Enhanced Conductivity of Anion-Exchange Membrane Cellulose Nanocrystal

ACS Applied Materials & amp; Interfaces 10, 23774-23782

DOI: 10.1021/acsami.8b05298

Citation Report

#	Article	IF	CITATIONS
1	Nanocellulose applications in sustainable electrochemical and piezoelectric systems: A review. Carbohydrate Polymers, 2019, 224, 115149.	10.2	61
2	Nanocellulose-based materials as components of polymer electrolyte fuel cells. Journal of Materials Chemistry A, 2019, 7, 20045-20074.	10.3	85
3	High performance cation exchange membranes synthesized <i>via in situ</i> emulsion polymerization without organic solvents and corrosive acids. Journal of Materials Chemistry A, 2019, 7, 17400-17411.	10.3	11
4	Controllable physical-crosslinking poly(arylene 6-azaspiro[5.5] undecanium) for long-lifetime anion exchange membrane applications. Journal of Membrane Science, 2019, 590, 117307.	8.2	52
5	Comb-shaped ether-free poly(biphenyl indole) based alkaline membrane. Journal of Membrane Science, 2019, 588, 117216.	8.2	44
6	Hydrophobic Side-Chain Attached Polyarylether-Based Anion Exchange Membranes with Enhanced Alkaline Stability. ACS Applied Energy Materials, 2019, 2, 8052-8059.	5.1	20
7	A Highly Conductive Cationic Wood Membrane. Advanced Functional Materials, 2019, 29, 1902772.	14.9	79
8	Bis-imidazolium based poly(phenylene oxide) anion exchange membranes for fuel cells: the effect of cross-linking. Journal of Materials Chemistry A, 2019, 7, 13275-13283.	10.3	112
9	Green synthesis of polymeric membranes: Recent advances and future prospects. Current Opinion in Green and Sustainable Chemistry, 2020, 21, 1-8.	5.9	41
10	Covalent bonding-triggered pore-filled membranes for alkaline fuel cells. Journal of Membrane Science, 2020, 597, 117776.	8.2	9
11	Preparation and characterization of high conductivity comb polymer anion exchange membranes. European Polymer Journal, 2020, 122, 109379.	5.4	11
12	Achieving High Conductivity at Low Ion Exchange Capacity for Anion Exchange Membranes with Electrospun Polyelectrolyte Nanofibers. ACS Applied Energy Materials, 2020, 3, 10660-10668.	5.1	15
13	A Composite Anion Conducting Membrane Based on Quaternized Cellulose and Poly(Phenylene Oxide) for Alkaline Fuel Cell Applications. Polymers, 2020, 12, 2676.	4.5	11
14	Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications. Cellulose, 2020, 27, 6719-6746.	4.9	45
15	Cross-linked poly (aryl ether ketone) anion exchange membrane with high ion conductivity by two different functional imidazole side chain. Reactive and Functional Polymers, 2020, 151, 104551.	4.1	18
16	Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustainable Energy and Fuels, 2021, 5, 604-637.	4.9	163
17	Construction of ion conducting channels by embedding hydrophilic oligomers in piperidine functionalized poly(2, 6-dimethyl-1, 4-phenylene oxide) membranes. European Polymer Journal, 2021, 142, 110150.	5.4	4
18	Imidazole-functionalized polyketone-based polyelectrolytes with efficient ionic channels and superwettability for alkaline polyelectrolyte fuel cells and multiple liquid purification. Journal of Materials Chemistry A. 2021. 9. 14827-14840.	10.3	11

#	Article	IF	Citations
19	Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast <scp>OH</scp> ^{â°'} conduction. AICHE Journal, 2021, 67, e17133.	3.6	53
20	Construction of highly efficient ion channel within anion exchange membrane based on interpenetrating polymer network for H2/Air (CO2-free) alkaline fuel cell. Journal of Power Sources, 2021, 486, 229377.	7.8	19
21	Anion exchange polyelectrolytes for membranes and ionomers. Progress in Polymer Science, 2021, 113, 101345.	24.7	264
22	Enhanced Ion Conductivity through Hydrated, Polyelectrolyte-Grafted Cellulose Nanocrystal Films. Macromolecules, 2021, 54, 6925-6936.	4.8	9
23	Fast Bulky Anion Conduction Enabled by Free Shuttling Phosphonium Cations. Research, 2021, 2021, 9762709.	5.7	11
24	Anion exchange membranes with fast ion transport channels driven by cation-dipole interactions for alkaline fuel cells. Journal of Membrane Science, 2021, 634, 119404.	8.2	51
25	Cellulose nanocrystals–blended zirconia/polysulfone composite separator for alkaline electrolyzer at low electrolyte contents. Chemical Engineering Journal, 2022, 428, 131149.	12.7	33
26	Development of solid electrolytes in Zn–air and Al–air batteries: from material selection to performance improvement strategies. Journal of Materials Chemistry A, 2021, 9, 4415-4453.	10.3	67
27	Anion Exchange Membrane Based on Interpenetrating Polymer Network with Ultrahigh Ion Conductivity and Excellent Stability for Alkaline Fuel Cell. Research, 2020, 2020, 4794706.	5.7	24
28	Construction of Quaternized Polysulfone/Polyquaterniumâ€10 Anion Exchange Membrane with Semiâ€Interpenetrating Network for Alkaline Fuel Cell. Macromolecular Materials and Engineering, 2022, 307, 2100539.	3.6	7
29	Surfactant-assisted incorporation of ZrO2 nanoparticles in quaternized poly(2,6-dimethyl-1,4-phenylene oxide) for superior properties of anion exchange membranes. Renewable Energy, 2020, 166, 45-55.	8.9	8
30	Low boiling point solvent-soluble, highly conductive and stable poly (ether phenylene piperidinium) anion exchange membrane. Journal of Membrane Science, 2022, 644, 120185.	8.2	20
31	Quaternized Branched Polyethyleneimine Modified Nitrogenâ€Doped Graphene Quantum Dots/Quaternized Polysulfone Composite Anion Exchange Membranes with Improved Performance. Macromolecular Materials and Engineering, 0, , 2100787.	3.6	8
32	Simultaneous Improvement of Dimensional Stability and Ionic Conductivity of QPAE/TiO2-x Composite Membranes According to TiO2 Content Control for Anion Exchange Membrane Fuel Cells. Transactions of the Korean Hydrogen and New Energy Society, 2022, 33, 19-27.	0.6	1
33	Green hydrogen: A promising way to the carbon-free society. Chinese Journal of Chemical Engineering, 2022, 43, 2-13.	3.5	71
34	Dual-Cation Interpenetrating Polymer Network Anion Exchange Membrane for Fuel Cells and Water Electrolyzers. Macromolecules, 2022, 55, 4647-4655.	4.8	16
35	Enhancing anion conduction stability of quaternized poly(phenylene) oxideâ€based anion exchange membranes with ionic liquids modified carbon nanomaterials. International Journal of Energy Research, 2022, 46, 17332-17345.	4.5	4
36	Production of cellulose nanofibrils via an eco-friendly approach. Cellulose, 2022, 29, 8623-8636.	4.9	3

CITATION REPORT

#	Article	IF	CITATIONS
37	Construction of polysulfone anion exchange hybrid membranes by incorporating carbon quantum dots and facilitated transport mechanisms. Journal of Industrial and Engineering Chemistry, 2022, 115, 219-229.	5.8	2
38	One-pot simultaneous ARGET ATRP strategy on widening long-range ion channels to facilitate ion conductivity for alkaline anion exchange membrane fuel cells. Journal of Materials Chemistry A, 2022, 10, 22617-22628.	10.3	7
39	Functionalized POSS-Modified SEBS-Based Composite Anion-Exchange Membranes for AEMFCs. Energy & Fuels, 2022, 36, 12780-12790.	5.1	4
40	Recent Developments on Bioinspired Cellulose Containing Polymer Nanocomposite Cation and Anion Exchange Membranes for Fuel Cells (PEMFC and AFC). Polymers, 2022, 14, 5248.	4.5	5
41	Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis. Energy and Environmental Science, 2023, 16, 1384-1430.	30.8	49
42	Efficiency of Neat and Quaternized-Cellulose Nanofibril Fillers in Chitosan Membranes for Direct Ethanol Fuel Cells. Polymers, 2023, 15, 1146.	4.5	1
43	Advances and prospects of biodegradable polymer nanocomposites for fuel cell applications. , 2023, , 599-637.		0
44	Applications and perspectives of quaternized cellulose, chitin and chitosan: A review. International Journal of Biological Macromolecules, 2023, 242, 124990.	7.5	21
45	Enhanced OHâ^' conductivity and stability of polybenzimidazole membranes for electrocatalytic CO2 reduction via grafting and crosslinking strategies. Journal of Membrane Science, 2023, 685, 121985.	8.2	2
46	Recent progress in anion exchange membranes (AEMs) in water electrolysis: synthesis, physio-chemical analysis, properties, and applications. Journal of Materials Chemistry A, 2023, 11, 20886-21008.	10.3	3
47	Current Challenges on the Alkaline Stability of Anion Exchange Membranes for Fuel Cells. ChemElectroChem, 2023, 10, .	3.4	1
48	Review: chitosan-based biopolymers for anion-exchange membrane fuel cell application. Royal Society Open Science, 2023, 10, .	2.4	0
49	High performance chitosan/nanocellulose-based composite membrane for alkaline direct ethanol fuel cells. International Journal of Biological Macromolecules, 2023, 253, 127693.	7.5	0
50	A perspective into recent progress on the tailored cationic group-based polymeric anion exchange membranes intended for electrochemical energy applications. Materials Today Chemistry, 2024, 35, 101866.	3.5	0
51	Polyvinyl alcohol/nanocellulose nanocomposites from oil palm empty fruit bunch as anion exchange membranes for direct alcohol-hydrogen peroxide fuel cells. Cellulose, 2024, 31, 1569-1601.	4.9	0
53	Fabrication of Dual-Functional Bacterial-Cellulose-Based Composite Anion Exchange Membranes with High Dimensional Stability and Ionic Conductivity. ACS Applied Materials & Interfaces, 2024, 16, 2751-2762.	8.0	0
54	Novel Fluorinated Anion Exchange Membranes Based on Poly(Pentafluorophenyl arbazole) with High Ionic Conductivity and Alkaline Stability for Fuel Cell Applications. Macromolecular Rapid Communications, 0, , .	3.9	0