Graphene-Based Adaptive Thermal Camouflage

Nano Letters

18, 4541-4548

DOI: 10.1021/acs.nanolett.8b01746

Citation Report

#	Article	IF	CITATIONS
3	Invisible Thinâ€Film Patterns with Strong Infrared Emission as an Optical Security Feature. Advanced Optical Materials, 2018, 6, 1800613.	3.6	26
4	Chemically addressed switching measurements in graphene electrode memristive devices using in situ XPS. Faraday Discussions, 2019, 213, 231-244.	1.6	7
5	Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach*. Chinese Physics B, 2019, 28, 087804.	0.7	7
6	Dynamic Radiative Thermal Management by Crumpled Graphene. , 2019, , .		1
7	Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers. Journal of Materials Chemistry C, 2019, 7, 9878-9891.	2.7	107
8	Ultraviolet to Mid-Infrared Emissivity Control by Mechanically Reconfigurable Graphene. Nano Letters, 2019, 19, 5086-5092.	4.5	48
9	Tunable Infrared Emissivity in Multilayer Graphene by Ionic Liquid Intercalation. Nanomaterials, 2019, 9, 1096.	1.9	36
10	Nanofibrous Kevlar Aerogel Films and Their Phase-Change Composites for Highly Efficient Infrared Stealth. ACS Nano, 2019, 13, 2236-2245.	7. 3	136
11	Oxidation of the polycrystalline copper–graphene nanocomposite. JPhys Materials, 2019, 2, 025005.	1.8	5
12	Flexible Mid-Infrared Radiation Modulator with Multilayer Graphene Thin Film by Ionic Liquid Gating. ACS Applied Materials & ACS ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS APPLIED &	4.0	47
13	Revisiting radiant cooling: condensation-free heat rejection using infrared-transparent enclosures of chilled panels. Architectural Science Review, 2019, 62, 152-159.	1.1	38
14	Preparation of silver-plated Hollow Glass Microspheres and its application in infrared stealth coating fabrics. Progress in Organic Coatings, 2019, 131, 1-10.	1.9	30
16	Gate-tunable graphene-based Hall sensors on flexible substrates with increased sensitivity. Scientific Reports, 2019, 9, 18059.	1.6	23
17	Leather enabled multifunctional thermal camouflage armor. Chemical Engineering Science, 2019, 196, 64-71.	1.9	29
18	Design of infrared camouflage cloak for underground silos. Defence Technology, 2020, 16, 43-49.	2.1	3
19	Hybrid J-Aggregate–Graphene Phototransistor. ACS Applied Nano Materials, 2020, 3, 409-417.	2.4	13
20	Design with Comfort: Expanding the psychrometric chart with radiation and convection dimensions. Energy and Buildings, 2020, 209, 109591.	3.1	24
21	Spatially Resolved Dynamically Reconfigurable Multilevel Control of Thermal Emission. Laser and Photonics Reviews, 2020, 14, 1900162.	4.4	103

#	ARTICLE	IF	CITATIONS
22	Highly-conductive porous poly(ether ether ketone) electrolyte membranes for flexible electrochromic devices with variable infrared emittance. Electrochimica Acta, 2020, 332, 135357.	2.6	15
23	On the energy modulation of daytime radiative coolers: A review on infrared emissivity dynamic switch against overcooling. Solar Energy, 2020, 209, 278-301.	2.9	66
24	Effect of ionic liquid electrolytes on the electrochemical stability and optical tunability of polyaniline-based infrared variable emittance devices. Electrochimica Acta, 2020, 358, 136935.	2.6	9
25	Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. Materials Horizons, 2020, 7, 3258-3265.	6.4	53
26	A Thermal Radiation Modulation Platform by Emissivity Engineering with Graded Metal–Insulator Transition. Advanced Materials, 2020, 32, e1907071.	11.1	75
27	Switching of heating and cooling modes using thermal radiation films. Current Applied Physics, 2020, 20, 1073-1079.	1.1	6
28	Ultra-black and self-cleaning all carbon nanotube hybrid films for efficient water desalination and purification. Carbon, 2020, 169, 134-141.	5.4	52
29	Cotton Fabrics Coated with Few-Layer Graphene as Highly Responsive Surface Heaters and Integrated Lightweight Electronic-Textile Circuits. ACS Applied Nano Materials, 2020, 3, 9771-9783.	2.4	32
30	Doping engineering of the flexible polyaniline electrochromic material through H ₂ SO ₄ –HClO ₄ multiple acids for the radiation regulation in snow environment. Journal of Materials Chemistry C, 2020, 8, 13336-13341.	2.7	21
31	Deformable manganite perovskite-based resonator with adaptively modulating infrared radiation. Applied Materials Today, 2020, 21, 100808.	2.3	8
32	Development of a wearable infrared shield based on a polyurethane–antimony tin oxide composite fiber. NPG Asia Materials, 2020, 12, .	3.8	39
33	Development of fiber-based active thermal infrared camouflage textile. Applied Materials Today, 2020, 20, 100624.	2.3	14
34	Ionic Liquid Gating Enhanced Photothermoelectric Conversion in Three-Dimensional Microporous Graphene. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28510-28519.	4.0	13
35	Active Temporal Control of Radiative Heat Transfer with Graphene Nanodisks. Physical Review Applied, 2020, 13, .	1.5	8
36	Manipulating metals for adaptive thermal camouflage. Science Advances, 2020, 6, eaba3494.	4.7	128
37	Precision Measurements of Temperatureâ€Dependent and Nonequilibrium Thermal Emitters. Laser and Photonics Reviews, 2020, 14, 1900443.	4.4	26
38	Scalable spectrally selective mid-infrared meta-absorbers for advanced radiative thermal engineering. Physical Chemistry Chemical Physics, 2020, 22, 13965-13974.	1.3	7
39	Graphene-Enabled Adaptive Infrared Textiles. Nano Letters, 2020, 20, 5346-5352.	4.5	98

#	ARTICLE	IF	CITATIONS
40	Emerging Materials and Strategies for Personal Thermal Management. Advanced Energy Materials, 2020, 10, 1903921.	10.2	290
41	Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics, 2020, 9, 855-863.	2.9	73
42	Near-field imaging of the multi-resonant mode induced broadband tunable metamaterial absorber. RSC Advances, 2020, 10, 5146-5151.	1.7	11
43	Multiple Resonance Metamaterial Emitter for Deception of Infrared Emission with Enhanced Energy Dissipation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8862-8869.	4.0	33
44	An Adaptive and Wearable Thermal Camouflage Device. Advanced Functional Materials, 2020, 30, 1909788.	7.8	92
45	High-temperature infrared camouflage with efficient thermal management. Light: Science and Applications, 2020, 9, 60.	7.7	187
46	Bioinspired Microstructured Materials for Optical and Thermal Regulation. Advanced Materials, 2021, 33, e2000697.	11.1	81
47	Largeâ€Scale Multifunctional Carbon Nanotube Thin Film as Effective Midâ€Infrared Radiation Modulator with Longâ€Term Stability. Advanced Optical Materials, 2021, 9, 2001216.	3. 6	32
48	Three distinct optical-switching states in phase-change materials containing impurities: From physical origin to material design. Journal of Materials Science and Technology, 2021, 75, 118-125.	5.6	9
49	Achieving variable infrared emissivity modulation regions of poly(aniline) films:the effect of film surface morphology on the optical tunability. Dyes and Pigments, 2021, 187, 109084.	2.0	19
50	A thermally robust and optically transparent infrared selective emitter for compatible camouflage. Journal of Materials Chemistry C, 2021, 9, 15018-15025.	2.7	20
51	Progress in dynamic emissivity regulation: control methods, material systems, and applications. Materials Chemistry Frontiers, 2021, 5, 6315-6332.	3.2	20
52	A Transparent All-Dielectric Multifunctional Nanoantenna Emitter Compatible With Thermal Infrared and Cooling Scenarios. IEEE Access, 2021, 9, 98590-98602.	2.6	13
53	INTRODUCTION TO TWO-DIMENSIONAL MATERIALS. Surface Review and Letters, 2021, 28, 2140005.	0.5	14
54	Beyond the Visible: Bioinspired Infrared Adaptive Materials. Advanced Materials, 2021, 33, e2004754.	11.1	201
55	Reversible Metal Electrodeposition Devices: An Emerging Approach to Effective Light Modulation and Thermal Management. Advanced Optical Materials, 2021, 9, 2001847.	3.6	32
56	Graphene in 2D/3D Heterostructure Diodes for High Performance Electronics and Optoelectronics. Advanced Electronic Materials, 2021, 7, 2001210.	2.6	16
57	Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nature Communications, 2021, 12, 1805.	5.8	184

#	Article	IF	CITATIONS
58	Temperature-dependent electrical resistivity of macroscopic graphene nanoplatelet strips. Nanotechnology, 2021, 32, 275701.	1.3	16
59	Realizing Colorful Holographic Mimicry by Metasurfaces. Advanced Materials, 2021, 33, e2005864.	11.1	70
60	Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nature Photonics, 2021, 15, 493-498.	15.6	97
61	Highly efficient infrared stealth asymmetric-structure waterborne polyurethane composites prepared via one-step density-driven filler separation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126177.	2.3	19
62	Cooling Metals via Gap Plasmon Resonance. Nano Letters, 2021, 21, 3974-3980.	4.5	14
63	Impact of Ionic Liquids on Effectiveness of Tuning the Emissivity of Multilayer Graphene. ACS Applied Materials & Samp; Interfaces, 2021, 13, 26256-26263.	4.0	9
64	Thermal camouflaging metamaterials. Materials Today, 2021, 45, 120-141.	8.3	165
65	Facile, scalable, and adaptive infrared reflection towards soft systems by blowing a Janus rubber film. IScience, 2021, 24, 102430.	1.9	2
66	Dynamic thermal radiation modulators via mechanically tunable surface emissivity. Materials Today, 2021, 45, 44-53.	8.3	47
67	Integrated Infrared Signature Management with Multispectral Selective Absorber via Singleâ€Port Grating Resonance. Advanced Optical Materials, 2021, 9, 2002225.	3. 6	13
68	Smart Materials for Dynamic Thermal Radiation Regulation. Small, 2021, 17, e2100446.	5.2	71
69	Ultrathin Titanium Carbide (MXene) Films for Highâ€√Temperature Thermal Camouflage. Advanced Functional Materials, 2021, 31, 2101381.	7.8	118
70	Infrared Camouflage Utilizing Ultrathin Flexible Largeâ€Scale Highâ€Temperatureâ€Tolerant Lambertian Surfaces. Laser and Photonics Reviews, 2021, 15, 2000391.	4.4	23
71	Electrically Controlled Thermal Radiation from Reduced Graphene Oxide Membranes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27278-27283.	4.0	12
72	Nonvolatile Optically Reconfigurable Radiative Metasurface with Visible Tunability for Anticounterfeiting. Nano Letters, 2021, 21, 5269-5276.	4.5	72
73	Thermal Camouflage Clothing in Diurnal and Nocturnal Environments. Key Engineering Materials, 0, 893, 37-43.	0.4	2
74	Modelling, fabrication and characterization of graphene/polymer nanocomposites for electromagnetic interference shielding applications. Carbon Trends, 2021, 4, 100047.	1.4	32
75	A spectrally selective gap surface-plasmon-based nanoantenna emitter compatible with multiple thermal infrared applications. Journal of Optics (United Kingdom), 2021, 23, 085001.	1.0	22

#	ARTICLE	IF	CITATIONS
76	Infrared electrochromic materials, devices and applications. Applied Materials Today, 2021, 24, 101073.	2.3	45
77	Flexible Thermocamouflage Materials in Supersonic Flowfields with Selective Energy Dissipation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43524-43532.	4.0	18
78	Combined multi-band infrared camouflage and thermal management via a simple multilayer structure design. Optics Letters, 2021, 46, 5224.	1.7	20
79	Improved Thermal Signature of Composite Beams with GNP Smart Skin for Defect Investigation. Journal of Nondestructive Evaluation, 2021, 40, 1.	1.1	2
80	Enhanced passive thermal stealth properties of VO2 thin films via gradient W doping. Applied Surface Science, 2021, 561, 150056.	3.1	19
81	Broadband high-temperature thermal emitter/absorber designed by the adjoint method. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3189.	0.9	4
82	Temperature control and low infrared emissivity double-shell phase change microcapsules and their application in infrared stealth fabric. Progress in Organic Coatings, 2021, 159, 106439.	1.9	19
83	xmins:mml="http://www.w3.org/1998/Math/Math/Math/ML" display="inline" id="d1e439" altimg="si5.svg"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ge</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><</mml:mrow>	sub 1. 0mml sub> <mml< td=""><td>:msub><mnil< td=""></mnil<></td></mml<>	:msub> <mnil< td=""></mnil<>
84	Simultaneous low reflection in near-infrared range and low emission in long-wave infrared properties of Al/Bi2O3 composites. Ceramics International, 2021, 47, 31180-31186.	2.3	10
85	Modulating visible-near-infrared reflectivity in ultrathin graphite by reversible Li-ion intercalation. Optical Materials, 2021, 121, 111517.	1.7	6
86	Distribution states of graphene in polymer nanocomposites: A review. Composites Part B: Engineering, 2021, 226, 109353.	5.9	67
87	Tunable Thermal Camouflage Based on GST Plasmonic Metamaterial. Nanomaterials, 2021, 11, 260.	1.9	46
88	Reflective Property of Inorganic Electrochromic Materials. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 451.	0.6	7
89	Graphene-based reversible metal electrodeposition for dynamic infrared modulation. Journal of Materials Chemistry C, 2020, 8, 8538-8545.	2.7	25
90	Radiative metasurface for thermal camouflage, illusion and messaging. Optics Express, 2020, 28, 875.	1.7	63
91	Tuning of polarized room-temperature thermal radiation based on nanogap plasmon resonance. Optics Express, 2020, 28, 15472.	1.7	8
92	Research progress of infrared electrochromic devices. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 204205-204205.	0.2	0
93	A visible-infrared-compatible camouflage photonic crystal with heat dissipation by radiation in 5–8Âμm. Cell Reports Physical Science, 2021, 2, 100617.	2.8	11

#	Article	IF	CITATIONS
94	Multiband tunable thermal camouflage compatible with laser camouflage based on GST plasmonic metamaterial. Journal Physics D: Applied Physics, 2022, 55, 065103.	1.3	23
95	Solid–Liquid Host–Guest Composites: The Marriage of Porous Solids and Functional Liquids. Advanced Materials, 2021, 33, e2104851.	11.1	37
96	Ultra-Wideband Transparent Conductive Electrode for Electrochromic Synergistic Solar and Radiative Heat Management. ACS Energy Letters, 2021, 6, 3906-3915.	8.8	56
97	Spatial and dynamical multi-level control over thermal emission. , 2020, , .		0
98	From Unidimensional Carbonaceous Materials to Multidimensional Structures Through Molecular Modeling., 2021,, 1-21.		0
99	Reversible sequin fabrics as variable emittance surfaces. International Journal of Heat and Mass Transfer, 2022, 183, 122167.	2.5	0
100	Light-driven dynamic surface wrinkles for adaptive visible camouflage. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	29
101	Moisture Assisted Photo-Engineered Textiles for Visible and Self-Adaptive Infrared Dual Camouflage. SSRN Electronic Journal, 0, , .	0.4	0
102	High-Performance Electrochromic Covalent Hybrid Framework Membranes via a Facile One-Pot Synthesis. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2051-2057.	4.0	8
103	Moisture assisted photo-engineered textiles for visible and self-adaptive infrared dual camouflage. Nano Energy, 2022, 93, 106855.	8.2	31
104	Spatial Color Mixture Model of Digital Camouflage Based on Visual Transmission Characteristics. , 2021, , .		0
105	Virtual Infrared Display on Flexible and Transparent Substrate. Advanced Materials Interfaces, 0, , 2102058.	1.9	0
106	Metal–Semiconductor–Metal Metasurface for Multiband Infrared Stealth Technology Using Camouflage Color Pattern in Visible Range. Advanced Optical Materials, 2022, 10, .	3.6	50
107	A dual-mode laser-textured ice-phobic slippery surface: low-voltage-powered switching transmissivity and wettability for thermal management. Nanoscale, 2022, 14, 4474-4483.	2.8	8
108	Dynamic Camouflage Characteristics of a Thermal Infrared Film Inspired by Honeycomb Structure. Journal of Bionic Engineering, 2022, 19, 458-470.	2.7	21
109	Recent progress and advances in electrochromic devices exhibiting infrared modulation. Journal of Materials Chemistry A, 2022, 10, 6269-6290.	5 . 2	39
110	Research of Camouflage Evaluation Based on Human Visual Attention Mechanism. , 2022, , .		0
111	Graphene and Its Immense Contribution in Defense and Security: A Review. Analytical Chemistry Letters, 2022, 12, 1-12.	0.4	10

#	Article	IF	CITATIONS
112	A novel multi-dimensional structure of graphene-decorated composite foam for excellent stealth performance in microwave and infrared frequency bands. Journal of Materials Chemistry A, 2022, 10, 7705-7717.	5.2	35
113	Thermal Camouflaging MXene Robotic Skin with Bioâ€Inspired Stimulus Sensation and Wireless Communication. Advanced Functional Materials, 2022, 32, .	7.8	39
114	Grapheneâ€Based Microwave Circuits: A Review. Advanced Materials, 2022, 34, e2108473.	11.1	25
115	Anisotropic absorber and tunable source of MIR radiation based on a black phosphorus-SiC metasurface. Photonics and Nanostructures - Fundamentals and Applications, 2022, 50, 101020.	1.0	16
116	Fabrication of lightâ€weight ultrahigh molecular weight polyethylene films with hybrid porous structure and the thermal insulation properties. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
117	Variable infrared emittance mechanisms of electrochromic film based on poly(aniline) under various doping concentrations of camphorsulfonic acid. Dyes and Pigments, 2022, 200, 110179.	2.0	8
118	MXene materials for advanced thermal management and thermal energy utilization. Nano Energy, 2022, 97, 107177.	8.2	56
119	A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021. Renewable and Sustainable Energy Reviews, 2022, 161, 112361.	8.2	10
120	Research on Color Feature Extraction Method of Digital Camouflage Based on Visual Perception. , 2021, , .		3
121	Freestanding Graphene Fabric Film for Flexible Infrared Camouflage. Advanced Science, 2022, 9, e2105004.	5.6	24
122	Graphene-Based Tunable Coloration Film through Intercalation. ACS Photonics, 2021, 8, 3599-3606.	3.2	3
123	A dynamic mechanical stimulated and thermal-healed infrared modulator based on elastomer matrix with metal layer inspired by squid skin. Materials Today Chemistry, 2022, 24, 100911.	1.7	2
124	Tunable mid-infrared selective emitter based on inverse design metasurface for infrared stealth with thermal management. Optics Express, 2022, 30, 18250.	1.7	20
125	Robust biomimetic Ti3C2Tx nanocomposite films enhanced by mussel-inspired polymer for highly efficient electromagnetic shielding and thermal camouflage. Carbon, 2022, 196, 410-421.	5.4	8
126	Low Infrared Emissivity and Strong Stealth of Ti-Based MXenes. Research, 2022, 2022, .	2.8	17
127	Porous Nanostructured Composite Film for Visible-to-Infrared Camouflage with Thermal Management. ACS Applied Materials & Samp; Interfaces, 2022, 14, 24690-24696.	4.0	19
128	Multilayer graphene-based radiation modulator for adaptive infrared camouflage with thermal management. Journal Physics D: Applied Physics, 2022, 55, 345103.	1.3	8
129	Dynamic radiation regulations for thermal comfort. Nano Energy, 2022, 100, 107435.	8.2	49

#	ARTICLE	IF	CITATIONS
130	A Dynamic Thermal Camouflage Metadevice with Microwave Scattering Reduction. Advanced Science, 2022, 9, .	5.6	17
131	Fiber Templated Epitaxially Grown Composite Membranes: From Thermal Insulation to Infrared Stealth. ACS Applied Materials & District Stealth. ACS Applied Materials & District Stealth.	4.0	10
132	Leather for flexible multifunctional bio-based materials: a review. Journal of Leather Science and Engineering, 2022, 4, .	2.7	13
133	Impact of molecular components on performance of multilayer graphene-based infrared emissivity modulator. Applied Physics Letters, 2022, 120, 243504.	1.5	1
134	Conductive, Strong and Tough Reduced Graphene Oxide-based composite film for infrared camouflage application. Composites Part B: Engineering, 2022, 242, 109998.	5.9	9
135	Flexible phase change hydrogels for mid-/low-temperature infrared stealth. Chemical Engineering Journal, 2022, 446, 137463.	6.6	34
136	Tunable Infrared Detection, Radiative Cooling and Infrared-Laser Compatible Camouflage Based on a Multifunctional Nanostructure with Phase-Change Material. Nanomaterials, 2022, 12, 2261.	1.9	4
137	Hierarchical visible-infrared-microwave scattering surfaces for multispectral camouflage. Nanophotonics, 2022, 11, 3613-3622.	2.9	23
138	Visibly Transparent and Infrared Reflective Coatings for Personal Thermal Management and Thermal Camouflage. Advanced Functional Materials, 2022, 32, .	7.8	40
139	A review of tunable photonics: Optically active materials and applications from visible to terahertz. IScience, 2022, 25, 104727.	1.9	22
140	Enabling Active Nanotechnologies by Phase Transition: From Electronics, Photonics to Thermotics. Chemical Reviews, 2022, 122, 15450-15500.	23.0	14
141	Morphology-Controlled Fabrication Strategy of Hollow Mesoporous Carbon Spheres@f-Fe ₂ O ₃ for Microwave Absorption and Infrared Stealth. ACS Applied Materials & District Applied & District App	4.0	27
142	Recent Progress of Bio-inspired Camouflage Materials: From Visible to Infrared Range. Chemical Research in Chinese Universities, 2023, 39, 19-29.	1.3	10
143	Graphdiyne-Based Electrochemical Emissivity Modulator. Journal of Physical Chemistry C, 2022, 126, 12680-12688.	1.5	0
144	Continuously adjusting infrared emissivity of multilayer graphene using pulse voltage. Applied Physics Letters, 2022, 121, 042204.	1.5	2
145	Graphene Infrared Radiation Management Targeting Photothermal Conversion for Electric-Energy-Free Crude Oil Collection. Journal of the American Chemical Society, 2022, 144, 15562-15568.	6.6	23
146	Rheology-Guided Assembly of a Highly Aligned MXene/Cellulose Nanofiber Composite Film for High-Performance Electromagnetic Interference Shielding and Infrared Stealth. ACS Applied Materials & Amp; Interfaces, 2022, 14, 36060-36070.	4.0	46
147	Integrated thermal emission microchip based on meta-cavity array. Nanophotonics, 2022, 11, 4263-4271.	2.9	2

#	ARTICLE	IF	CITATIONS
148	Temperature-control and low emissivity dual-working modular infrared stealth fabric. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653, 129966.	2.3	5
149	A novel infrared electrochromic device based on Ti3C2T MXene. Chemical Engineering Journal, 2022, 450, 138324.	6.6	11
150	Selective thermal emission and infrared camouflage based on layered media. Chinese Journal of Aeronautics, 2023, 36, 212-219.	2.8	4
151	Active control of thermal emission by graphene-nanowire coupled plasmonic metasurfaces. Physical Review B, 2022, 106, .	1.1	11
152	Unique applications of carbon materials in infrared stealth: A review. Chemical Engineering Journal, 2023, 452, 139147.	6.6	31
153	Optimizing the Emissivity Regulation Performance of a Multilayer Adaptive Infrared Camouflage Structure Based on Transport Ability Control of an Ionic Liquid. SSRN Electronic Journal, 0, , .	0.4	0
154	Tuning Infrared Emissivity of Graphene Aerogel Through Ion Intercalation. Physical Review Applied, 2022, 18, .	1.5	1
155	Gate-tunable modulation of the optical properties of multilayer graphene by the reversible intercalation of ionic liquid anions. Journal of Applied Physics, 2022, 132, .	1.1	2
156	Threeâ€Dimensional Electrochromic Soft Photonic Crystals Based on MXeneâ€Integrated Blue Phase Liquid Crystals for Bioinspired Visible and Infrared Camouflage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	70
157	Threeâ€Dimensional Electrochromic Soft Photonic Crystals Based on MXeneâ€Integrated Blue Phase Liquid Crystals for Bioinspired Visible and Infrared Camouflage. Angewandte Chemie, 2022, 134, .	1.6	8
158	Kirigamiâ€Inspired Reconfigurable Thermal Mimetic Device. Laser and Photonics Reviews, 2022, 16, .	4.4	9
159	Controllable Surface-Grafted MXene Inks for Electromagnetic Wave Modulation and Infrared Anti-Counterfeiting Applications. ACS Nano, 2022, 16, 16976-16986.	7.3	74
160	High-strength, low infrared-emission nonmetallic films for highly efficient Joule/solar heating, electromagnetic interference shielding and thermal camouflage. Materials Horizons, 2023, 10, 235-247.	6.4	19
161	Infrared Gasochromic Devices Based on Metal Thin Films. Advanced Optical Materials, 0, , 2201702.	3.6	1
162	Effect of Substrate Bias Voltage on Infrared Characteristics of TiN Films. Journal of Electronic Materials, 2022, 51, 7267-7274.	1.0	0
163	Construction of Aniline Trimer Based Conjugated Polymers through Schiff Base Reaction and Their Use as Feedstock for Infrared Stealth Coatings. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	0
164	Harvesting Planck radiation for free-space optical communications in the long-wave infrared band. Optics Letters, 2022, 47, 6225.	1.7	3
165	Bushâ€Shaped Vertical Graphene/Nichrome Wire for Blackbodyâ€Like Radiative Heating. Advanced Functional Materials, 2022, 32, .	7.8	6

#	Article	IF	CITATIONS
166	Synthesis and electrochromic properties of all donor polymers containing fused thienothiophene derivatives with high contrast and color efficiency. Polymer, 2022, 261, 125404.	1.8	8
167	High-index-contrast photonic structures: a versatile platform for photon manipulation. Light: Science and Applications, 2022, 11 , .	7.7	8
168	Coupling of Epsilon-Near-Zero Mode to Mushroom-Type Metamaterial for Optimizing Infrared Suppression and Radiative Cooling. Photonic Sensors, 2023, 13, .	2.5	3
169	Solar and Thermal Radiationâ€Modulation Materials for Building Applications. Advanced Energy Materials, 2023, 13, .	10.2	13
170	Graphene-metal based tunable radiative metasurface for information encryption and anticounterfeiting. Diamond and Related Materials, 2023, 131, 109548.	1.8	6
171	Polarization-driven thermal emission regulator based on self-aligned GST nanocolumns. IScience, 2023, 26, 105780.	1.9	10
172	Optimizing the emissivity regulation performance of a multilayer adaptive infrared camouflage structure based on transport ability control of an ionic liquid. Applied Surface Science, 2023, 614, 156145.	3.1	3
173	Hardware and Information Security Primitives Based on 2D Materials and Devices. Advanced Materials, 2023, 35, .	11.1	11
174	Materials, structures, and devices for dynamic radiative cooling. Cell Reports Physical Science, 2022, 3, 101198.	2.8	15
175	Recent progress in two-dimensional nanomaterials of graphene and MXenes for thermal camouflage. Ceramics International, 2023, 49, 5559-5572.	2.3	5
176	Largeâ€Area and Flexible Plasmonic Metasurface for Laser–Infrared Compatible Camouflage. Laser and Photonics Reviews, 2023, 17, .	4.4	9
177	Synchronous Visual/Infrared Stealth Using an Intrinsically Flexible Selfâ€Healing Phase Change Film. Advanced Functional Materials, 2023, 33, .	7.8	14
178	Dynamic electrochromism for all-season radiative thermoregulation. Nature Sustainability, 2023, 6, 428-437.	11.5	37
179	Recent advances in electrochromic materials and devices for camouflage applications. Materials Chemistry Frontiers, 2023, 7, 2337-2358.	3.2	23
180	Water-triggered visible and infrared light reversible switch using nanowires-covered micropores superhydrophilic surfaces. Chemical Engineering Journal, 2023, 461, 141894.	6.6	5
181	Electronically controlled infrared radiation of graphite thin films with crumpled surfaces. Diamond and Related Materials, 2023, 135, 109848.	1.8	0
182	Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Progress in Materials Science, 2023, 135, 101088.	16.0	147
183	Wearable Janusâ€Type Film with Integrated Allâ€Season Active/Passive Thermal Management, Thermal Camouflage, and Ultraâ€High Electromagnetic Shielding Efficiency Tunable by Origami Process. Advanced Functional Materials, 2023, 33, .	7.8	41

#	Article	IF	CITATIONS
184	Mid-Infrared Electrochromics Enabled by Intraband Modulation in Carbon Nanotube Networks. ACS Applied Materials & Samp; Interfaces, 2023, 15, 11225-11233.	4.0	7
185	Reconfigurable and Polarizationâ€Dependent Grating Absorber for Largeâ€Area Emissivity Control Based on the Plasmonic Phaseâ€Change Material In ₃ SbTe ₂ . Advanced Optical Materials, 2023, 11, .	3.6	15
186	Polyaniline-Based Infrared Dynamic Patterned Encoder with Multiple Thermal Radiation Characteristics. ACS Applied Materials & Samp; Interfaces, 0, , .	4.0	1
187	Deep Learning Assisted Optimization of Metasurface for Multi-Band Compatible Infrared Stealth and Radiative Thermal Management. Nanomaterials, 2023, 13, 1030.	1.9	4
188	Scalable <scp>van der Waals</scp> graphene films for electroâ€optical regulation and thermal camouflage. InformaÄnÃ-Materiály, 2023, 5, .	8.5	7
189	Mid-Infrared Intersubband Cavity Polaritons in Flexible Single Quantum Well. Nano Letters, 2023, 23, 2890-2897.	4.5	2
190	Controlling solar radiation forces with graphene in plasmonic metasurface. Physica Scripta, 2023, 98, 055520.	1.2	1
191	Spectrally Selective Thermal Emission from Graphene Decorated with Metallic Nanoparticles. Journal of Physical Chemistry C, 2023, 127, 8186-8194.	1.5	1
198	We arable electrochromic materials and devices: from visible to infrared modulation. Journal of Materials Chemistry C , 2023, 11 , $7183-7210$.	2.7	19
217	Laser Direct Writing based Superhydrophobic Infrared Invisibility surface. , 2023, , .		0
227	IR regulation through preferential placement of h-BN nanosheets in a polymer network liquid crystal. Materials Horizons, 0, , .	6.4	0
235	Advanced Inorganic Nanomaterials for High-Performance Electrochromic Applications. Nanoscale, 0, ,	2.8	O