PATRIOT: A phase I study to assess the tolerability, safe ataxia telangiectasia and Rad3-related (ATR) inhibitor (A combination with palliative radiation therapy in patient

Clinical and Translational Radiation Oncology

12, 16-20

DOI: 10.1016/j.ctro.2018.06.001

Citation Report

#	Article	IF	CITATIONS
1	Targeting the ATR/CHK1 Axis with PARP Inhibition Results in Tumor Regression in <i>BRCA</i> -Mutant Ovarian Cancer Models. Clinical Cancer Research, 2017, 23, 3097-3108.	3.2	223
2	Targeting the ATR-CHK1 Axis in Cancer Therapy. Cancers, 2017, 9, 41.	1.7	156
3	Advances in Molecular Profiling and Categorisation of Pancreatic Adenocarcinoma and the Implications for Therapy. Cancers, 2018, 10, 17.	1.7	21
4	Progress and prospects for treating ataxia telangiectasia. Expert Opinion on Orphan Drugs, 2019, 7, 233-251.	0.5	5
5	ATR inhibition sensitizes HPVâ^' and HPV+ head and neck squamous cell carcinoma to cisplatin. Oral Oncology, 2019, 95, 35-42.	0.8	34
6	Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: where we stand. Journal of Hematology and Oncology, 2019, 12, 43.	6.9	92
7	ATR Inhibition Potentiates the Radiation-induced Inflammatory Tumor Microenvironment. Clinical Cancer Research, 2019, 25, 3392-3403.	3.2	144
8	The immunological consequences of radiationâ€induced DNA damage. Journal of Pathology, 2019, 247, 606-614.	2.1	37
9	Targeting Aberrant Splicing in Myelodysplastic Syndromes. Hematology/Oncology Clinics of North America, 2020, 34, 379-391.	0.9	10
10	Targeting ATR as Cancer Therapy: A new era for synthetic lethality and synergistic combinations?. , 2020, 207, 107450.		101
11	Combined Radiotherapy and New Systemic Therapies – Have We Moved Beyond Palliation?. Clinical Oncology, 2020, 32, 758-765.	0.6	6
12	Targeting P53 as a Future Strategy to Overcome Gemcitabine Resistance in Biliary Tract Cancers. Biomolecules, 2020, 10, 1474.	1.8	19
13	Selective Elimination of Osteosarcoma Cell Lines with Short Telomeres by Ataxia Telangiectasia and Rad3-Related Inhibitors. ACS Pharmacology and Translational Science, 2020, 3, 1253-1264.	2.5	8
14	Advances in synthetic lethality for cancer therapy: cellular mechanism and clinical translation. Journal of Hematology and Oncology, 2020, 13, 118.	6.9	95
15	Inhibition of DNA Repair in Cancer Therapy: Toward a Multi-Target Approach. International Journal of Molecular Sciences, 2020, 21, 6684.	1.8	24
16	Reprogramming the tumour microenvironment by radiotherapy: implications for radiotherapy and immunotherapy combinations. Radiation Oncology, 2020, 15, 254.	1.2	62
17	Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nature Reviews Cancer, 2020, 20, 203-217.	12.8	420
18	Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 298-313.	8.2	151

CITATION REPORT

#	Article	IF	CITATIONS
19	DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduction and Targeted Therapy, 2020, 5, 60.	7.1	474
20	Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology, 2021, 160, 362-377.e13.	0.6	90
21	Targeting DNA Repair and Chromatin Crosstalk in Cancer Therapy. Cancers, 2021, 13, 381.	1.7	3
22	Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity. Cancer Letters, 2021, 502, 84-96.	3.2	80
23	Targeting IDH1/2 mutant cancers with combinations of ATR and PARP inhibitors. NAR Cancer, 2021, 3, zcab018.	1.6	17
24	Novel and Highly Potent ATR Inhibitor M4344 Kills Cancer Cells With Replication Stress, and Enhances the Chemotherapeutic Activity of Widely Used DNA Damaging Agents. Molecular Cancer Therapeutics, 2021, 20, 1431-1441.	1.9	58
25	Phase I Study of Ceralasertib (AZD6738), a Novel DNA Damage Repair Agent, in Combination with Weekly Paclitaxel in Refractory Cancer. Clinical Cancer Research, 2021, 27, 4700-4709.	3.2	54
26	Intersection of Two Checkpoints: Could Inhibiting the DNA Damage Response Checkpoint Rescue Immune Checkpoint-Refractory Cancer?. Cancers, 2021, 13, 3415.	1.7	15
27	In Vitro Evaluation of Rigosertib Antitumoral and Radiosensitizing Effects against Human Cholangiocarcinoma Cells. International Journal of Molecular Sciences, 2021, 22, 8230.	1.8	4
28	CCNE1 copy number is a biomarker for response to combination WEE1-ATR inhibition in ovarian and endometrial cancer models. Cell Reports Medicine, 2021, 2, 100394.	3.3	29
29	Targeting the DNA Damage Response for Radiosensitization. Cancer Drug Discovery and Development, 2020, , 191-218.	0.2	1
30	XRCC1 deficient triple negative breast cancers are sensitive to ATR, ATM and Wee1 inhibitor either alone or in combination with olaparib. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592097420.	1.4	10
31	Germline mutations in pancreatic cancer and potential new therapeutic options. Oncotarget, 2017, 8, 73240-73257.	0.8	40
32	Updates and new directions in the use of radiation therapy for the treatment of pancreatic adenocarcinoma: dose, sensitization, and novel technology. Cancer and Metastasis Reviews, 2021, 40, 879-889.	2.7	2
36	Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nature Reviews Clinical Oncology, 2022, 19, 114-131.	12.5	76
37	Discovery of small-molecule ATR inhibitors for potential cancer treatment: a patent review from 2014 to present. Expert Opinion on Therapeutic Patents, 2022, 32, 401-421.	2.4	7
38	RP-3500: A Novel, Potent, and Selective ATR Inhibitor that is Effective in Preclinical Models as a Monotherapy and in Combination with PARP Inhibitors. Molecular Cancer Therapeutics, 2022, 21, 245-256.	1.9	41
39	ATR inhibitor AZD6738 increases the sensitivity of colorectal cancer cells to 5‑fluorouracil by inhibiting repair of DNA damage. Oncology Reports, 2022, 47, .	1.2	9

CITATION REPORT

#	Article	IF	CITATIONS
40	Harnessing radiotherapy-induced NK-cell activity by combining DNA damage–response inhibition and immune checkpoint blockade. , 2022, 10, e004306.		36
41	Cell cycle checkpoints and beyond: Exploiting the ATR/CHK1/WEE1 pathway for the treatment of PARP inhibitor–resistant cancer. Pharmacological Research, 2022, 178, 106162.	3.1	40
42	Ataxia telangiectasia and Rad3-related inhibition by AZD6738 enhances gemcitabine-induced cytotoxic effects in bladder cancer cells. PLoS ONE, 2022, 17, e0266476.	1.1	0
43	Impact of <scp>DNA</scp> damage response defects in cancer cells on response to immunotherapy and radiotherapy. Journal of Medical Imaging and Radiation Oncology, 2022, 66, 546-559.	0.9	5
44	Exploring hypoxic biology to improve radiotherapy outcomes. Expert Reviews in Molecular Medicine, 2022, 24, e21.	1.6	4
45	Resistance to <scp>DNA</scp> repair inhibitors in cancer. Molecular Oncology, 2022, 16, 3811-3827.	2.1	28
46	Radiotherapy-drug combinations in the treatment of glioblastoma: a brief review. CNS Oncology, 2022, 11, .	1.2	5
47	Genomic biomarkers to guide precision radiotherapy in prostate cancer. Prostate, 2022, 82, .	1.2	3
48	Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer. , 2022, 10, e005041.		31
49	Quantitation of the ATR inhibitor elimusertib (BAYâ€1895344) in human plasma by LCâ€MS/MS. Biomedical Chromatography, 0, , .	0.8	0
50	Therapeutic targeting of ATR in alveolar rhabdomyosarcoma. Nature Communications, 2022, 13, .	5.8	6
51	Targeted Inhibition of DNA-PKcs, ATM, ATR, PARP, and Rad51 Modulate Response to X Rays and Protons. Radiation Research, 2022, 198, .	0.7	3
52	Selective vulnerability of ARID1A deficient colon cancer cells to combined radiation and ATR-inhibitor therapy. Frontiers in Oncology, 0, 12, .	1.3	4
53	Caspase activation counteracts interferon signaling after G2 checkpoint abrogation by ATR inhibition in irradiated human cancer cells. Frontiers in Oncology, 0, 12, .	1.3	1
54	Natural products targeting the ATR-CHK1 signaling pathway in cancer therapy. Biomedicine and Pharmacotherapy, 2022, 155, 113797.	2.5	7
55	Exploring the DNA damage response pathway for synthetic lethality. Genome Instability & Disease, 2023, 4, 98-120.	0.5	2
56	Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomedicine and Pharmacotherapy, 2023, 158, 114126.	2.5	1
57	Targeting the DNA damage response for cancer therapy. Biochemical Society Transactions, 2023, 51, 207-221.	1.6	14

#	Article	IF	CITATIONS
58	Exploring SPK98 for the Selective Sensitization of ATM- or P53-Deficient Cancer Cells. ACS Omega, 2023, 8, 4954-4962.	1.6	1
59	Advances in molecular targeted therapies to increase efficacy of (chemo)radiation therapy. Strahlentherapie Und Onkologie, 2023, 199, 1091-1109.	1.0	3

CITATION REPORT