Manipulation of Band Structure and Interstitial Defects SnTe

Advanced Functional Materials 28, 1803586 DOI: 10.1002/adfm.201803586

Citation Report

#	Article	IF	CITATIONS
1	Vacancy Manipulation for Thermoelectric Enhancements in GeTe Alloys. Journal of the American Chemical Society, 2018, 140, 15883-15888.	6.6	182
2	Entropy Engineering of SnTe: Multiâ€Principalâ€Element Alloying Leading to Ultralow Lattice Thermal Conductivity and Stateâ€ofâ€theâ€Art Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1802116.	10.2	157
3	Manipulation of Solubility and Interstitial Defects for Improving Thermoelectric SnTe Alloys. ACS Energy Letters, 2018, 3, 1969-1974.	8.8	69
4	Promising cubic MnGeTe2 thermoelectrics. Science China Materials, 2019, 62, 379-388.	3.5	16
5	High thermoelectric performance of Ag doped SnTe polycrystalline bulks <i>via</i> the synergistic manipulation of electrical and thermal transport. Physical Chemistry Chemical Physics, 2019, 21, 17978-17984.	1.3	35
6	Synergistically Optimized Thermoelectric Performance in Bi _{0.48} Sb _{1.52} Te ₃ by Hot Deformation and Cu Doping. ACS Applied Energy Materials, 2019, 2, 6714-6719.	2.5	37
7	Transport Properties of CdSb Alloys with a Promising Thermoelectric Performance. ACS Applied Materials & Interfaces, 2019, 11, 27098-27103.	4.0	12
8	Gigantic Phonon-Scattering Cross Section To Enhance Thermoelectric Performance in Bulk Crystals. ACS Nano, 2019, 13, 8347-8355.	7.3	54
9	Extraordinary Role of Bi for Improving Thermoelectrics in Low-Solubility SnTe–CdTe Alloys. ACS Applied Materials & Interfaces, 2019, 11, 26093-26099.	4.0	35
10	Solute manipulation enabled band and defect engineering for thermoelectric enhancements of SnTe. InformaÄnÃ-Materiály, 2019, 1, 571-581.	8.5	36
11	Are Cu ₂ Teâ€Based Compounds Excellent Thermoelectric Materials?. Advanced Materials, 2019, 31, e1903480.	11.1	72
12	Low lattice thermal conductivity by alloying SnTe with AgSbTe2 and CaTe/MnTe. Applied Physics Letters, 2019, 115, .	1.5	15
13	High Thermoelectric Performance of SnTe by the Synergistic Effect of Alloy Nanoparticles with Elemental Elements. ACS Applied Energy Materials, 2019, 2, 7354-7363.	2.5	25
14	Enhanced thermoelectric performance of N-type eco-friendly material Cu1-xAgxFeS2 (x=0–0.14) via bandgap tuning. Journal of Alloys and Compounds, 2019, 809, 151717.	2.8	26
15	Effect of single metal doping on the thermoelectric properties of SnTe. Sustainable Energy and Fuels, 2019, 3, 251-263.	2.5	21
16	Phonon Localization and Entropy-Driven Point Defects Lead to Ultralow Thermal Conductivity and Enhanced Thermoelectric Performance in (SnTe) _{l–2<i>x</i>} l–2 <i>x</i> (SnSe) _{<i>x</i>} (SnS) _{<i>x</i>} (SnSe) _{<i>x</i>} <i>x</i>	8.8	70
17	Significant average <i>ZT</i> enhancement in Cu ₃ SbSe ₄ -based thermoelectric material <i>via</i> softening p–d hybridization. Journal of Materials Chemistry A, 2019, 7, 17648-17654.	5.2	41
18	Synergistic Effect of Bismuth and Indium Codoping for High Thermoelectric Performance of Melt Spinning SnTe Alloys. ACS Applied Materials & Interfaces, 2019, 11, 23337-23345.	4.0	30

#	Article	lF	CITATIONS
19	Ultralow thermal conductivity of BaAg2SnSe4 and the effect of doping by Ga and In. Materials Today Physics, 2019, 9, 100098.	2.9	17
20	Dilute Cu2Te-alloying enables extraordinary performance of r-GeTe thermoelectrics. Materials Today Physics, 2019, 9, 100096.	2.9	74
21	Seeing atomic-scale structural origins and foreseeing new pathways to improved thermoelectric materials. Materials Horizons, 2019, 6, 1548-1570.	6.4	27
22	Alloying for orbital alignment enables thermoelectric enhancement of EuCd ₂ Sb ₂ . Journal of Materials Chemistry A, 2019, 7, 12773-12778.	5.2	42
23	Novel n-type thermoelectric material of ZnIn2Se4. Journal of Alloys and Compounds, 2019, 797, 940-944.	2.8	22
24	Manipulation of Ni Interstitials for Realizing Large Power Factor in TiNiSnâ€Based Materials. Advanced Electronic Materials, 2019, 5, 1900166.	2.6	32
25	Complex Band Structures and Lattice Dynamics of Bi ₂ Te ₃ â€Based Compounds and Solid Solutions. Advanced Functional Materials, 2019, 29, 1900677.	7.8	135
26	Realizing high thermoelectric performance of polycrystalline SnS through optimizing carrier concentration and modifying band structure. Journal of Alloys and Compounds, 2019, 789, 485-492.	2.8	34
27	Cu/Sb Codoping for Tuning Carrier Concentration and Thermoelectric Performance of GeTe-Based Alloys with Ultralow Lattice Thermal Conductivity. ACS Applied Energy Materials, 2019, 2, 2596-2603.	2.5	45
28	Nanoscale pores plus precipitates rendering high-performance thermoelectric SnTe1-xSex with refined band structures. Nano Energy, 2019, 60, 1-7.	8.2	86
29	Thermoelectric energy conversion and topological materials based on heavy metal chalcogenides. Journal of Solid State Chemistry, 2019, 275, 103-123.	1.4	33
30	Maximization of transporting bands for high-performance SnTe alloy thermoelectrics. Materials Today Physics, 2019, 9, 100091.	2.9	45
31	Tailoring the Carrier and Phonon Scattering to Enhanced Thermoelectric Performance of SnTe by Cation–Anion Codoping with Eco-Benign Cal2. ACS Applied Energy Materials, 2019, 2, 1997-2003.	2.5	25
32	Zn: a versatile resonant dopant for SnTe thermoelectrics. Materials Today Physics, 2019, 11, 100158.	2.9	57
33	Band manipulation for high thermoelectric performance in SnTe through heavy CdSe-alloying. Journal of Materiomics, 2019, 5, 111-117.	2.8	17
34	Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. Advanced Functional Materials, 2020, 30, 1904862.	7.8	148
35	Tactfully decoupling interdependent electrical parameters via interstitial defects for SnTe thermoelectrics. Nano Energy, 2020, 67, 104292.	8.2	33
36	Synergistic band convergence and endotaxial nanostructuring: Achieving ultralow lattice thermal conductivity and high figure of merit in eco-friendly SnTe. Nano Energy, 2020, 67, 104261.	8.2	72

CITATION	Report

#	Article	IF	CITATIONS
37	Outstanding thermoelectric properties of solvothermal-synthesized Sn _{1â~3x} In _x Ag _{2x} Te micro-crystals through defect engineering and band tuning. Journal of Materials Chemistry A, 2020, 8, 3978-3987.	5.2	25
38	Bi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature <i>ZT</i> . Journal of Materials Chemistry C, 2020, 8, 2036-2042.	2.7	76
39	Eutectoid nano-precipitates inducing remarkably enhanced thermoelectric performance in (Sn _{1â^'x} Cd _x Te) _{1â^'y} (Cu ₂ Te) _y . Journal of Materials Chemistry A, 2020, 8, 2798-2808.	5.2	49
40	Hierarchical Structuring to Break the Amorphous Limit of Lattice Thermal Conductivity in High-Performance SnTe-Based Thermoelectrics. ACS Applied Materials & Interfaces, 2020, 12, 36370-36379.	4.0	20
41	Rational structural design and manipulation advance SnSe thermoelectrics. Materials Horizons, 2020, 7, 3065-3096.	6.4	73
42	Anion-exchanged porous SnTe nanosheets for ultra-low thermal conductivity and high-performance thermoelectrics. Chemical Engineering Journal, 2020, 402, 126274.	6.6	20
43	Routes for advancing SnTe thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 16790-16813.	5.2	87
44	Vacancy engineering in rock-salt type (IV-VI)x(V-VI) materials for high thermoelectric performance. Nano Energy, 2020, 78, 105198.	8.2	14
45	Leveraging Deep Levels in Narrow Bandgap Bi _{0.5} Sb _{1.5} Te ₃ for Recordâ€High <i>zT</i> _{ave} Near Room Temperature. Advanced Functional Materials, 2020, 30, 2005202.	7.8	57
46	Constructing van der Waals gaps in cubic-structured SnTe-based thermoelectric materials. Energy and Environmental Science, 2020, 13, 5135-5142.	15.6	53
47	Improving near-room-temperature thermoelectrics in SnTe–MnTe alloys. Applied Physics Letters, 2020, 116, .	1.5	16
48	Achieving high thermoelectric quality factor toward high figure of merit in GeTe. Materials Today Physics, 2020, 14, 100239.	2.9	61
49	Thermoelectric transport properties in Bi-doped SnTe–SnSe alloys. Applied Physics Letters, 2020, 116, .	1.5	20
50	Atomic disordering advances thermoelectric group IV telluride alloys with a multiband transport. Materials Today Physics, 2020, 15, 100247.	2.9	22
51	Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical Reviews, 2020, 120, 7399-7515.	23.0	1,248
52	Contrasting SnTe–NaSbTe ₂ and SnTe–NaBiTe ₂ Thermoelectric Alloys: High Performance Facilitated by Increased Cation Vacancies and Lattice Softening. Journal of the American Chemical Society, 2020, 142, 12524-12535.	6.6	51
53	Effects of AgBiSe2 on thermoelectric properties of SnTe. Chemical Engineering Journal, 2020, 390, 124585.	6.6	24
54	Thermoelectric performance of nanostructured In/Pb codoped SnTe with band convergence and resonant level prepared <i>via</i> a green and facile hydrothermal method. Nanoscale, 2020, 12, 5857-5865.	2.8	21

#	Article	IF	CITATIONS
55	Cu Interstitials Enable Carriers and Dislocations for Thermoelectric Enhancements in n-PbTe0.75Se0.25. CheM, 2020, 6, 523-537.	5.8	69
56	Band Engineering and Thermoelectric Performance Optimization of p-Type GeTe-Based Alloys through Ti/Sb Co-Doping. Journal of Physical Chemistry C, 2020, 124, 5583-5590.	1.5	16
57	Toward Accelerated Thermoelectric Materials and Process Discovery. ACS Applied Energy Materials, 2020, 3, 2240-2257.	2.5	75
58	Thermoelectric properties of Cu4Ge3Se5 with an intrinsic disordered zinc blende structure. Journal of Materials Chemistry A, 2020, 8, 3431-3437.	5.2	9
59	In Situ Reaction Induced Core–Shell Structure to Ultralow κ _{lat} and High Thermoelectric Performance of SnTe. Advanced Science, 2020, 7, 1903493.	5.6	38
60	Simultaneous enhancement of thermoelectric and mechanical performance for SnTe by nano SiC compositing. Journal of Materials Chemistry C, 2020, 8, 7393-7400.	2.7	35
61	SnTe thermoelectrics: Dual step approach for enhanced performance. Journal of Alloys and Compounds, 2020, 834, 155181.	2.8	45
62	Realizing high thermoelectric performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te. Nano Energy, 2020, 73, 104832.	8.2	81
63	Enhancement of Bi2O2Se thermoelectric power factor via Nb doping. Journal of Alloys and Compounds, 2021, 851, 156905.	2.8	24
64	Entropy Engineered Cubic nâ€Type AgBiSe ₂ Alloy with High Thermoelectric Performance in Fully Extended Operating Temperature Range. Advanced Energy Materials, 2021, 11, 2003304.	10.2	51
65	Complementary effect of co-doping aliovalent elements Bi and Sb in self-compensated SnTe-based thermoelectric materials. Journal of Materials Chemistry C, 2021, 9, 9922-9931.	2.7	33
66	CuO/CuxS composites fabrication and their thermoelectric properties. Materials for Renewable and Sustainable Energy, 2021, 10, 1.	1.5	5
67	The role of electronegativity in the thermoelectric performance of GeTe–I–V–VI ₂ solid solutions. Journal of Materials Chemistry A, 2021, 9, 2385-2393.	5.2	22
68	CALPHAD as a powerful technique for design and fabrication of thermoelectric materials. Journal of Materials Chemistry A, 2021, 9, 6634-6649.	5.2	16
69	Novel optimization perspectives for thermoelectric properties based on Rashba spin splitting: a mini review. Nanoscale, 2021, 13, 18032-18043.	2.8	10
70	Mn-In-Cu co-doping to optimize the thermoelectric properties of SnTe-based materials. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	3
71	Refined band structure plus enhanced phonon scattering realizes thermoelectric performance optimization in Cul–Mn codoped SnTe. Journal of Materials Chemistry A, 2021, 9, 13065-13070.	5.2	30
72	Enhanced Power Factor and Figure of Merit of Cu ₂ ZnSnSe ₄ -Based Thermoelectric Composites by Ag Alloying. Inorganic Chemistry, 2021, 60, 3452-3459.	1.9	18

#	Article	IF	CITATIONS
73	Metavalent Bonding in GeSe Leads to High Thermoelectric Performance. Angewandte Chemie - International Edition, 2021, 60, 10350-10358.	7.2	58
74	Metavalent Bonding in GeSe Leads to High Thermoelectric Performance. Angewandte Chemie, 2021, 133, 10438-10446.	1.6	12
75	Mechanical alloying boosted SnTe thermoelectrics. Materials Today Physics, 2021, 17, 100340.	2.9	28
76	Ultra-high thermoelectric performance in SnTe by the integration of several optimization strategies. Materials Today Physics, 2021, 17, 100350.	2.9	29
77	Enhanced Thermoelectric Performance in High Entropy Alloys Sn _{0.25} Pb _{0.25} Mn _{0.25} Ge _{0.25} Te. ACS Applied Materials & Interfaces, 2021, 13, 18638-18647.	4.0	43
78	Enhanced Thermoelectric Performance in Ge _{0.955â°} <i>_x</i> Sb <i>_x</i> Te/FeGe ₂ Composites Enabled by Hierarchical Defects. Small, 2021, 17, e2100915.	5.2	8
79	Compromise between band structure and phonon scattering in efficient n-Mg3Sb2-Bi thermoelectrics. Materials Today Physics, 2021, 18, 100362.	2.9	41
80	Structural Evolution of Highâ€Performance Mnâ€Alloyed Thermoelectric Materials: A Case Study of SnTe. Small, 2021, 17, e2100525.	5.2	21
81	Alloying Cr2/3Te in AgCrSe2 compound for improving thermoelectrics. Applied Physics Letters, 2021, 118, 193902.	1.5	3
82	Progress in the Research on Promising High-Performance Thermoelectric Materials. Nanobiotechnology Reports, 2021, 16, 268-281.	0.2	3
83	Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stressâ€Induced Lotusâ€Seedpodâ€Like Grain Boundaries. Advanced Functional Materials, 2021, 31, 2101554.	7.8	43
84	Contrasting Cu Roles Lead to High Ranged Thermoelectric Performance of PbS. Advanced Functional Materials, 2021, 31, 2102185.	7.8	33
85	Melt-spun Sn1â^'â^'Sb Mn Te with unique multiscale microstructures approaching exceptional average thermoelectric zT. Nano Energy, 2021, 84, 105879.	8.2	46
86	Lead-free SnTe-based compounds as advanced thermoelectrics. Materials Today Physics, 2021, 19, 100405.	2.9	38
87	Optimized Electronic Bands and Ultralow Lattice Thermal Conductivity in Ag and Y Codoped SnTe. ACS Applied Materials & Interfaces, 2021, 13, 32876-32885.	4.0	21
88	Thermoelectric Transport Properties of TmAg Cu1-Te2 solid solutions. Journal of Materiomics, 2021, 7, 886-893.	2.8	3
89	Low lattice thermal conductivity and enhanced thermoelectric performance of SnTe via chemical electroless plating of Ag. Rare Metals, 2022, 41, 86-95.	3.6	18

#	Article	IF	CITATIONS
91	Manipulation of hole and band for thermoelectric enhancements in SrCd2Sb2 Zintl compound. Chemical Engineering Journal, 2021, 420, 130530.	6.6	19
92	Optimizing thermocouple's ZT through design innovation. Scientific Reports, 2021, 11, 19338.	1.6	2
93	Enhanced thermoelectric performance in MXene/SnTe nanocomposites synthesized via a facile one-step solvothermal method. Journal of Solid State Chemistry, 2021, 304, 122605.	1.4	14
94	Enhanced thermoelectric properties of bismuth and zinc co-doped SnTe by band engineering and all-scale structure defects. Journal of Alloys and Compounds, 2022, 889, 161651.	2.8	8
95	Improving the <i>ZT</i> of SnTe using electronic structure engineering: unusual behavior of Bi dopant in the presence of Pb as a co-dopant. Materials Advances, 2021, 2, 6267-6271.	2.6	32
96	High Thermoelectric Performance of Cu-Doped PbSe-PbS System Enabled by High-Throughput Experimental Screening. Research, 2020, 2020, 1736798.	2.8	18
97	Cooperative regulation of electrical and thermal transport behavior enhancing the thermoelectric performance of SnTe. Materials Today Physics, 2021, 21, 100556.	2.9	3
98	Enhanced Thermoelectric Performance of SnTe-Based Materials <i>via</i> Interface Engineering. ACS Applied Materials & Interfaces, 2021, 13, 50057-50064.	4.0	13
99	Enhanced Thermoelectric Performance Achieved in SnTe via the Synergy of Valence Band Regulation and Fermi Level Modulation. ACS Applied Materials & amp; Interfaces, 2021, 13, 50037-50045.	4.0	18
100	Multiple Effects Promoting the Thermoelectric Performance of SnTe by Alloying with CuSbTe ₂ and CuBiTe ₂ . ACS Applied Materials & Interfaces, 2021, 13, 52775-52782.	4.0	10
101	Entropy Engineering Realized Ultralow Thermal Conductivity and High Seebeck Coefficient in Lead-Free SnTe. ACS Applied Energy Materials, 2021, 4, 12738-12744.	2.5	10
102	SnTe-Based Thermoelectrics. , 2019, , 63-81.		1
103	Native Atomic Defects Manipulation for Enhancing the Electronic Transport Properties of Epitaxial SnTe Films. ACS Applied Materials & Interfaces, 2021, 13, 56446-56455.	4.0	2
104	Advances in thermoelectric (GeTe) x (AgSbTe2)100-x. Chinese Physics B, 0, , .	0.7	1
105	Ultralow Lattice Thermal Conductivity and Enhanced Mechanical Properties of Cu and Sb Co-Doped SnTe Thermoelectric Material with a Complex Microstructure Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 1367-1372.	3.2	22
106	Enhancement of the thermoelectric properties of Zintl phase SrMg ₂ Bi ₂ by Na-doping. Dalton Transactions, 2022, 51, 1513-1520.	1.6	3
107	Seeing Structural Mechanisms of Optimized Piezoelectric and Thermoelectric Bulk Materials through Structural Defect Engineering. Materials, 2022, 15, 487.	1.3	3
108	Two-dimensional layered architecture constructing energy and phonon blocks for enhancing thermoelectric performance of InSb. Science China Materials, 2022, 65, 1353.	3.5	2

#	Article	IF	CITATIONS
109	Boosting Thermoelectric Performance of SnTe by Selective Alloying and Band Tuning. Materials Today Energy, 2022, 25, 100958.	2.5	12
110	Improved Thermoelectric Performance of P-type SnTe through Synergistic Engineering of Electronic and Phonon Transports. ACS Applied Materials & Interfaces, 2022, , .	4.0	3
111	High Thermoelectric Performance SnTe with a Segregated and Percolated Structure. ACS Applied Materials & Interfaces, 2022, , .	4.0	21
112	General strategies to improve thermoelectric performance with an emphasis on tin and germanium chalcogenides as thermoelectric materials. Journal of Materials Chemistry A, 2022, 10, 6872-6926.	5.2	26
113	Super-structured defects modulation for synergistically optimizing thermoelectric property in SnTe-based materials. Materials Today Physics, 2022, 23, 100645.	2.9	8
114	Improved Thermoelectric Performance of Inâ€Doped Quaternary Cu ₂ MnSnSe ₄ Alloys. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	1.2	1
115	Compromise of thermoelectric and mechanical properties in LiSbTe2 and LiBiTe2 alloyed SnTe. Acta Materialia, 2022, 231, 117922.	3.8	22
116	Enhanced thermoelectric performance of n-type (PbSe)n(Sb2Te3) pseudo-binary via Zn filling and Ag2Se compositing. Journal of Alloys and Compounds, 2022, 907, 164416.	2.8	3
117	Band Engineering SnTe via Trivalent Substitutions for Enhanced Thermoelectric Performance. Chemistry of Materials, 2021, 33, 9624-9637.	3.2	17
118	Synergy of Valence Band Modulation and Grain Boundary Engineering Leading to Improved Thermoelectric Performance in SnTe. ACS Applied Energy Materials, 2021, 4, 14608-14617.	2.5	15
119	Thermoelectric properties and transport mechanism of Cu0.5In0.5Cr2Se4 and its Zn-doped samples. Journal of Alloys and Compounds, 2022, 910, 164955.	2.8	0
120	Phonon anharmonicity in binary chalcogenides for efficient energy harvesting. Materials Horizons, 2022, 9, 1602-1622.	6.4	5
121	Converting n-type Co4Ge6Te6 skutterudite into p-type and enhancing its thermoelectric properties through Fe substitution. Journal of Alloys and Compounds, 2022, 913, 165314.	2.8	3
123	Achieving High Thermoelectric Performance of Eco-Friendly SnTe-Based Materials by Selective Alloying and Defect Modulation. ACS Applied Materials & amp; Interfaces, 2022, 14, 25802-25811.	4.0	9
124	One-step fabrication of bulk SnTe thermoelectric material with excellent performance through self-propagating high-temperature synthesis under high-gravity field. Materials Chemistry Frontiers, 0, , .	3.2	2
125	Highâ€Performance Thermoelectric Material and Module Driven by Mediumâ€Entropy Engineering in SnTe. Advanced Functional Materials, 2022, 32, .	7.8	30
126	Higher-order anharmonicity leads to ultra-low thermal conductivity and high output power density of SnTe-based thermoelectric materials and modules. Materials Today Physics, 2022, 26, 100748.	2.9	9
127	Enhanced Thermoelectric Performance of In-Doped and Agcute-Alloyed Snte Through Band Engineering and Endotaxial Nanostructures. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
128	Aliovalent Dilute Doping and Nanoâ€Moiré Fringe Advance the Structural Stability and Thermoelectric Performance in <i>β</i> â€Zn ₄ Sb ₃ . Advanced Science, 2022, 9, .	5.6	4
129	Enabling High Quality Factor and Enhanced Thermoelectric Performance in BiBr ₃ -Doped Sn _{0.93} Mn _{0.1} Te via Band Convergence and Band Sharpening. ACS Applied Materials & Interfaces, 2022, 14, 32236-32243.	4.0	9
130	Surface Functionalization of Surfactantâ€Free Particles: a Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance. Angewandte Chemie, O, , .	1.6	2
131	Surface Functionalization of Surfactantâ€Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
132	Enhancing thermoelectric and mechanical properties of p-type Cu3SbSe4-based materials via embedding nanoscale Sb2Se3. Materials Chemistry and Physics, 2022, 292, 126669.	2.0	6
133	Enhanced Thermoelectric Performance of In-Doped and Agcute-Alloyed Snte Through Band Engineering and Endotaxial Nanostructures. SSRN Electronic Journal, 0, , .	0.4	0
134	Contrasting roles of Bi-doping and Bi ₂ Te ₃ alloying on the thermoelectric performance of SnTe. Inorganic Chemistry Frontiers, 2022, 9, 5562-5571.	3.0	2
135	Highly tailored gap-like structure for excellent thermoelectric performance. Energy and Environmental Science, 2022, 15, 4058-4068.	15.6	11
136	Improvement of thermoelectric performance of SnTe-based solid solution by entropy engineering. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 237302.	0.2	1
137	Realizing High Thermoelectric Performance of Ag/Al Coâ€Doped Polycrystalline SnSe through Band Structure Modification and Hydrogen Reduction. Advanced Electronic Materials, 2022, 8, .	2.6	3
138	Improved Solubility in Metavalently Bonded Solid Leads to Band Alignment, Ultralow Thermal Conductivity, and High Thermoelectric Performance in SnTe. Advanced Functional Materials, 2022, 32, .	7.8	30
139	Microstructure and thermoelectric properties of nanoparticled copper selenide alloys synthesized using a microwave-assisted hydrothermal method. ChemPhysMater, 2023, 2, 207-216.	1.4	1
140	Effects of Zr substitution on structure and thermoelectric properties of Bi2O2Se. Journal of Materials Research and Technology, 2022, 21, 640-647.	2.6	6
141	Enhanced thermoelectric performance of In-doped and AgCuTe-alloyed SnTe through band engineering and endotaxial nanostructures. Physical Chemistry Chemical Physics, 2022, 24, 27105-27113.	1.3	3
142	Comprehensive Insight into <i>p</i> -Type Bi ₂ Te ₃ -Based Thermoelectrics near Room Temperature. ACS Applied Materials & Interfaces, 2022, 14, 49425-49445.	4.0	25
143	A study of anisotropic thermoelectric properties of bulk Germanium Sulfide in its Pnma phase: a combined first-principles and machine-learning approach. Physica Scripta, 2022, 97, 125804.	1.2	6
144	Highly Tunable Beyond-Room-Temperature Intrinsic Ferromagnetism in Cr-Doped Topological Crystalline Insulator SnTe Crystals. Inorganic Chemistry, 2022, 61, 19702-19709.	1.9	3
145	Preliminary exploration of key technique for the application of thermoelectric SnTe in mid-temperature power generation. Acta Materialia, 2023, 242, 118455.	3.8	11

#	Article	IF	CITATIONS
146	High performance GeTe thermoelectrics enabled by lattice strain construction. Acta Materialia, 2023, 244, 118565.	3.8	11
147	Strengthened phonon scattering and band convergence synergistically realize the high-performance SnTe thermoelectric. Journal of Materials Chemistry A, 2023, 11, 649-656.	5.2	3
148	Intrinsic properties and dopability effects on the thermoelectric performance of binary Sn chalcogenides from first principles. Frontiers in Electronic Materials, 0, 2, .	1.6	0
149	Modulated Fermi Level and Relaxed Lattice Strain Leading to Enhanced Thermoelectric Properties in AgSbSe ₂ . ACS Applied Energy Materials, 0, , .	2.5	1
150	Boosted Output Voltage of BiSbTeâ€Based Thermoelectric Generators via Coupled Effect between Thermoelectric Carriers and Triboelectric Charges. Advanced Energy Materials, 2023, 13, .	10.2	6
151	Vacancy Manipulation Induced Optimal Carrier Concentration, Band Convergence and Low Lattice Thermal Conductivity in Nanoâ€Crystalline SnTe Yielding Superior Thermoelectric Performance. Advanced Functional Materials, 2023, 33, .	7.8	10
152	Enhancing the thermoelectric performance of SnTe-CuSbSe ₂ with an ultra-low lattice thermal conductivity. Journal of Materials Chemistry A, 2023, 11, 4310-4318.	5.2	12
153	Microstructural Manipulation for Enhanced Average Thermoelectric Performance: A Case Study of Tin Telluride. ACS Applied Materials & Interfaces, 2023, 15, 9656-9664.	4.0	8
154	Optimizing thermoelectric performance of SnTe via alloying with AgSnSe2 and PbTe. Journal of Alloys and Compounds, 2023, 947, 169415.	2.8	0
155	Pushing the limit of synergy in SnTe-based thermoelectric materials leading to an ultra-low lattice thermal conductivity and enhanced <i>ZT</i> . Sustainable Energy and Fuels, 2023, 7, 1916-1929.	2.5	7
156	Fine electron and phonon transports manipulation by Mn compensation for high thermoelectric performance of Sb2Te3(SnTe)n materials. Materials Today Physics, 2023, 33, 101055.	2.9	2
157	Multiple electron & phonon scattering effect achieves highly efficient thermoelectricity due to nanostructuring. Materials Today Physics, 2023, 33, 101053.	2.9	0
158	Band Modification and Localized Lattice Engineering Leads to High Thermoelectric Performance in Ge and Bi Codoped SnTe–AgBiTe ₂ Alloys. Small, 2023, 19, .	5.2	4
159	Balancing electron and phonon scatterings while tailoring carrier concentration in SnTe for enhancing thermoelectric performance. Journal of the European Ceramic Society, 2023, 43, 4791-4798.	2.8	1
160	Origin of improved average power factor and mechanical properties of SnTe with high-dose Bi2Te3 alloying. Ceramics International, 2023, 49, 21916-21922.	2.3	3
161	Impact of resonant state formation and band convergence in In and Sr co-doped SnTe thermoelectric material evaluated via the single parabolic band model. Journal of Alloys and Compounds, 2023, 954, 170144.	2.8	6
162	Structural, electronic and thermoelectric properties of SnTe with dilute co-doping of Ag and Cu. Journal of Alloys and Compounds, 2023, 954, 170182.	2.8	3
179	Synthesis and Characterization of SnS Nanoparticles by Hydrothermal Method. Advances in Sustainability Science and Technology, 2024, , 337-348.	0.4	0

ARTICLE

IF CITATIONS