universe of cancer targets. Cell, 2021, 184, 1142-1155.	13.5	135
90	Mutant IDH and non-mutant chondrosarcomas display distinct cellular metabolomes. Cancer & Metabolism, 2021, 9, 13.	2.4	11
91	Mitochondrial NADPH is a pro at Pro synthesis. Nature Metabolism, 2021, 3, 453-455.	5.1	2

#	Article	IF	CITATIONS
92	Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth. Cell Metabolism, 2021, 33, 1013-1026.e6.	7.2	125
93	Mitochondria and the permeability transition pore in cancer metabolic reprogramming. Biochemical Pharmacology, 2021, 188, 114537.	2.0	12
94	Hepcidin sequesters iron to sustain nucleotide metabolism and mitochondrial function in colorectal cancer epithelial cells. Nature Metabolism, 2021, 3, 969-982.	5.1	58
96	Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers. Cancers, 2021, 13, 3230.	1.7	17
97	Reversing Hypoxia with PLGA-Encapsulated Manganese Dioxide Nanoparticles Improves Natural Killer Cell Response to Tumor Spheroids. Molecular Pharmaceutics, 2021, 18, 2935-2946.	2.3	31
98	Asparagine, a Key Metabolite in Cellular Response to Mitochondrial Dysfunction. Trends in Cancer, 2021, 7, 479-481.	3.8	5
99	Oncogenic KRAS creates an aspartate metabolism signature in colorectal cancer cells. FEBS Journal, 2021, 288, 6683-6699.	2.2	7
100	Cancer metabolism: looking forward. Nature Reviews Cancer, 2021, 21, 669-680.	12.8	676
101	Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias. Frontiers in Oncology, 2021, 11, 694526.	1.3	5
102	Glycerol-3-phosphate biosynthesis regenerates cytosolic NAD+ to alleviate mitochondrial disease. Cell Metabolism, 2021, 33, 1974-1987.e9.	7.2	55
103	Stimuli-Sheddable Nanomedicine Overcoming Pathophysiological Barriers for Potentiating Immunotherapy of Cancer. Journal of Biomedical Nanotechnology, 2021, 17, 1486-1509.	0.5	1
104	Aspartate availability limits hematopoietic stem cell function during hematopoietic regeneration. Cell Stem Cell, 2021, 28, 1982-1999.e8.	5.2	38
105	Therapeutic Repurposing of Biguanides in Cancer. Trends in Cancer, 2021, 7, 714-730.	3.8	32
106	Petasin potently inhibits mitochondrial complex l–based metabolism that supports tumor growth and metastasis. Journal of Clinical Investigation, 2021, 131, .	3.9	19
107	New insights into the anti- hepatoma mechanism of triple-helix β- glucan by metabolomics profiling. Carbohydrate Polymers, 2021, 269, 118289.	5.1	10
108	Tumor metabolic reprogramming in therapeutic resistance. , 2021, , 199-225.		0
109	Metabolomics study reveals the potential evidence of metabolic reprogramming towards the Warburg effect in precancerous lesions. Journal of Cancer, 2021, 12, 1563-1574.	1.2	17
110	Isolation and Purification of Mitochondria from Cell Culture for Proteomic Analyses. Methods in Molecular Biology, 2021, 2261, 411-419.	0.4	2

#	Article	IF	CITATIONS
111	Metabolic changes and anti-tumor effects of a ketogenic diet combined with anti-angiogenic therapy in a glioblastoma mouse model. Scientific Reports, 2021, 11, 79.	1.6	14
112	Role of the HIF oxygen sensing pathway in cell defense and proliferation through the control of amino acid metabolism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118733.	1.9	13
117	Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. Journal of Clinical Investigation, 2019, 129, 4708-4723.	3.9	41
118	Innate and adaptive resistance mechanisms to arginine deprivation therapies in sarcoma and other cancers. , 2019, 2, 516-526.		5
119	Asparagine Synthetase in Cancer: Beyond Acute Lymphoblastic Leukemia. Frontiers in Oncology, 2019, 9, 1480.	1.3	100
120	Mitochondrial SLC25 Carriers: Novel Targets for Cancer Therapy. Molecules, 2020, 25, 2417.	1.7	48
121	Neural stem cell temporal patterning and brain tumour growth rely on oxidative phosphorylation. ELife, 2019, 8, .	2.8	41
122	Dissecting cell-type-specific metabolism in pancreatic ductal adenocarcinoma. ELife, 2020, 9, .	2.8	61
123	Cepharanthine inhibits hepatocellular carcinoma cell growth and proliferation by regulating amino acid metabolism and suppresses tumorigenesis <i>in vivo</i> . International Journal of Biological Sciences, 2021, 17, 4340-4352.	2.6	25
124	Uncovering the Effect of Passage Number on HT29 Cell Line Based on the Cell Metabolomic Approach. Journal of Proteome Research, 2021, 20, 1582-1590.	1.8	9
125	Targeting mitochondrial respiration and the BCL2 family in highâ€grade MYCâ€associated Bâ€cell lymphoma. Molecular Oncology, 2022, 16, 1132-1152.	2.1	10
126	Fatty acid oxidation is a druggable gateway regulating cellular plasticity for driving metastasis in breast cancer. Science Advances, 2021, 7, eabh2443.	4.7	42
127	Aspartate Metabolism Facilitates IL-1 \hat{l}^2 Production in Inflammatory Macrophages. Frontiers in Immunology, 2021, 12, 753092.	2.2	11
128	Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues. EMBO Journal, 2021, 40, e108069.	3.5	23
130	Metabolic Plasticity of IDH1- <i>Mutant</i> Glioma Cell Lines Is Responsible for Low Sensitivity to Glutaminase Inhibition. SSRN Electronic Journal, 0, , .	0.4	1
135	Biguanide drugs enhance cytotoxic effects of cisplatin by depleting aspartate and NAD+ in sensitive cancer cells. Cancer Biology and Therapy, 2021, 22, 579-586.	1.5	4
136	Metabolic Pathways of Eukaryotes and Connection to Cell Mechanics. Biological and Medical Physics Series, 2020, , 825-891.	0.3	1
139	Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants, 2021, 10, 1838.	2.2	16

#	Article	IF	CITATIONS
140	An Asp to Strike Out Cancer? Therapeutic Possibilities Arising from Aspartate's Emerging Roles in Cell Proliferation and Survival. Biomolecules, 2021, 11, 1666.	1.8	10
141	Monitoring Retinoblastoma by Machine Learning of Aqueous Humor Metabolic Fingerprinting. Small Methods, 2022, 6, e2101220.	4.6	20
142	Targeting cancer metabolism in the era of precision oncology. Nature Reviews Drug Discovery, 2022, 21, 141-162.	21.5	385
143	Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science, 2021, 374, 1227-1237.	6.0	96
144	Serum Metabolic Fingerprints on Bowl-Shaped Submicroreactor Chip for Chemotherapy Monitoring. ACS Nano, 2022, 16, 2852-2865.	7.3	47
145	Interactions with stromal cells promote a more oxidized cancer cell redox state in pancreatic tumors. Science Advances, 2022, 8, eabg6383.	4.7	20
146	The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer and Metastasis Reviews, 2021, 40, 989-1033.	2.7	14
147	Amino Acid Metabolism in Cancer Drug Resistance. Cells, 2022, 11, 140.	1.8	40
148	Glutamine-Derived Aspartate Biosynthesis in Cancer Cells: Role of Mitochondrial Transporters and New Therapeutic Perspectives. Cancers, 2022, 14, 245.	1.7	12
149	Theabrownin modulates the gut microbiome and serum metabolome in aging mice induced by D-galactose. Journal of Functional Foods, 2022, 89, 104941.	1.6	11
150	Lysosomal cystine mobilization shapes the response of TORC1 and tissue growth to fasting. Science, 2022, 375, eabc4203.	6.0	35
152	A reversible metabolic stress-sensitive regulation of CRMP2A orchestrates EMT/stemness and increases metastatic potential in cancer. Cell Reports, 2022, 38, 110511.	2.9	6
153	A non-canonical tricarboxylic acid cycle underlies cellular identity. Nature, 2022, 603, 477-481.	13.7	108
154	Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses, 2022, 14, 602.	1.5	20
155	Impact of cancer metabolism on therapy resistance – Clinical implications. Drug Resistance Updates, 2021, 59, 100797.	6.5	43
156	Metabolic regulation of somatic stem cells in vivo. Nature Reviews Molecular Cell Biology, 2022, 23, 428-443.	16.1	35
157	Effect of Evodiamine on Cancer Metabolism of Liver Tumor Through Met/EGFR and HIF Pathways. SSRN Electronic Journal, 0, , .	0.4	1
158	Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia. Nature Communications, 2022, 13, 2614.	5.8	9

#	Article	IF	CITATIONS
159	Expression of GOT2 Is Epigenetically Regulated by DNA Methylation and Correlates with Immune Infiltrates in Clear-Cell Renal Cell Carcinoma. Current Issues in Molecular Biology, 2022, 44, 2472-2489.	1.0	7
160	Plasma Metabolites Forecast Occurrence and Prognosis for Patients With Diffuse Large B-Cell Lymphoma. Frontiers in Oncology, 0, 12, .	1.3	3
161	Supramolecular assembly of GSK3α as a cellular response to amino acid starvation. Molecular Cell, 2022, 82, 2858-2870.e8.	4.5	3
162	Cancer cells depend on environmental lipids for proliferation when electron acceptors are limited. Nature Metabolism, 2022, 4, 711-723.	5.1	29
163	Adaptive stimulation of macropinocytosis overcomes aspartate limitation in cancer cells under hypoxia. Nature Metabolism, 2022, 4, 724-738.	5.1	20
164	Asparagine synthetase regulates lung-cancer metastasis by stabilizing the \hat{I}^2 -catenin complex and modulating mitochondrial response. Cell Death and Disease, 2022, 13, .	2.7	7
165	Insight of a Metabolic Prognostic Model to Identify Tumor Environment and Drug Vulnerability for Lung Adenocarcinoma. Frontiers in Immunology, 0, 13, .	2.2	4
167	Metabolic requirement for GOT2 in pancreatic cancer depends on environmental context. ELife, 0, 11, .	2.8	32
168	Exogenous proline enhances susceptibility of NSCLC to cisplatin via metabolic reprogramming and PLK1-mediated cell cycle arrest. Frontiers in Pharmacology, 0, 13, .	1.6	3
169	Targeting lactate dehydrogenase B-dependent mitochondrial metabolism affects tumor initiating cells and inhibits tumorigenesis of non-small cell lung cancer by inducing mtDNA damage. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	14
170	Activated amino acid response pathway generates apatinib resistance by reprograming glutamine metabolism in non-small-cell lung cancer. Cell Death and Disease, 2022, 13, .	2.7	7
171	The mechanism of formononetin/calycosin compound optimizing the effects of temozolomide on C6 malignant glioma based on metabolomics and network pharmacology. Biomedicine and Pharmacotherapy, 2022, 153, 113418.	2.5	6
173	Metabolic targeting of malignant tumors: a need for systemic approach. Journal of Cancer Research and Clinical Oncology, 2023, 149, 2115-2138.	1.2	2
174	The Proteome of Extracellular Vesicles Produced by the Human Gut Bacteria Bacteroides thetaiotaomicron <i>In Vivo</i> Is Influenced by Environmental and Host-Derived Factors. Applied and Environmental Microbiology, 2022, 88, .	1.4	11
175	Bourgeoning Cancer Targets. Recent Patents on Anti-Cancer Drug Discovery, 2023, 18, 147-160.	0.8	2
176	Arginine Supplementation Targeting Tumor-Killing Immune Cells Reconstructs the Tumor Microenvironment and Enhances the Antitumor Immune Response. ACS Nano, 2022, 16, 12964-12978.	7.3	21
177	Chemical genomics with pyrvinium identifies C1orf115 as a regulator of drug efflux. Nature Chemical Biology, 0, , .	3.9	1
178	Glutamine Metabolism Mediates Sensitivity to Respiratory Complex II Inhibition in Acute Myeloid Leukemia. Molecular Cancer Research, 2022, 20, 1659-1673.	1.5	5

#	Article	IF	CITATIONS
179	Dual Effect of Tryptamine on Prostate Cancer Cell Growth Regulation: A Pilot Study. International Journal of Molecular Sciences, 2022, 23, 11087.	1.8	3
180	GOT2 consider the tumor microenvironment. Trends in Cancer, 2022, 8, 884-886.	3.8	1
181	Asparagine bioavailability regulates the translation of MYC oncogene. Oncogene, 2022, 41, 4855-4865.	2.6	4
182	An asparagine metabolism-based classification reveals the metabolic and immune heterogeneity of hepatocellular carcinoma. BMC Medical Genomics, 2022, 15, .	0.7	5
183	Targeting PDAC metabolism: Environment determines what has GOT2 give. Cell Metabolism, 2022, 34, 1617-1619.	7.2	0
184	Cell Metabolomics Reveals the Potential Mechanism of Aloe Emodin and Emodin Inhibiting Breast Cancer Metastasis. International Journal of Molecular Sciences, 2022, 23, 13738.	1.8	3
185	Differential integrated stress response and asparagine production drive symbiosis and therapy resistance of pancreatic adenocarcinoma cells. Nature Cancer, 2022, 3, 1386-1403.	5.7	15
187	Opa1 and Drp1 reciprocally regulate cristae morphology, ETC function, and NAD+ regeneration in KRas-mutant lung adenocarcinoma. Cell Reports, 2022, 41, 111818.	2.9	12
188	Hindering NAT8L expression in hepatocellular carcinoma increases cytosolic aspartate delivery that fosters pentose phosphate pathway and purine biosynthesis promoting cell proliferation. Redox Biology, 2023, 59, 102585.	3.9	2
191	Development of pseudo-targeted profiling of isotopic metabolomics using combined platform of high resolution mass spectrometry and triple quadrupole mass spectrometry with application of 13C6-glucose tracing in HepG2 cells. Journal of Chromatography A, 2023, 1696, 463923.	1.8	2
193	l-Asparaginase regulates mTORC1 activity via a TSC2-dependent pathway in pancreatic beta cells. Biochemical and Biophysical Research Communications, 2023, 652, 121-130.	1.0	0
195	What is cancer metabolism?. Cell, 2023, 186, 1670-1688.	13.5	41
196	Aspartate and Acetate Fuel Gastrointestinal Stromal Tumors Beyond the Warburg Effect. Annals of Surgery Open, 2022, 3, e224.	0.7	0
197	Inhibition of mitochondrial metabolism by (â~)-jerantinine A: synthesis and biological studies in triple-negative breast cancer cells. RSC Medicinal Chemistry, 2023, 14, 710-714.	1.7	2
198	Mitochondrial redox adaptations enable alternative aspartate synthesis in SDH-deficient cells. ELife, 0, 12, .	2.8	8
199	Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm, 2023, 4, .	3.1	18
200	A nomogram based on metabolic profiling to discriminate lung cancer among patients with lung nodules. Journal of International Medical Research, 2023, 51, 030006052311612.	0.4	0
218	Participation of protein metabolism in cancer progression and its potential targeting for the management of cancer. Amino Acids, 2023, 55, 1223-1246.	1.2	2

#	ARTICLE	IF	CITATIONS
220	Amino acid metabolism in health and disease. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	14