Emerging trends in global freshwater availability

Nature 557, 651-659 DOI: 10.1038/s41586-018-0123-1

Citation Report

#	Article	IF	CITATIONS
1	100 Years of Progress in Hydrology. Meteorological Monographs, 2018, 59, 25.1-25.51.	5.0	16
2	The Ocean's Role in Climate. Oceanography, 2018, 31, .	0.5	18
3	Using Multiple Discriminant Analysis for the Assignment of Initial Water Entitlements at River Basin-Level under the Strictest Water Resources Management System Constraints in China. Sustainability, 2018, 10, 4414.	1.6	5
4	A Step towards Integrating CMORPH Precipitation Estimation with Rain Gauge Measurements. Advances in Meteorology, 2018, 2018, 1-24.	0.6	17
5	Global Water Transfer Megaprojects: A Potential Solution for the Water-Food-Energy Nexus?. Frontiers in Environmental Science, 2018, 6, .	1.5	120
6	Spatiotemporal trends in freshwater availability in the Red Sea Hills, Saudi Arabia. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	11
7	Competition for shrinking window of low salinity groundwater. Environmental Research Letters, 2018, 13, 114013.	2.2	37
8	X International Workshop on Sap Flow. Acta Horticulturae, 2018, , 1-4.	0.1	0
9	Building a future with root architecture. Journal of Experimental Botany, 2018, 69, 5319-5323.	2.4	30
10	Recent global decline in endorheic basin water storages. Nature Geoscience, 2018, 11, 926-932.	5.4	282
11	Enhanced response of global wetland methane emissions to the 2015–2016 El Niño-Southern Oscillation event. Environmental Research Letters, 2018, 13, 074009.	2.2	46
12	The neglected costs of water peace. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1316.	2.8	11
13	Aging Human Populations: Good for Us, Good for the Earth. Trends in Ecology and Evolution, 2018, 33, 851-862.	4.2	42
14	Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Dataâ€Poor Regions. Water Resources Research, 2018, 54, 9724-9758.	1.7	247
15	Assessing the Contribution of Demographic Growth, Climate Change, and the Refugee Crisis on Seawater Intrusion in the Tripoli Aquifer. Water (Switzerland), 2018, 10, 973.	1.2	7
16	Closing the yield gap while ensuring water sustainability. Environmental Research Letters, 2018, 13, 104002.	2.2	127
17	Tannic acid functionalized graphene hydrogel for organic dye adsorption. Ecotoxicology and Environmental Safety, 2018, 165, 299-306.	2.9	66
18	Inequality and the Biosphere. Annual Review of Environment and Resources, 2018, 43, 61-83.	5.6	89

ATION REDO

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	Standardized Precipitation Evapotranspiration Index is highly correlated with total water storage over China under future climate scenarios. Atmospheric Environment, 2018, 194, 123-133.	1.9	27
20	Seasonal and Decadal Groundwater Changes in African Sedimentary Aquifers Estimated Using GRACE Products and LSMs. Remote Sensing, 2018, 10, 904.	1.8	50
21	Uncharted waters: the rise of human-made aquatic environments in the age of the "Anthropocene― Anthropocene, 2018, 23, 29-42.	1.6	22
22	Potential Effects of Future Climate Changes on Brazilian Cool-Adapted Stoneflies (Insecta:) Tj ETQq1 1 0.7843	14 rgBT /Ov	erlock 10 Ti
23	The NPP-Based Composite Indicator for Assessing the Variations of Water Provision Services at the National Scale. Water (Switzerland), 2019, 11, 1628.	1.2	4
24	Detecting Water Diversion Fingerprints in the Danjiangkou Reservoir from Satellite Gravimetry and Altimetry Data. Sensors, 2019, 19, 3510.	2.1	1
25	The NSERC Canadian Lake Pulse Network: A national assessment of lake health providing science for water management in a changing climate. Science of the Total Environment, 2019, 695, 133668.	3.9	68
26	Detecting human influence on the temperature changes in Central Asia. Climate Dynamics, 2019, 53, 4553-4568.	1.7	27
27	Deeper well drilling an unsustainable stopgap to groundwater depletion. Nature Sustainability, 2019, 2, 773-782.	11.5	64
28	Response of Groundwater Storage and Recharge in the Qaidam Basin (Tibetan Plateau) to Climate Variations From 2002 to 2016. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9918-9934.	1.2	35
29	Determining seasonal displacements of Earth's crust in South America using observations from space-borne geodetic sensors and surface-loading models. Earth, Planets and Space, 2019, 71, .	0.9	24
30	The Impacts of Water Demand and Its Implications for Future Surface Water Resource Management: The Case of Tanzania's Wami Ruvu Basin (WRB). Water (Switzerland), 2019, 11, 1280.	1.2	15
31	River connectivity and fish migration considerations in the management of multiple stressors in South Africa. Marine and Freshwater Research, 2019, 70, 1254.	0.7	16
32	Sustainable and resilient management scenarios for groundwater resources of the Red Sea coastal aquifers. Science of the Total Environment, 2019, 690, 1310-1320.	3.9	12
33	Multiple Remotely Sensed Lines of Evidence for a Depleting Seasonal Snowpack in the Near East. Remote Sensing, 2019, 11, 483.	1.8	17
34	India in the Oil Palm Era: Describing India's Dependence on Palm Oil, Recommendations for Sustainable Production, and Opportunities to Become an Influential Consumer. Tropical Conservation Science, 2019, 12, 194008291983891.	0.6	7
35	Forecasting GRACE Data over the African Watersheds Using Artificial Neural Networks. Remote Sensing, 2019, 11, 1769.	1.8	52
36	Changes in glacier mass in the Lenglongling Mountains from 1972 to 2016 based on remote sensing data and modeling. Journal of Hydrology, 2019, 578, 124010.	2.3	19

#	Article	IF	CITATIONS
37	Urban drought challenge to 2030 sustainable development goals. Science of the Total Environment, 2019, 693, 133536.	3.9	147
38	Multi-climate mode interactions drive hydrological and vegetation responses to hydroclimatic extremes in Australia. Remote Sensing of Environment, 2019, 231, 111270.	4.6	31
39	Future Intensification of the Water Cycle with an Enhanced Annual Cycle over Global Land Monsoon Regions. Journal of Climate, 2019, 32, 5437-5452.	1.2	51
40	Explaining National Trends in Terrestrial Water Storage. Frontiers in Environmental Science, 2019, 7, .	1.5	7
41	Unsustainable groundwater use for global food production and related international trade. Global Sustainability, 2019, 2, .	1.6	29
42	Using Satelliteâ€Based Vegetation Cover as Indicator of Groundwater Storage in Natural Vegetation Areas. Geophysical Research Letters, 2019, 46, 8082-8092.	1.5	35
43	Longâ€Term Wetting and Drying Trends in Land Water Storage Derived From GRACE and CMIP5 Models. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9808-9823.	1.2	23
44	Freshwater. , 2019, , 234-269.		0
45	Acute Water-Scarcity Monitoring for Africa. Water (Switzerland), 2019, 11, 1968.	1.2	36
46	Detecting the State of the Climate System via Artificial Intelligence to Improve Seasonal Forecasts and Inform Reservoir Operations. Water Resources Research, 2019, 55, 9133-9147.	1.7	38
47	Water shortage risks from perennial crop expansion in California's Central Valley. Environmental Research Letters, 2019, 14, 104014.	2.2	35
48	Clobal unsustainable virtual water flows in agricultural trade. Environmental Research Letters, 2019, 14, 114001.	2.2	108
49	Evapotranspiration Estimation for Tibetan Plateau Headwaters Using Conjoint Terrestrial and Atmospheric Water Balances and Multisource Remote Sensing. Water Resources Research, 2019, 55, 8608-8630.	1.7	87
50	A Decade of Water Storage Changes Across the Contiguous United States From GPS and Satellite Gravity. Geophysical Research Letters, 2019, 46, 13006-13015.	1.5	41
51	Towards Global Hydrological Drought Monitoring Using Remotely Sensed Reservoir Surface Area. Geophysical Research Letters, 2019, 46, 13027-13035.	1.5	16
52	A Precipitation Recycling Network to Assess Freshwater Vulnerability: Challenging the Watershed Convention. Water Resources Research, 2019, 55, 9947-9961.	1.7	33
53	Missing Hydrological Contribution to Sea Level Rise. Geophysical Research Letters, 2019, 46, 12049-12055.	1.5	20
55	Deep Convection over Africa: Annual Cycle, ENSO, and Trends in the Hotspots. Journal of Climate, 2019, 32, 8791-8811.	1.2	22

#	Article	IF	CITATIONS
56	Crop Evapotranspiration. Agronomy, 2019, 9, 614.	1.3	15
57	Climatic forcing for recent significant terrestrial drying and wetting. Advances in Water Resources, 2019, 133, 103425.	1.7	24
58	+50 Years of Terrestrial Hydroclimatic Variability in Africa's Transboundary Waters. Scientific Reports, 2019, 9, 12327.	1.6	20
59	Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resources Research, 2019, 55, 7564-7586.	1.7	229
60	What is the return period of intense rainfall events in the capital cities of the northeast region of Brazil?. Atmospheric Science Letters, 2019, 20, e934.	0.8	11
61	Policy Note: "Opportunities and Challenges of Using Satellite Data to Inform Water Policy". Water Economics and Policy, 2019, 05, 1971001.	0.3	0
62	Evaluating the Uncertainty of Terrestrial Water Budget Components Over High Mountain Asia. Frontiers in Earth Science, 2019, 7, .	0.8	47
63	Seawater intrusion and submarine groundwater discharge along the Indian coast. Environmental Science and Pollution Research, 2019, 26, 31592-31608.	2.7	52
64	Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. Journal of Hydrology, 2019, 578, 124105.	2.3	92
65	Evapotranspiration Reconstruction Based on Land Surface Models and Observed Water Budget Components While Considering Irrigation. Journal of Hydrometeorology, 2019, 20, 2163-2183.	0.7	5
66	Evaluation of Water and Energy Nexus in Wami Ruvu River Basin, Tanzania. Sustainability, 2019, 11, 3109.	1.6	1
68	Integrating MAES implementation into protected area management under climate change: A fine-scale application in Greece. Science of the Total Environment, 2019, 695, 133530.	3.9	30
69	The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment. Remote Sensing, 2019, 11, 2116.	1.8	72
70	An Open-Source Tool to Facilitate the Processing of GRACE Observations and GLDAS Outputs: An Evaluation in Bangladesh. Frontiers in Environmental Science, 2019, 7, .	1.5	24
71	The relative contributions of precipitation, evapotranspiration, and runoff to terrestrial water storage changes across 168 river basins. Journal of Hydrology, 2019, 579, 124194.	2.3	38
72	Water Storage Trends in High Mountain Asia. Frontiers in Earth Science, 2019, 7, .	0.8	26
73	Short-term trends in Africa's freshwater resources: Rates and drivers. Science of the Total Environment, 2019, 695, 133843.	3.9	45
74	Network-Based Biomonitoring: Exploring Freshwater Food Webs With Stable Isotope Analysis and DNA Metabarcoding. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	31

ARTICLE IF CITATIONS # Subjective Well-Being Effects of Coping Cost: Evidence from Household Water Supply in Kathmandu 1.9 12 75 Valley, Nepal. Journal of Happiness Studies, 2019, 20, 2581-2608. Global water availability under high-end climate change: A vulnerability based assessment. Global and 1.6 Planetary Change, 2019, 175, 52-63. Trends and Interannual Variability in Terrestrial Water Storage Over the Eastern United States, 77 1.7 18 2003–2016. Water Resources Research, 2019, 55, 1928-1950. Forecasting dryland vegetation condition months in advance through satellite data assimilation. 5.8 Nature Communications, 2019, 10, 469. Noise as an informational cue for decision-making: the sound of rain delays bat emergence. Journal of 79 0.8 24 Experimental Biology, 2019, 222, . Spatio-temporal dynamics of groundwater storage changes in the Yellow River Basin. Journal of Environmental Management, 2019, 235, 84-95. 3.8 Spatio-temporal changes in terrestrial water storage in the Himalayan river basins and risks to water 81 1.8 25 security in the region: A review. International Journal of Disaster Risk Reduction, 2019, 35, 101068. Land Surface Processes. Springer Atmospheric Sciences, 2019, , 349-370. 9 0.4 Variations of Surface and Subsurface Water Storage in the Lower Mekong Basin (Vietnam and) Tj ETQq0 0 0 rgBT /Qyerlock 10 Tf 50 42 83 Hydro-climatic changes and their impacts on vegetation in Xinjiang, Central Asia. Science of the Total 84 64 Environment, 2019, 660, 724-732. Quantitative Analysis of Terrestrial Water Storage Changes Under the Grain for Green Program in the 85 1.2 67 Yellow River Basin. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1336-1351. Changes in Fire Activity in Africa from 2002 to 2016 and Their Potential Drivers. Geophysical Research 86 1.5 Letters, 2019, 46, 7643-7653. Potential of global land water recycling to mitigate local temperature extremes. Earth System 87 2.7 17 Dynamics, 2019, 10, 157-169. Total water storage variability from GRACE mission and hydrological models for a 50,000 km2 temperate watershed: the Garonne River basin (France). Journal of Hydrology: Regional Studies, 2019, 1.0 24, 100609. A nature-based reservoir optimization model for resolving the conflict in human water demand and 89 4.6 58 riverine ecosystem protection, Journal of Cleaner Production, 2019, 231, 406-418

CITATION REPORT

90	Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response. Hydrology and Earth System Sciences, 2019, 23, 1067-1081.	1.9	34
91	Role-play simulations as an aid to achieve complex learning outcomes in hydrological science. Hydrology and Earth System Sciences, 2019, 23, 2369-2378.	1.9	3
92	ENSO-induced groundwater changes in India derived from GRACE and GLDAS. Journal of Earth System	0.6	27

Science, 2019, 128, 1.

#	Article	IF	CITATIONS
93	Strong seasonal connectivity between shallow groundwater and soil frost in a humid alpine meadow, northeastern Qinghai-Tibetan Plateau. Journal of Hydrology, 2019, 574, 926-935.	2.3	31
94	Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: II. Scenario simulation and analysis. Journal of Hydrology, 2019, 574, 715-732.	2.3	25
95	An automated multi-model evapotranspiration mapping framework using remotely sensed and reanalysis data. Remote Sensing of Environment, 2019, 229, 69-92.	4.6	61
96	Climatization—Negligent Attribution of Great Salt Lake Desiccation: A Comment on Meng (2019). Climate, 2019, 7, 67.	1.2	12
97	Untangling global change impacts on hydrological processes: Resisting climatization. Hydrological Processes, 2019, 33, 2148-2155.	1.1	28
98	Improving surface soil moisture estimates in West Africa through GRACE data assimilation. Journal of Hydrology, 2019, 575, 192-201.	2.3	16
99	Conceptual modeling of temperature effects on capillary pressure in dead-end pores. Sadhana - Academy Proceedings in Engineering Sciences, 2019, 44, 1.	0.8	4
100	Legal measures to prevent and manage soil contamination and to increase food safety for consumer health: The case of Spain. Environmental Pollution, 2019, 250, 883-891.	3.7	30
101	Gravity Recovery and Climate Experiment (GRACE) Storage Change Characteristics (2003–2016) over Major Surface Basins and Principal Aquifers in the Conterminous United States. Remote Sensing, 2019, 11, 936.	1.8	7
102	Heterogeneous sea-level rises along coastal zones and small islands. Science Bulletin, 2019, 64, 748-755.	4.3	5
103	Non-renewable groundwater use and groundwater depletion: a review. Environmental Research Letters, 2019, 14, 063002.	2.2	248
104	Letter to editor re Tal (2019): Climaticization of environmental degradation—An Anthropocene epoch response to failure of governance. Science of the Total Environment, 2019, 685, 1269-1271.	3.9	5
105	Response of deep aquifers to climate variability. Science of the Total Environment, 2019, 677, 530-544.	3.9	47
106	Assessing GRACE-based terrestrial water storage anomalies dynamics at multi-timescales and their correlations with teleconnection factors in Yunnan Province, China. Journal of Hydrology, 2019, 574, 836-850.	2.3	51
107	Global Isotope Hydrogeology―Review. Reviews of Geophysics, 2019, 57, 835-965.	9.0	165
108	Understanding climate and land surface changes impact on water resources using Budyko framework and remote sensing data in Ethiopia. Journal of Arid Environments, 2019, 167, 56-64.	1.2	36
109	Contributions of GRACE to understanding climate change. Nature Climate Change, 2019, 9, 358-369.	8.1	536
110	Prospects for Imaging Terrestrial Water Storage in South America Using Daily GPS Observations. Remote Sensing, 2019, 11, 679.	1.8	30

#	Article	IF	CITATIONS
111	The Addition of Temperature to the TSS-RESTREND Methodology Significantly Improves the Detection of Dryland Degradation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 2342-2348.	2.3	9
112	A three-dimensional model featuring material flow, value flow and organization for environmental management accounting. Journal of Cleaner Production, 2019, 228, 619-633.	4.6	13
113	The Dominant Global Modes of Recent Internal Sea Level Variability. Journal of Geophysical Research: Oceans, 2019, 124, 2750-2768.	1.0	19
114	Benchmark decadal forecast skill for terrestrial water storage estimated by an elasticity framework. Nature Communications, 2019, 10, 1237.	5.8	13
115	Identifying hotspots and representative monitoring area of groundwater changes with time stability analysis. Science of the Total Environment, 2019, 667, 419-426.	3.9	11
116	Temperature-associated changes in groundwater quality. Journal of Hydrology, 2019, 572, 206-212.	2.3	67
117	Environmental Impacts on Human Health and Well-Being. , 2019, , 477-499.		18
118	Characteristics of Transformational Adaptation in Climate-Land-Society Interactions. Sustainability, 2019, 11, 356.	1.6	20
119	Water, Population Growth and Contagious Diseases. Water (Switzerland), 2019, 11, 386.	1.2	12
120	Geological control on the origin of fresh groundwater in the Otindag Desert, China. Applied Geochemistry, 2019, 103, 131-142.	1.4	6
121	Amplitude Modulation of Seasonal Variability in Terrestrial Water Storage. Geophysical Research Letters, 2019, 46, 4404-4412.	1.5	13
122	There is no black hole swallowing water in the Hula Valley. Land Use Policy, 2019, 84, 363-364.	2.5	9
123	Identifying Climate-Induced Groundwater Depletion in GRACE Observations. Scientific Reports, 2019, 9, 4124.	1.6	115
124	A Review of the 21st Century Challenges in the Food-Energy-Water Security in the Middle East. Water (Switzerland), 2019, 11, 682.	1.2	63
125	Regularization and error characterization of GRACE mascons. Journal of Geodesy, 2019, 93, 1381-1398.	1.6	105
126	Sustainability in the biopharmaceutical industry: Seeking a holistic perspective. Biotechnology Advances, 2019, 37, 698-707.	6.0	21
127	TheÂEl Niño event of 2015–2016: climate anomalies and their impact on groundwater resources in East and Southern Africa. Hydrology and Earth System Sciences, 2019, 23, 1751-1762.	1.9	52
128	Quantifying irrigation adaptation strategies in response to stakeholder-driven groundwater management in the US High Plains Aquifer. Environmental Research Letters, 2019, 14, 044014.	2.2	58

#	Article	IF	CITATIONS
129	Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data. Environment International, 2019, 126, 207-215.	4.8	51
130	Downside risk in reservoir management. Australian Journal of Agricultural and Resource Economics, 2019, 63, 328-353.	1.3	1
131	Antagonistic effects of multiple stressors on macroinvertebrate biomass from a temperate estuary (Minho estuary, NW Iberian Peninsula). Ecological Indicators, 2019, 101, 792-803.	2.6	11
132	Earth Observations and Integrative Models in Support of Food and Water Security. Remote Sensing in Earth Systems Sciences, 2019, 2, 18-38.	1.1	11
133	A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, 2019, 12, 168-173.	5.4	442
134	Bioinspired Sootâ€Deposited Janus Fabrics for Sustainable Solar Steam Generation with Saltâ€Rejection. Global Challenges, 2019, 3, 1800117.	1.8	73
135	Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams. Nature Catalysis, 2019, 2, 106-113.	16.1	65
136	Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environmental Research Letters, 2019, 14, 053001.	2.2	118
137	China's Agricultural Irrigation and Water Conservancy Projects: A Policy Synthesis and Discussion of Emerging Issues. Sustainability, 2019, 11, 7027.	1.6	13
138	A global hydrology research agenda fit for the 2030s. Hydrology Research, 2019, 50, 1464-1480.	1.1	18
140	Satellite remote sensing and hydrological sciences—Remarkably achieved satellites or sensors for hydrological sciences and global water cycle studies—. Journal of Japanese Association of Hydrological Sciences, 2019, 49, 73-89.	0.2	0
142	Spatiotemporal Changes in China's Terrestrial Water Storage From GRACE Satellites and Its Possible Drivers. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11976-11993.	1.2	44
143	Local adaptation of a dominant coastal tree to freshwater availability and solar radiation suggested by genomic and ecophysiological approaches. Scientific Reports, 2019, 9, 19936.	1.6	19
144	Radar Altimetry as a Proxy for Determining Terrestrial Water Storage Variability in Tropical Basins. Remote Sensing, 2019, 11, 2487.	1.8	6
145	Groundwater Storage Change in the Jinsha River Basin from GRACE, Hydrologic Models, and In Situ Data. Ground Water, 2020, 58, 735-748.	0.7	18
146	Streamflow variations across the Andes (18°–55°S) during the instrumental era. Scientific Reports, 2019, 9, 17879.	1.6	30
147	Modelling of the shallow water table at high spatial resolution using random forests. Hydrology and Earth System Sciences, 2019, 23, 4603-4619.	1.9	53
148	Addressing water-related shocks and coping decision through enhanced community participation: case studies from Ganga basin, Uttarakhand, India. Water Policy, 2019, 21, 999-1016.	0.7	1

#	Article	IF	CITATIONS
149	A Multi-Sourced Data Retrodiction of Remotely Sensed Terrestrial Water Storage Changes for West Africa. Water (Switzerland), 2019, 11, 401.	1.2	14
150	Environmental geophysics/ Grace mapping of terrestrial water storage. Preview, 2019, 2019, 38-39.	0.0	0
151	Human-Induced and Climate-Driven Contributions to Water Storage Variations in the Haihe River Basin, China. Remote Sensing, 2019, 11, 3050.	1.8	34
152	Tracing the spatial variation and value change of ecosystem services in Yellow River Delta, China. Ecological Indicators, 2019, 96, 270-277.	2.6	50
153	Salt stress under the scalpel – dissecting the genetics of salt tolerance. Plant Journal, 2019, 97, 148-163.	2.8	219
154	Anthropogenic stresses on the world's big rivers. Nature Geoscience, 2019, 12, 7-21.	5.4	703
155	Environmental assessment of sustainable energy options for multi-effect distillation of brackish water in isolated communities. Journal of Cleaner Production, 2019, 213, 1371-1379.	4.6	19
156	Water reuse, food production and public health: Adopting transdisciplinary, systems-based approaches to achieve water and food security in a changing climate. Environmental Research, 2019, 171, 576-580.	3.7	47
157	Under non-stationarity securitization contributes to uncertainty and Tragedy of the Commons. Journal of Hydrology, 2019, 568, 716-721.	2.3	25
158	Variability of the Pacificâ€Derived Arctic Water Over the Southeastern Wandel Sea Shelf (Northeast) Tj ETQq1 1	0.784314 1.0	rgBT /Overlo
159	Tracking the spatio-temporal change of cropping intensity in China during 2000–2015. Environmental Research Letters, 2019, 14, 035008.	2.2	46
160	Comment on "Groundwater Pumping Is a Significant Unrecognized Contributor to Global Anthropogenic Element Cycles― Ground Water, 2019, 57, 82-82.	0.7	2
161	Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. Journal of Hydrology, 2019, 569, 203-217.	2.3	171
162	Enhancing Upland cotton for drought resilience, productivity, and fiber quality: comparative evaluation and genetic dissection. Molecular Genetics and Genomics, 2020, 295, 155-176.	1.0	18
163	Enhanced peroxymonosulfate activation by coupling zeolite-supported nano-zero-valent iron with weak magnetic field. Separation and Purification Technology, 2020, 230, 115886.	3.9	32
164	Toward strong science to support equitable water sharing in securitized transboundary watersheds. Biologia (Poland), 2020, 75, 907-915.	0.8	5
165	A detailed framework for the characterization of rainfall climatology in semiarid watersheds. Theoretical and Applied Climatology, 2020, 139, 109-125.	1.3	19

#	Article	IF	CITATIONS
168	Spatial patterns of temporal changes in Canadian Prairie streamflow using an alternative trend assessment approach. Journal of Hydrology, 2020, 582, 124541.	2.3	10
169	Gravimetry-based water storage shifting over the China-India border area controlled by regional climate variability. Science of the Total Environment, 2020, 714, 136360.	3.9	3
170	Identifying the footprints of global climate modes in time-variable gravity hydrological signals. Climatic Change, 2020, 159, 481-502.	1.7	18
171	Microbial inoculum development for ameliorating crop drought stress: A case study of Variovorax paradoxus 5C-2. New Biotechnology, 2020, 56, 103-113.	2.4	20
172	Is evil rewarded with evil? The market penalty effect of corporate environmentally irresponsible events. Business Strategy and the Environment, 2020, 29, 846-871.	8.5	29
173	Assessing land water storage dynamics over South America. Journal of Hydrology, 2020, 580, 124339.	2.3	45
174	Seasonal and Longâ€Term Groundwater Unloading in the Central Valley Modifies Crustal Stress. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018490.	1.4	24
175	GRACE Improves Seasonal Groundwater Forecast Initialization over the United States. Journal of Hydrometeorology, 2020, 21, 59-71.	0.7	29
176	Crucial role of natural processes in detecting human influence on evapotranspiration by multisource data analysis. Journal of Hydrology, 2020, 580, 124350.	2.3	10
177	Aquifer-eustasy as the main driver of short-term sea-level fluctuations during Cretaceous hothouse climate phases. Geological Society Special Publication, 2020, 498, 9-38.	0.8	51
178	Projecting impacts of climate change on metal mobilization at contaminated sites: Controls by the groundwater level. Science of the Total Environment, 2020, 712, 135560.	3.9	43
179	Way Down in the Hole: Adaptation to Long-Term Water Loss in Rural India. American Economic Review, 2020, 110, 200-224.	4.0	47
180	Global Estimates of Land Surface Water Fluxes from SMOS and SMAP Satellite Soil Moisture Data. Journal of Hydrometeorology, 2020, 21, 241-253.	0.7	27
181	Evenness is important in assessing progress towards sustainable development goals. National Science Review, 2021, 8, nwaa238.	4.6	27
182	Big Data Analytics and Its Role to Support Groundwater Management in the Southern African Development Community. Water (Switzerland), 2020, 12, 2796.	1.2	16
183	Impact of land use changes and management practices on groundwater resources in Kolar district, Southern India. Journal of Hydrology: Regional Studies, 2020, 31, 100732.	1.0	11
184	Drought effects on wet soils in inland wetlands and peatlands. Earth-Science Reviews, 2020, 210, 103387.	4.0	38
185	All-Day Freshwater Harvesting through Combined Solar-Driven Interfacial Desalination and Passive Radiative Cooling. ACS Applied Materials & amp; Interfaces, 2020, 12, 47612-47622.	4.0	60

#	Article	IF	CITATIONS
186	Evaluation of GRACE data for water resource management in Iberia: a case study of groundwater storage monitoring in the Algarve region. Journal of Hydrology: Regional Studies, 2020, 32, 100734.	1.0	14
187	Response of the Mogan and Eymir lakes (Ankara, Central Anatolia) to global warming: Extreme events in the last 100 years. Journal of Arid Environments, 2020, 183, 104299.	1.2	10
188	Towards a comprehensive and consistent global aquatic land cover characterization framework addressing multiple user needs. Remote Sensing of Environment, 2020, 250, 112034.	4.6	17
189	Basinâ€Scale River Runoff Estimation From GRACE Gravity Satellites, Climate Models, and In Situ Observations: A Case Study in the Amazon Basin. Water Resources Research, 2020, 56, e2020WR028032.	1.7	36
190	Spatiotemporal changes in terrestrial water storage in the Beijing-Tianjin Sandstorm Source Region from GRACE satellites. International Soil and Water Conservation Research, 2020, 8, 295-307.	3.0	11
191	South-to-North Water Diversion stabilizing Beijing's groundwater levels. Nature Communications, 2020, 11, 3665.	5.8	254
192	Global lake responses to climate change. Nature Reviews Earth & Environment, 2020, 1, 388-403.	12.2	513
193	Impact of anthropogenic activities on the alluvial aquifers of north-east Punjab, India. Environmental Monitoring and Assessment, 2020, 192, 527.	1.3	11
194	Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science, 2020, 370, 1095-1099.	6.0	141
195	Emerging Changes in Terrestrial Water Storage Variability as a Target for Future Satellite Gravity Missions. Remote Sensing, 2020, 12, 3898.	1.8	8
196	Observing Snow Cover and Water Resource Changes in the High Mountain Asia Region in Comparison with Global Mountain Trends over 2000–2018. Remote Sensing, 2020, 12, 3913.	1.8	14
197	Trends in Water Use, Energy Consumption, and Carbon Emissions from Irrigation: Role of Shifting Technologies and Energy Sources. Environmental Science & Technology, 2020, 54, 15329-15337.	4.6	29
199	Inland Waters. , 2020, , 293-360.		4
200	The Global Water Cycle. , 2020, , 433-451.		1
201	Data Innovations for Transboundary Freshwater Resources Management: Are Obligations Related to Information Exchange Still Needed?. Brill Research Perspectives International Water Law, 2020, 4, 3-78.	1.0	8
202	Evaluation and Quantification of the Effects of Climate and Vegetation Cover Change on Karst Water Sources: Case Studies of Two Springs in South-Western Slovenia. Water (Switzerland), 2020, 12, 3087.	1.2	17
203	Removal of CX3R-type disinfection by-product precursors from rainwater with conventional drinking water treatment processes. Water Research, 2020, 185, 116099.	5.3	25
204	Irrigation and hydrometeorological extremes. Climate Dynamics, 2020, 55, 1521-1537.	1.7	8

#	Article	IF	CITATIONS
205	Impacts of cold region hydroclimatic variability on phosphorus exports: Insights from concentration-discharge relationship. Journal of Hydrology, 2020, 591, 125312.	2.3	4
206	A holistic assessment of water quality condition and spatiotemporal patterns in impounded lakes along the eastern route of China's South-to-North water diversion project. Water Research, 2020, 185, 116275.	5.3	95
207	Inspecting the Food–Water Nexus in the Ogallala Aquifer Region Using Satellite Remote Sensing Time Series. Remote Sensing, 2020, 12, 2257.	1.8	5
208	Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nature Communications, 2020, 11, 3853.	5.8	215
209	An innovative bivariate approach to detect joint temporal trends in environmental conditions: Application to large French rivers and diadromous fish. Science of the Total Environment, 2020, 748, 141260.	3.9	15
210	Status of seawater intrusion in coastal aquifer of Gujarat, India: a review. SN Applied Sciences, 2020, 2, 1.	1.5	10
211	A shifting â€~river of sand': The profound response of Australia's Warrego River to Holocene hydroclimatic change. Geomorphology, 2020, 370, 107385.	1.1	11
212	Bacterial community evolution along full-scale municipal wastewater treatment processes. Journal of Water and Health, 2020, 18, 665-680.	1.1	8
213	Mapping and navigating ontologies in water governance: the case of the Ganges. Water International, 2020, 45, 847-864.	0.4	5
214	Why Is the Terrestrial Water Storage in Dryland Regions Declining? A Perspective Based on Gravity Recovery and Climate Experiment Satellite Observations and Noah Land Surface Model With Multiparameterization Schemes Model Simulations. Water Resources Research, 2020, 56, e2020WR027102.	1.7	18
215	Spatio-Temporal Evaluation of Water Storage Trends from Hydrological Models over Australia Using GRACE Mascon Solutions. Remote Sensing, 2020, 12, 3578.	1.8	21
216	Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nature Communications, 2020, 11, 3710.	5.8	151
217	Rethinking groundwater age. Nature Geoscience, 2020, 13, 592-594.	5.4	21
218	Presentâ€Day Crustal Vertical Velocity Field for the Contiguous United States. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020066.	1.4	9
219	Selfâ€Validating Deep Learning for Recovering Terrestrial Water Storage From Gravity and Altimetry Measurements. Geophysical Research Letters, 2020, 47, e2020GL089258.	1.5	9
220	Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015. Sustainability, 2020, 12, 10070.	1.6	5
221	Testing Different Membrane Filters for 16S rRNA Gene-Based Metabarcoding in Karstic Springs. Water (Switzerland), 2020, 12, 3400.	1.2	7
222	Laboratory Adsorption Studies on Cadmium (II) by Nonwoven Chitosan/Phosphorylated Microcellulose Nanocomposite. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	1

#	Article	IF	CITATIONS
223	Domestic and International Drivers of the Demand for Water Resources in the Context of Water Scarcity: A Cross-Country Study. Journal of Risk and Financial Management, 2020, 13, 255.	1.1	3
224	Comparison of Groundwater Storage Changes From GRACE Satellites With Monitoring and Modeling of Major U.S. Aquifers. Water Resources Research, 2020, 56, e2020WR027556.	1.7	73
225	Indigenous rights to Patagonia's Guafo island. Science, 2020, 370, 669-670.	6.0	3
226	Generating Regional Models for Estimating the Peak Flows and Environmental Flows Magnitude for the Bulgarian-Greek Rhodope Mountain Range Torrential Watersheds. Water (Switzerland), 2020, 12, 784.	1.2	14
227	Sensitivity of Hydrangea paniculata Plants to Residual Herbicides in Recycled Irrigation Varies with Plant Growth Stage. Water (Switzerland), 2020, 12, 1402.	1.2	3
228	Worldwide lake level trends and responses to background climate variation. Hydrology and Earth System Sciences, 2020, 24, 2593-2608.	1.9	23
229	Evaluation of <scp>WaPOR V2</scp> evapotranspiration products across Africa. Hydrological Processes, 2020, 34, 3200-3221.	1.1	41
230	Dynamic changes in leaf wax n-alkanes and δ13C during leaf development in winter wheat under varied irrigation experiments. Organic Geochemistry, 2020, 146, 104054.	0.9	11
231	Influence of global climate on freshwater changes in Africa's largest endorheic basin using multi-scaled indicators. Science of the Total Environment, 2020, 737, 139643.	3.9	28
232	Vulnerability assessment of water resources in Hilly Region of Nepal. Sustainable Water Resources Management, 2020, 6, 1.	1.0	11
233	Doping AIE Photothermal Molecule into All-Fiber Aerogel with Self-Pumping Water Function for Efficiency Solar Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 26033-26040.	4.0	85
234	Socio-ecological determinants on spatio-temporal changes of groundwater in the Yellow River Basin, China. Science of the Total Environment, 2020, 731, 138725.	3.9	21
235	Novel energy-efficient electrodialysis system for continuous brackish water desalination: Innovative stack configurations and optimal inflow modes. Water Research, 2020, 179, 115847.	5.3	24
236	Mechanisms of Cold Region Hydrologic Change to Recent Wetting in a Northern Glaciated Landscape. Water Resources Research, 2020, 56, e2019WR026932.	1.7	18
237	Scientists' Warning to Humanity: Rapid degradation of the world's large lakes. Journal of Great Lakes Research, 2020, 46, 686-702.	0.8	140
238	Long-term total water storage change from a Satellite Water Cycle reconstruction over large southern Asian basins. Hydrology and Earth System Sciences, 2020, 24, 3033-3055.	1.9	13
239	MOD\$\$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions. Agricultural Water Management, 2020, 238, 106194.	2.4	11
240	Sustainable management scenarios for northern Africa's fossil aquifer systems. Journal of Hydrology, 2020, 589, 125196.	2.3	26

#	Article	IF	CITATIONS
241	Gas hydrates in sustainable chemistry. Chemical Society Reviews, 2020, 49, 5225-5309.	18.7	443
242	Constrained Linear Deconvolution of GRACE Anomalies to Correct Spatial Leakage. Remote Sensing, 2020, 12, 1798.	1.8	7
243	An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of Water Cycle and Local Sustainable Management of Water Resources. Water (Switzerland), 2020, 12, 1495.	1.2	12
244	HESS Opinions: The myth of groundwater sustainability in Asia. Hydrology and Earth System Sciences, 2020, 24, 489-500.	1.9	11
245	China's Food Supply Sources Under Trade Conflict With the United States and Limited Domestic Land and Water Resources. Earth's Future, 2020, 8, e2020EF001482.	2.4	13
246	A recent increase in megathrust locking in the southernmost rupture area of the giant 1960 Chile earthquake. Earth and Planetary Science Letters, 2020, 537, 116200.	1.8	6
247	Changes in global groundwater organic carbon driven by climate change and urbanization. Nature Communications, 2020, 11, 1279.	5.8	128
248	Consistent quantification of the impact of key mission design parameters on the performance of next-generation gravity missions. Geophysical Journal International, 2020, 221, 1190-1210.	1.0	17
249	Development of a Daily GRACE Mascon Solution for Terrestrial Water Storage. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018468.	1.4	12
250	Daily GRACE satellite data evaluate short-term hydro-meteorological fluxes from global atmospheric reanalyses. Scientific Reports, 2020, 10, 4504.	1.6	30
251	Evaluation of Global Water Resources Reanalysis Products in the Upper Blue Nile River Basin. Journal of Hydrometeorology, 2020, 21, 935-952.	0.7	12
252	A Novel Idea for Groundwater Resource Management during Megadrought Events. Water Resources Management, 2020, 34, 1743-1755.	1.9	10
253	Landscape Drivers of Dynamic Change in Water Quality of U.S. Rivers. Environmental Science & Technology, 2020, 54, 4336-4343.	4.6	113
254	Can we trust remote sensing evapotranspiration products over Africa?. Hydrology and Earth System Sciences, 2020, 24, 1565-1586.	1.9	76
255	Changing the climate for banking: The economic effects of credit in a climate-vulnerable area. Journal of Development Economics, 2020, 146, 102459.	2.1	11
256	In Waterâ€Limited Landscapes, an Anthropocene Exchange: Trading Lakes for Irrigated Agriculture. Earth's Future, 2020, 8, e2019EF001274.	2.4	30
257	Seasonal and Interannual Variations in China's Groundwater Based on GRACE Data and Multisource Hydrological Models. Remote Sensing, 2020, 12, 845.	1.8	23
258	Hydrological consequences of natural rubber plantations in Southeast Asia. Land Degradation and Development, 2020, 31, 2060-2073.	1.8	21

#	Article	IF	CITATIONS
259	The interplay between reservoir storage and operating rules under evolving conditions. Journal of Hydrology, 2020, 590, 125270.	2.3	22
260	Bacteroides spp. and traditional fecal indicator bacteria in water quality assessment – An integrated approach for hydric resources management in urban centers. Journal of Environmental Management, 2020, 271, 110989.	3.8	13
261	From blue to green water and back again: Promoting tree, shrub and forest-based landscape resilience in the Sahel. Science of the Total Environment, 2020, 739, 140002.	3.9	21
262	Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nature Communications, 2020, 11, 3471.	5.8	81
263	Assessing water storage changes of Lake Poyang from multi-mission satellite data and hydrological models. Journal of Hydrology, 2020, 590, 125229.	2.3	27
264	Evaluation of the Hyper-Resolution Model-Derived Water Cycle Components Over the Upper Blue Nile Basin. Journal of Hydrology, 2020, 590, 125231.	2.3	19
265	Implications of Climate Change to Groundwater. , 2020, , 438-453.		2
266	Climatization of environmental degradation: a widespread challenge to the integrity of earth science. Hydrological Sciences Journal, 2020, 65, 867-883.	1.2	11
267	Large spatial variations in the distributions of and factors affecting forest water retention capacity in China. Ecological Indicators, 2020, 113, 106152.	2.6	19
268	Improvement of the Irrigation Scheme in the ORCHIDEE Land Surface Model and Impacts of Irrigation on Regional Water Budgets Over China. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001770.	1.3	15
269	Evaluation of hydrologic impact of an irrigation curtailment program using Landsat satellite data. Hydrological Processes, 2020, 34, 1697-1713.	1.1	8
270	Earth's gravity from space. Rendiconti Lincei, 2020, 31, 3-13.	1.0	5
271	Statistical Applications to Downscale GRACE-Derived Terrestrial Water Storage Data and to Fill Temporal Gaps. Remote Sensing, 2020, 12, 533.	1.8	72
272	Integrating genetic gain and gap analysis to predict improvements in crop productivity. Crop Science, 2020, 60, 582-604.	0.8	80
273	Characterization of the hydro-geological regime of Yangtze River basin using remotely-sensed and modeled products. Science of the Total Environment, 2020, 718, 137354.	3.9	41
274	Moving beyond the catchment scale: Value and opportunities in largeâ€scale hydrology to understand our changing world. Hydrological Processes, 2020, 34, 2292-2298.	1.1	19
275	GRACEâ€based Mass Conservation as a Validation Target for Basinâ€ 5 cale Evapotranspiration in the Contiguous United States. Water Resources Research, 2020, 56, e2019WR026594.	1.7	30
276	Preparation of mesoporous anatase titania with large secondary mesopores and extraordinarily high photocatalytic performances. Applied Catalysis B: Environmental, 2020, 269, 118756.	10.8	17

#	Article	IF	CITATIONS
277	Impact of Eastern Tibetan Plateau Glacier Melt on Land Water Storage Change across the Yangtze River Basin. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	0.8	11
278	Groundwater storage change detection from in situ and GRACE-based estimates in major river basins across India. Hydrological Sciences Journal, 2020, 65, 650-659.	1.2	27
279	Patterns of fish communities and water quality in impounded lakes of China's south-to-north water diversion project. Science of the Total Environment, 2020, 713, 136515.	3.9	36
280	A framework for deriving drought indicators from the Gravity Recovery and Climate Experiment (GRACE). Hydrology and Earth System Sciences, 2020, 24, 227-248.	1.9	27
281	Groundwater sustainability: a review of the interactions between science and policy. Environmental Research Letters, 2020, 15, 093004.	2.2	85
282	Identifying threshold responses of Australian dryland rivers to future hydroclimatic change. Scientific Reports, 2020, 10, 6653.	1.6	26
283	Conservation of freshwater macroinvertebrate biodiversity in tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1238-1250.	0.9	35
284	Contrasting hydrological seasonality with latitude in the South American Chaco: The roles of climate and vegetation activity. Journal of Hydrology, 2020, 587, 124933.	2.3	14
285	Triple-Pair Constellation Configurations for Temporal Gravity Field Retrieval. Remote Sensing, 2020, 12, 831.	1.8	4
286	Large-scale climate variability controls on climate, vegetation coverage, lake and groundwater storage in the Lake Urmia watershed using SSA and wavelet analysis. Science of the Total Environment, 2020, 724, 138273.	3.9	59
287	Impacts of climate and vegetation leaf area index changes on global terrestrial water storage from 2002 to 2016. Science of the Total Environment, 2020, 724, 138298.	3.9	14
288	The Balance and Abnormal Increase of Global Ocean Mass Change From Land Using GRACE. Earth and Space Science, 2020, 7, e2020EA001104.	1.1	4
289	The greening of the Northern Great Plains and its biogeochemical precursors. Global Change Biology, 2020, 26, 5404-5413.	4.2	25
290	Exceptional capacitive deionization rate and capacity by block copolymer–based porous carbon fibers. Science Advances, 2020, 6, eaaz0906.	4.7	108
291	Large contribution from anthropogenic warming to an emerging North American megadrought. Science, 2020, 368, 314-318.	6.0	527
292	Quantifying Noise in Daily GPS Height Time Series: Harmonic Function Versus GRACE-Assimilating Modeling Approaches. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 627-631.	1.4	10
293	An Efficient Model-Free Approach for Controlling Large-Scale Canals via Hierarchical Reinforcement Learning. IEEE Transactions on Industrial Informatics, 2021, 17, 4367-4378.	7.2	10
294	Scientists' warning to humanity on the freshwater biodiversity crisis. Ambio, 2021, 50, 85-94.	2.8	387

#	Article	IF	CITATIONS
295	Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?. Agricultural Water Management, 2021, 243, 106428.	2.4	26
296	Carbon Nanopore-Tailored Reverse Osmotic Water Desalination. ACS ES&T Water, 2021, 1, 34-47.	2.3	15
297	Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Science of the Total Environment, 2021, 754, 142210.	3.9	101
298	Evaluating the evolution of oasis water metabolism using ecological network analysis: A synthesis of structural and functional properties. Journal of Cleaner Production, 2021, 280, 124422.	4.6	9
299	Evaluating the saline water irrigation schemes using a distributed agro-hydrological model. Journal of Hydrology, 2021, 594, 125688.	2.3	16
300	Exploring groundwater and soil water storage changes across the CONUS at 12.5Åkm resolution by a Bayesian integration of GRACE data into W3RA. Science of the Total Environment, 2021, 758, 143579.	3.9	18
301	The relative economic merits of alternative water right systems. Journal of Environmental Economics and Management, 2021, 105, 102389.	2.1	3
302	Is there enough water? How bearish and bullish outlooks are linked to decision maker perspectives on environmental flows. Journal of Environmental Management, 2021, 280, 111694.	3.8	12
303	Use of machine learning and deep learning methods in groundwater. , 2021, , 545-557.		10
304	Falling-film thermosyphons: Application to water harvesting from humid gas streams. International Journal of Heat and Mass Transfer, 2021, 164, 120486.	2.5	4
305	Representing Intercell Lateral Groundwater Flow and Aquifer Pumping in the Community Land Model. Water Resources Research, 2021, 57, .	1.7	22
306	Combining Optical Remote Sensing, McFLI Discharge Estimation, Global Hydrologic Modeling, and Data Assimilation to Improve Daily Discharge Estimates Across an Entire Large Watershed. Water Resources Research, 2021, 57, e2020WR027794.	1.7	16
307	Irrigation Water Demand Sensitivity to Climate Variability Across the Contiguous United States. Water Resources Research, 2021, 57, 2020WR027738.	1.7	23
308	Reconstruction of GRACE Total Water Storage Through Automated Machine Learning. Water Resources Research, 2021, 57, e2020WR028666.	1.7	50
309	Divergent Changes in Terrestrial Water Storage Across Global Arid and Humid Basins. Geophysical Research Letters, 2021, 48, e2020GL091069.	1.5	12
310	Stable isotope dynamics of groundwater interactions with Ganges river. Hydrological Processes, 2021, 35, .	1.1	12
311	Spatio-temporal variations in terrestrial water storage and its controlling factors in the Eastern Qinghai-Tibet Plateau. Hydrology Research, 2021, 52, 323-338.	1.1	7
312	A firstâ€principles approach for treating wastewaters. International Journal of Quantum Chemistry, 2021, 121, e26501.	1.0	3

#	Article	IF	CITATIONS
313	Hydroclimate changes over Sweden in the twentieth and twenty-first centuries: a millennium perspective. Geografiska Annaler, Series A: Physical Geography, 2021, 103, 103-131.	0.6	13
314	Lakes in the era of global change: moving beyond singleâ€lake thinking in maintaining biodiversity and ecosystem services. Biological Reviews, 2021, 96, 89-106.	4.7	142
315	Ecological restoration impact on total terrestrial water storage. Nature Sustainability, 2021, 4, 56-62.	11.5	121
316	Groundwater drought: environmental controls and monitoring. , 2021, , 145-162.		5
318	Use of okara-derived hydrogel for enhancing growth of plants by minimizing leaching and locking nutrients and water in growing substrate. Ecological Engineering, 2021, 159, 106122.	1.6	12
319	Why there is water scarcity. AIMS Geosciences, 2021, 7, 529-541.	0.4	1
320	Clobal terrestrial water storage and drought severity under climate change. Nature Climate Change, 2021, 11, 226-233.	8.1	345
321	Applications of Gravity Recovery and Climate Experiment (GRACE) in global groundwater study. , 2021, , 531-543.		1
322	Influence of atmospheric deposition on surface water quality and DBP formation potential as well as control technology of rainwater DBPs: a review. Environmental Science: Water Research and Technology, 2021, 7, 2156-2165.	1.2	1
323	Nitrogen, phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization. Journal of Materials Chemistry A, 2021, 9, 12807-12817.	5.2	79
324	Bacterial alleviation of drought stress in plants: Potential mechanisms and challenges. , 2021, , 55-71.		0
325	Attributing Terrestrial Water Storage Variations across China to Changes in Groundwater and Human Water Use. Journal of Hydrometeorology, 2021, 22, 3-21.	0.7	17
326	Groundwater storage dynamics in the Himalayan river basins and impacts of global change in the Anthropocene. , 2021, , 47-63.		1
327	Sustainability of groundwater used in agricultural production and trade worldwide. , 2021, , 347-357.		2
328	Tracking Earth's Water in Motion from Satellite Gravity Observations. Encyclopedia of Earth Sciences Series, 2021, , 1813-1819.	0.1	0
329	Gravity Field, Temporal Variations from Space Techniques. Encyclopedia of Earth Sciences Series, 2021, , 621-626.	0.1	0
330	Individual and Interacting Effects of Elevated CO2, Warming, and Hydrologic Intensification on Leaf Litter Decomposition in Streams. , 2021, , 237-271.		1
331	Ecohydrological Behavior of Semiarid Ecosystems of Chile in Present and Future Climate Scenarios. Impact of Meat Consumption on Health and Environmental Sustainability, 2021, , 60-74.	0.4	0

#	Article	IF	CITATIONS
332	Convergence of Daily GRACE Solutions and Models of Submonthly Ocean Bottom Pressure Variability. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC017031.	1.0	15
333	Predicting climate effects on aquatic true bugs in a tropical biodiversity hotspot. Journal of Insect Conservation, 2021, 25, 229-241.	0.8	5
334	Continental Water Storage Changes Sensed by GRACE Satellite Gravimetry. , 0, , .		0
335	Re-assessing global water storage trends from GRACE time series. Environmental Research Letters, 2021, 16, 034005.	2.2	22
336	Reservoir-Induced Land Deformation: Case Study from the Grand Ethiopian Renaissance Dam. Remote Sensing, 2021, 13, 874.	1.8	6
337	Partial Desalination of Saline Groundwater: Comparison of Nanofiltration, Reverse Osmosis and Membrane Capacitive Deionisation. Membranes, 2021, 11, 126.	1.4	6
338	Enhancing the Application of Earth Observations for Improved Environmental Decision-Making Using the Early Warning eXplorer (EWX). Frontiers in Climate, 2021, 2, .	1.3	6
339	Mapping groundwater recharge in Africa from ground observations and implications for water security. Environmental Research Letters, 2021, 16, 034012.	2.2	55
340	Climate change: A driver of future conflicts in the Persian Gulf Region?. Heliyon, 2021, 7, e06288.	1.4	15
341	Extending Natural Limits to Address Water Scarcity? The Role of Non-Conventional Water Fluxes in Climate Change Adaptation Capacity: A Review. Sustainability, 2021, 13, 2473.	1.6	25
342	Developing a Long Short-Term Memory (LSTM)-Based Model for Reconstructing Terrestrial Water Storage Variations from 1982 to 2016 in the Tarim River Basin, Northwest China. Remote Sensing, 2021, 13, 889.	1.8	21
343	The Availability of Water in Chile: A Regional View from a Geographical Perspective. , 0, , .		0
344	Removal of Pharmaceuticals from Water: Conventional and Alternative Treatments. Water (Switzerland), 2021, 13, 487.	1.2	8
345	Simulation of Lake Water Volume in Ungauged Terminal Lake Basin Based on Multi-Source Remote Sensing. Remote Sensing, 2021, 13, 697.	1.8	6
346	Recalibrating Best Practices, Challenges, and Limitations of Estimating Tree Transpiration Via Sap Flow. Current Forestry Reports, 2021, 7, 31.	3.4	9
347	Machine-learning-based regional-scale groundwater level prediction using GRACE. Hydrogeology Journal, 2021, 29, 1027-1042.	0.9	25
348	Data Assimilation of Terrestrial Water Storage Observations to Estimate Precipitation Fluxes: A Synthetic Experiment. Remote Sensing, 2021, 13, 1223.	1.8	10
349	Satellite Observations of the Tropical Terrestrial Carbon Balance and Interactions With the Water Cycle During the 21st Century. Reviews of Geophysics, 2021, 59, e2020RG000711.	9.0	13

#	Article	IF	CITATIONS
350	A conjugate application of MODIS/Terra data and empirical method to assess reference evapotranspiration for the southwest region of Bangladesh. Environmental Earth Sciences, 2021, 80, 1.	1.3	1
351	The Water Pathway and Microfluidics: A Potential Solution to the Global Water Crisis. IOP Conference Series: Earth and Environmental Science, 2021, 690, 012045.	0.2	0
352	Multifaceted characteristics of dryland aridity changes in a warming world. Nature Reviews Earth & Environment, 2021, 2, 232-250.	12.2	281
353	An Analysis of Total Water Storage Changes Obtained from GRACE FO Observations over the Venezia Islands Area Supported with Additional Data. Geomatics and Environmental Engineering, 2021, 15, 17-31.	0.5	0
354	Irrigation return flow and nutrient movement mitigation by irrigation method for container plant production. Irrigation Science, 2021, 39, 567-585.	1.3	2
355	Parametrization of a lake water dynamics model MLake in the ISBA-CTRIP land surface system (SURFEX) Tj ETQq1	1,0,7843) 1,3	14 rgBT /Ove
356	Constraining 20th entury Sea‣evel Rise in the South Atlantic Ocean. Journal of Geophysical Research: Oceans, 2021, 126, .	1.0	4
357	Fish telemetry in African inland waters and its use in management: a review. Reviews in Fish Biology and Fisheries, 2021, 31, 337-357.	2.4	8
358	Combining Remote Sensing and Crop Models to Assess the Sustainability of Stakeholderâ€Driven Groundwater Management in the US High Plains Aquifer. Water Resources Research, 2021, 57, e2020WR027756.	1.7	15
359	Global search for temporal shifts in fire activity: potential human influence on southwest Russia and north Australia fire seasons. Environmental Research Letters, 2021, 16, 044023.	2.2	12
360	What Can We Expect from the Inclined Satellite Formation for Temporal Gravity Field Determination?. Surveys in Geophysics, 2021, 42, 699-726.	2.1	13
361	Mapping the Dynamics of Winter Wheat in the North China Plain from Dense Landsat Time Series (1999) Tj ETQq	110.784	314 rgBT /O
362	Human alteration of global surface water storage variability. Nature, 2021, 591, 78-81.	13.7	188
363	Global Changes in 20‥ear, 50‥ear, and 100‥ear River Floods. Geophysical Research Letters, 2021, 48, e2020GL091824.	1.5	66
364	Canadian Continental-Scale Hydrology under a Changing Climate: A Review. Water (Switzerland), 2021, 13, 906.	1.2	16
365	Comparative life cycle assessment of three alternative techniques for increasing potable water supply in cities in the Global South. Journal of Cleaner Production, 2021, 290, 125871.	4.6	19
366	A Satelliteâ€Based Assessment of the Relative Contribution of Hydroclimatic Variables on Vegetation Growth in Global Agricultural and Nonagricultural Regions. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033228.	1.2	6
368	Closing the Water Cycle from Observations across Scales: Where Do We Stand?. Bulletin of the American Meteorological Society, 2021, 102, E1897-E1935.	1.7	31

#	Article	IF	CITATIONS
369	Linear and Nonlinear Trend Analyzes in Global Satelliteâ€Based Precipitation, 1998–2017. Earth's Future, 2021, 9, e2020EF001835.	2.4	11
370	EEWMP: An IoT-Based Energy-Efficient Water Management Platform for Smart Irrigation. Scientific Programming, 2021, 2021, 1-9.	0.5	21
371	A critical analysis of the food–energy–water nexus in the Kootenai River Basin. Sustainable Water Resources Management, 2021, 7, 1.	1.0	3
372	Region-specific nutritious, environmentally friendly, and affordable diets in India. One Earth, 2021, 4, 531-544.	3.6	19
373	Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – PartÂ2: Future change in cryosphere, vegetation, and hydrology. Hydrology and Earth System Sciences, 2021, 25, 1849-1882.	1.9	20
374	Climate and Socioeconomic Factors Drive Irrigated Agriculture Dynamics in the Lower Colorado River Basin. Remote Sensing, 2021, 13, 1659.	1.8	6
375	The hidden crisis beneath our feet. Science, 2021, 372, 344-345.	6.0	43
376	Lake Urmia restoration success story: A natural trend or a planned remedy?. Journal of Great Lakes Research, 2021, 47, 955-969.	0.8	20
377	Mapping and Monitoring the Multi-Decadal Dynamics of Australia's Open Waterbodies Using Landsat. Remote Sensing, 2021, 13, 1437.	1.8	15
378	Global groundwater wells at risk of running dry. Science, 2021, 372, 418-421.	6.0	133
379	A Decade of Hydrological Drought in Central-Western Argentina. Frontiers in Water, 2021, 3, .	1.0	22
380	Integrating Gravimetry Data With Thermal Infraâ€Red Data From Satellites to Improve Efficiency of Operational Irrigation Advisory in South Asia. Water Resources Research, 2021, 57, e2020WR028654.	1.7	4
381	Potential and scientific requirements of optical clock networks for validating satellite-derived time-variable gravity data. Geophysical Journal International, 2021, 226, 764-779.	1.0	4
382	What if the rains do not come?. Journal of Hydrology, 2021, 595, 126040.	2.3	45
383	Sustainable alternative futures for agriculture in India—the energy, emissions, and resource implications. Environmental Research Letters, 2021, 16, 064001.	2.2	8
384	Impacts of Fully Coupling Land Surface and Flood Models on the Simulation of Large Wetlands' Water Dynamics: The Case of the Inner Niger Delta. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002463.	1.3	16
385	Evaluation of annual and semiannual total mass variation over the Mediterranean Sea from satellite data. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	3
386	Worldwide water constraints on attainable irrigated production for major crops. Environmental Research Letters, 2021, 16, 055016.	2.2	11

#	Article	IF	CITATIONS
387	Temporal and spatial variations in the terrestrial water storage across Central Asia based on multiple satellite datasets and global hydrological models. Journal of Hydrology, 2021, 596, 126013.	2.3	42
388	Budykoâ€Based Longâ€Term Water and Energy Balance Closure in Clobal Watersheds From Earth Observations. Water Resources Research, 2021, 57, e2020WR028658.	1.7	19
389	Coherent Satellite Monitoring of the Water Cycle Over the Amazon. Part 2: Total Water Storage Change and River Discharge Estimation. Water Resources Research, 2021, 57, e2020WR028648.	1.7	3
390	The Value of Long-Term Streamflow Forecasts in Adaptive Reservoir Operation: The Case of the High Aswan Dam in the Transboundary Nile River Basin. Journal of Hydrometeorology, 2021, 22, 1099-1115.	0.7	13
391	An application of multi-objective reinforcement learning for efficient model-free control of canals deployed with IoT networks. Journal of Network and Computer Applications, 2021, 182, 103049.	5.8	8
392	GRACE Satellites Enable Long-Lead Forecasts of Mountain Contributions to Streamflow in the Low-Flow Season. Remote Sensing, 2021, 13, 1993.	1.8	1
393	Causes and implications of groundwater depletion in India: A review. Journal of Hydrology, 2021, 596, 126103.	2.3	92
394	Assessment of Planting Method and Deficit Irrigation Impacts on Physio-Morphology, Grain Yield and Water Use Efficiency of Maize (Zea mays L.) on Vertisols of Semi-Arid Tropics. Plants, 2021, 10, 1094.	1.6	9
395	Cationic and Anionic Dye Adsorption on a Natural Clayey Composite. Applied Sciences (Switzerland), 2021, 11, 5127.	1.3	8
396	The Viscosity of the Top Third of the Lower Mantle Estimated Using GPS, GRACE, and Relative Sea Level Measurements of Glacial Isostatic Adjustment. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021537.	1.4	20
397	The spatial extent of hydrological and landscape changes across the mountains and prairies of Canada in the Mackenzie and Nelson River basins based on data from a warm-season time window. Hydrology and Earth System Sciences, 2021, 25, 2513-2541.	1.9	3
398	Synergetic application of GRACE gravity data, global hydrological model, and in-situ observations to quantify water storage dynamics over Peninsular India during 2002–2017. Journal of Hydrology, 2021, 596, 126069.	2.3	36
399	Influence of Agricultural Managed Aquifer Recharge (AgMAR) and Stratigraphic Heterogeneities on Nitrate Reduction in the Deep Subsurface. Water Resources Research, 2021, 57, e2020WR029148.	1.7	17
400	Filling the Data Gaps Within CRACE Missions Using Singular Spectrum Analysis. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021227.	1.4	62
401	Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth System Science Data, 2021, 13, 2001-2023.	3.7	47
402	Projection of Water Availability and Sustainability in Nigeria Due to Climate Change. Sustainability, 2021, 13, 6284.	1.6	12
403	Water resource conservation promotes synergy between economy and environment in China's northern drylands. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	16
404	High-Efficiency Solar Vapor Generation Boosted by a Solar-Induced Updraft with Biomimetic 3D Structures. ACS Applied Materials & Interfaces, 2021, 13, 29602-29611.	4.0	21

#	Article	IF	CITATIONS
405	Paleoclimatic proxies from global closed basins and the possible beginning of Anthropocene. Journal of Chinese Geography, 2021, 31, 765-785.	1.5	0
406	Assessing Freshwater Changes over Southern and Central Africa (2002–2017). Remote Sensing, 2021, 13, 2543.	1.8	18
407	Waste to phosphorus: A transdisciplinary solution to P recovery from wastewater based on the TRIZ approach. Journal of Environmental Management, 2021, 287, 112235.	3.8	28
409	An In-Depth Analysis of Physical Blue and Green Water Scarcity in Agriculture in Terms of Causes and Events and Perceived Amenability to Economic Interpretation. Water (Switzerland), 2021, 13, 1693.	1.2	21
410	Novel oil-repellent photothermal materials based on copper foam for efficient solar steam generation. Solar Energy Materials and Solar Cells, 2021, 225, 111058.	3.0	25
411	Identifying ENSO-related interannual and decadal variability on terrestrial water storage. Scientific Reports, 2021, 11, 13595.	1.6	5
412	Airborne geophysical surveys of the lower Mississippi Valley demonstrate system-scale mapping of subsurface architecture. Communications Earth & Environment, 2021, 2, .	2.6	20
413	Sub-regional groundwater storage recovery in North China Plain after the South-to-North water diversion project. Journal of Hydrology, 2021, 597, 126156.	2.3	70
414	The annual cycle of terrestrial water storage anomalies in CMIP6 models evaluated against GRACE data. Journal of Climate, 2021, , 1-40.	1.2	7
415	Converting softening nanofiltration brine into high-solubility liquid salts (HSLS) via electrodialysis metathesis: Effect of membrane type. Separation and Purification Technology, 2021, 267, 118619.	3.9	11
416	Development and evaluation of 0.05° terrestrial water storage estimates using Community Atmosphere Biosphere Land ExchangeÂ(CABLE) land surface model and assimilation of GRACE data. Hydrology and Earth System Sciences, 2021, 25, 4185-4208.	1.9	4
417	Understanding uptake of community groundwater monitoring in rural Brazil. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
418	Strongly heterogeneous patterns of groundwater depletion in Northwestern India. Journal of Hydrology, 2021, 598, 126492.	2.3	35
419	Aggregationâ€Induced Emissionâ€Active Gels: Fabrications, Functions, and Applications. Advanced Materials, 2021, 33, e2100021.	11.1	105
421	CPS Imaging of Global Vertical Land Motion for Studies of Sea Level Rise. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022355.	1.4	32
422	GRACEâ€FO and ECOSTRESS Synergies Constrain Fine cale Impacts on the Water Balance. Geophysical Research Letters, 2021, 48, e2021CL093984.	1.5	6
423	The abnormal precipitation in rainy season based on genetic algorithm and the security of big data in network. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	0
424	Natural and semi-natural land dynamics under water resource change from 1990 to 2015 in the Tarim Basin, China. Environmental Research Letters, 2021, 16, 085001.	2.2	5

#	Article	IF	CITATIONS
425	Carbon content of soil fractions varies with season, rainfall, and soil fertility across a lowland tropical moist forest gradient. Biogeochemistry, 2021, 155, 431-452.	1.7	5
426	Evaluating global ecosystem water use efficiency response to drought based on multi-model analysis. Science of the Total Environment, 2021, 778, 146356.	3.9	39
427	Exploring potential applications of optical lattice clocks in a plate subduction zone. Journal of Geodesy, 2021, 95, 1.	1.6	12
428	Tracer-aided assessment of catchment groundwater dynamics and residence time. Journal of Hydrology, 2021, 598, 126230.	2.3	3
429	Hydraulic drivers of populations, communities and ecosystem processes. Journal of Ecohydraulics, 2021, 6, 91-94.	1.6	3
430	Distinct climate driven spatial patterns of frozen soil and vegetation that reflect plant sensitivities across the Tibetan Plateau. Land Degradation and Development, 2021, 32, 4227-4240.	1.8	2
431	Tragacanth gum mediated green fabrication of mesoporous titania nanomaterials: Application in photocatalytic degradation of crystal violet. Journal of Environmental Management, 2021, 291, 112680.	3.8	13
433	Detection of rare earth elements in groundwater based on SAR imaging algorithm and fatigue intervention of dance training. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	0
434	Estimating the cooling potential of irrigating green spaces in 100 global cities with arid, temperate or continental climates. Sustainable Cities and Society, 2021, 71, 102974.	5.1	19
435	Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes. Science of the Total Environment, 2021, 784, 147193.	3.9	71
436	Continuity of terrestrial water storage variability and trends across mainland China monitored by the GRACE and GRACE-Follow on satellites. Journal of Hydrology, 2021, 599, 126308.	2.3	25
437	Remote Sensing of Global Daily Evapotranspiration based on a Surface Energy Balance Method and Reanalysis Data. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032873.	1.2	32
438	Effects of climate and irrigation on GRACE-based estimates of water storage changes in major US aquifers. Environmental Research Letters, 2021, 16, 094009.	2.2	31
439	Climatic Alterations Influence Bacterial Growth, Biofilm Production and Antimicrobial Resistance Profiles in Aeromonas spp Antibiotics, 2021, 10, 1008.	1.5	4
441	Onâ€farm irrigation water management in India: Challenges and research gaps*. Irrigation and Drainage, 0, , .	0.8	5
442	Introduction to Special Section: The Quest for Sustainability of Heavily Stressed Aquifers at Regional to Global Scales. Water Resources Research, 2021, 57, e2021WR030446.	1.7	4
443	Mapping socio-ecological resilience along the seven economic corridors of the Belt and Road Initiative. Journal of Cleaner Production, 2021, 309, 127341.	4.6	11
444	Linking genetic determinants with salinity tolerance and ion relationships in eggplant, tomato and pepper. Scientific Reports, 2021, 11, 16298.	1.6	8

ARTICLE IF CITATIONS # On doing hydrology with dragons: Realizing the value of perceptual models and knowledge 445 2.8 26 accumulation. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1550. Spatial Distribution and Sustainability Implications of the Canadian Groundwater Resources under 447 1.6 Changing Climate. Sustainability, 2021, 13, 9778. Too Many Streams and Not Enough Time or Money? Analytical Depletion Functions for Streamflow 448 3 0.7 Depletion Estimates. Ground Water, 2021, , . GPS Constraints on Droughtâ€Induced Groundwater Loss Around Great Salt Lake, Utah, With Implications for Seismicity Modulation. Journal of Geophysical Research: Solid Earth, 2021, 126, 1.4 e2021JB022020. Using Remote Sensing Techniques to Improve Hydrological Predictions in a Rapidly Changing World. 451 1.8 2 Remote Sensing, 2021, 13, 3865. Reconstruction of continuous GRACE/GRACE-FO terrestrial water storage anomalies based on time 2.3 24 series decomposition. Journal of Hydrology, 2021, 603, 127018. Identifying and separating climate- and human-driven water storage anomalies using GRACE satellite 453 4.6 31 data. Remote Sensing of Environment, 2021, 263, 112559. Constructed Wetlands to Face Water Scarcity and Water Pollution Risks: Learning from Farmers' 454 1.2 Perception in Alicante, Spain. Water (Switzerland), 2021, 13, 2431. Assessing fish community response to water quality and habitat stressors in KwaZulu-Natal, South 455 0.5 5 Africa. African Journal of Áquatic Science, 0, , 1-19. Boosting Capacitive Deionization Performance of Commercial Carbon Fibers Cloth via Structural 7.3 Regulation Based on Catalyticâ€Etching Effect. Energy and Environmental Materials, 2023, 6, . Improving the Resolution of GRACE Data for Spatio-Temporal Groundwater Storage Assessment. 457 1.8 53 Remote Sensing, 2021, 13, 3513. Coupling physically-based modeling and deep learning for long-term global freshwater availability monitoring and prédiction., 2021,,. Estimation of land-cover linkage to trends in hydrological variables of river basins in the Indian 459 2.3 8 sub-continent using satellite observation and model outputs. Journal of Hydrology, 2021, 603, 126997. Temporal and spatial ecology of an iconic Labeobarbus spp. in a socio-economically important river. Environmental Biology of Fishes, 2021, 104, 1103-1119. 0.4 Benthic Macroinvertebrates as Ecological Indicators: Their Sensitivity to the Water Quality and 461 1.0 34 Human Disturbances in a Tropical River. Frontiers in Water, 2021, 3, . Analysis of the interannual variability in satellite gravity solutions: detection of climate modes fingerprints in water mass displacements across continents and oceans. Climate Dynamics, 2022, 58, 1065-1084. Improving the Accuracy of Water Storage Anomaly Trends Based on a New Statistical Correction 463 1.8 6 Hydrological Model Weighting Method. Remote Sensing, 2021, 13, 3583. Impacts of water resources management on land water storage in the North China Plain: Insights 464 2.3 from multi-mission earth observations. Journal of Hydrology, 2021, 603, 126933.

#	Article	IF	CITATIONS
465	NaÃ ⁻ ve Bayes ensemble models for groundwater potential mapping. Ecological Informatics, 2021, 64, 101389.	2.3	32
466	GRACE and land surface models reveal severe drought in eastern China in 2019. Journal of Hydrology, 2021, 601, 126640.	2.3	20
467	Investigating spatial heterogeneity of the controls of surface water balance in the contiguous United States by considering anthropogenic factors. Journal of Hydrology, 2021, 601, 126621.	2.3	10
468	Synthesizing social and environmental sensing to monitor the impact of large-scale infrastructure development. Environmental Science and Policy, 2021, 124, 527-540.	2.4	8
469	Mapping regional surface water volume variation in reservoirs in northeastern Brazil during 2009–2017 using high-resolution satellite images. Science of the Total Environment, 2021, 789, 147711.	3.9	5
470	Assessing rainfall spatial variability in the Brazilian savanna region with TMPA rainfall dataset. Journal of South American Earth Sciences, 2021, 111, 103482.	0.6	4
471	Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation. Desalination, 2021, 516, 115228.	4.0	63
472	Lanthanide doped two dimensional heterostructure nanosheets with highly efficient harvest towards solar energy. Materials and Design, 2021, 210, 110023.	3.3	10
473	Sustainability of Morocco's groundwater resources in response to natural and anthropogenic forces. Journal of Hydrology, 2021, 603, 126866.	2.3	28
474	Global analysis of the hydrologic sensitivity to climate variability. Journal of Hydrology, 2021, 603, 126720.	2.3	5
475	Impacts of climate change-related flood events in the Yangtze River Basin based on multi-source data. Atmospheric Research, 2021, 263, 105819.	1.8	21
476	A comprehensive assessment of water storage dynamics and hydroclimatic extremes in the Chao Phraya River Basin during 2002–2020. Journal of Hydrology, 2021, 603, 126868.	2.3	54
477	The suitability of water scarcity indicators to the Indian context. Water Security, 2021, 14, 100097.	1.2	2
478	Use of a multiscalar GRACE-based standardized terrestrial water storage index for assessing global hydrological droughts. Journal of Hydrology, 2021, 603, 126871.	2.3	18
479	Current and future threats to human health in the Anthropocene. Environment International, 2022, 158, 106892.	4.8	45
481	Use of Quantum Dots Polymer and its Composite for Water Purification Through Solar Desalination. , 2021, , .		0
482	Groundwater sustainability and security in South Asia. , 2021, , 469-476.		1
483	Improving the Reliability of the Prediction of Terrestrial Water Storage in Yunnan Using the Artificial Neural Network Selective Joint Prediction Model. IEEE Access, 2021, 9, 31865-31879.	2.6	4

#	Article	IF	CITATIONS
484	Identification of suitable sites and structures for artificial groundwater recharge for sustainable water resources management in Vamanapuram River Basin, South India. HydroResearch, 2021, 4, 24-37.	1.7	31
485	Global groundwater: from scarcity to security through sustainability and solutions. , 2021, , 3-20.		30
486	Temporal distribution modelling reveals upstream habitat drying and downstream nonâ€native introgression are squeezing out an imperiled headwater fish. Diversity and Distributions, 2021, 27, 533-551.	1.9	3
487	Changes in China's water resources in the early 21st century. Frontiers in Ecology and the Environment, 2020, 18, 188-193.	1.9	22
488	Importance of Duckweeds in Basic Research and Their Industrial Applications. Compendium of Plant Genomes, 2020, , 1-17.	0.3	6
489	Future Prospects of Duckweed Research and Applications. Compendium of Plant Genomes, 2020, , 179-185.	0.3	4
490	Future Trajectory of Arctic System Evolution. , 2021, , 893-914.		6
491	The southern African inland fish tracking programme (FISHTRAC): An evaluation of the approach for monitoring ecological consequences of multiple water resource stressors, remotely and in real-time. Ecological Indicators, 2020, 111, 106001.	2.6	14
492	Extending the Global Mass Change Data Record: GRACE Followâ€On Instrument and Science Data Performance. Geophysical Research Letters, 2020, 47, e2020GL088306.	1.5	330
493	Focus on interactions between science-policy in groundwater systems. Environmental Research Letters, 2020, 15, 090201.	2.2	5
494	Application of Bayesian Regularized Neural Networks for Groundwater Level Modeling. , 2020, , .		12
495	Freeze–Thaw Changes of Seasonally Frozen Ground on the Tibetan Plateau from 1960 to 2014. Journal of Climate, 2020, 33, 9427-9446.	1.2	45
496	Predictive Skill Assessment for Land Water Storage in CMIP5 Decadal Hindcasts by a Global Reconstruction of GRACE Satellite Data. Journal of Climate, 2020, 33, 9497-9509.	1.2	5
497	The Occurrence of Permafrost within the Clacial Domain. Geosciences (Switzerland), 2020, 10, 193.	1.0	2
498	On-Site Blackwater Treatment Fosters Microbial Groups and Functions to Efficiently and Robustly Recover Carbon and Nutrients. Microorganisms, 2021, 9, 75.	1.6	4
499	Assessing the effect of tagging and the vulnerability to predation in tigerfish (Hydrocynus vittatus,) Tj ETQq1 1 C).784314 r 0.3	gBJ /Overloo
500	Groundwater storage dynamics in the world's large aquifer systems from GRACE: uncertainty and role of extreme precipitation. Earth System Dynamics, 2020, 11, 755-774.	2.7	35
501	GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth System Science Data, 2019, 11, 1153-1170.	3.7	144

#	Article	IF	CITATIONS
502	Widespread decline in terrestrial water storage and its link to teleconnections across Asia and eastern Europe. Hydrology and Earth System Sciences, 2020, 24, 3663-3676.	1.9	19
503	Data-driven estimates of evapotranspiration and its controls in the Congo Basin. Hydrology and Earth System Sciences, 2020, 24, 4189-4211.	1.9	20
504	Mapping groundwater abstractions from irrigated agriculture: big data, inverse modeling, and a satellite–model fusion approach. Hydrology and Earth System Sciences, 2020, 24, 5251-5277.	1.9	19
505	How much snow falls in the world's mountains? A first look at mountain snowfall estimates in A-train observations and reanalyses. Cryosphere, 2020, 14, 3195-3207.	1.5	17
506	Grand Challenges of Hydrologic Modeling for Food-Energy-Water Nexus Security in High Mountain Asia. Frontiers in Water, 2021, 3, .	1.0	5
507	Surface Water Storage in Rivers and Wetlands Derived from Satellite Observations: A Review of Current Advances and Future Opportunities for Hydrological Sciences. Remote Sensing, 2021, 13, 4162.	1.8	26
508	Impact of Climate Change on Water Availability in Water Source Areas of the South-to-North Water Diversion Project in China. Frontiers in Earth Science, 2021, 9, .	0.8	9
509	Next Generation Gravity Mission Elements of the Mass Change and Geoscience International Constellation: From Orbit Selection to Instrument and Mission Design. Remote Sensing, 2021, 13, 3935.	1.8	26
510	Achieving Breakthroughs in Global Hydrologic Science by Unlocking the Power of Multisensor, Multidisciplinary Earth Observations. AGU Advances, 2021, 2, e2021AV000455.	2.3	10
511	Divergent trends of water bodies and their driving factors in a high-latitude water tower, Changbai Mountain. Journal of Hydrology, 2021, 603, 127094.	2.3	10
512	Natural and anthropogenic drivers of the lost groundwater from the Ganga River basin. Environmental Research Letters, 2021, 16, 114009.	2.2	20
513	A Review of Irrigation Information Retrievals from Space and Their Utility for Users. Remote Sensing, 2021, 13, 4112.	1.8	76
514	Satellite evidence on the trade-offs of the food-water–air quality nexus over the breadbasket of India. Global Environmental Change, 2021, 71, 102394.	3.6	14
515	Zooplankton as an alternative method for controlling phytoplankton in catfish pond aquaculture. Aquaculture Reports, 2021, 21, 100897.	0.7	8
516	Bioinspired topological design of super hygroscopic complex for cost-effective atmospheric water harvesting. Nano Energy, 2021, 90, 106642.	8.2	57
517	Impact of lake water level decline on river evolution in Ebinur Lake Basin (an ungauged terminal lake) Tj ETQq1 1	0.784314	rgBT /Over
519	The â€~Sixth Mass Extinction Crisis' and Its Impact on Flowering Plants. Sustainable Development and Biodiversity, 2019, , 15-42.	1.4	1
522	Recursos hÃdricos actuales y futuros en Chile y su disponibilidad para la vegetación mediterránea. Physis Terrae - Revista Ibero-Afro-Americana De Geografia FÃsica E Ambiente, 2020, 2, 87-100.	0.0	0

#	Article	IF	CITATIONS
523	Rainwater treatment: an approach for drinking water provision to indigenous people in Ecuadorian Amazon. International Journal of Environmental Science and Technology, 2022, 19, 8769-8782.	1.8	3
524	Ending Conflicts Over Water: Solutions to Water and Security Challenges. , 0, , .		3
526	Significant Baseflow Reduction in the Sao Francisco River Basin. Water (Switzerland), 2021, 13, 2.	1.2	24
527	Constraining the contribution of glacier mass balance to the Tibetan lake growth in the early 21st century. Remote Sensing of Environment, 2022, 268, 112779.	4.6	21
528	Water Resources in Chile. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 90-100.	0.4	1
529	Ferroferric oxide@titanium carbide MXene heterostructure with enhanced sodium storage ability for efficient hybrid capacitive deionization. Desalination, 2022, 522, 115420.	4.0	58
530	Tracking Earth's Water in Motion from Satellite Gravity Observations. Encyclopedia of Earth Sciences Series, 2020, , 1-7.	0.1	0
533	Converting mesoporous polydopamine coated MIL-125 (Ti) to a core–shell heterostructure for efficient water desalination. Environmental Science: Nano, 2021, 8, 3536-3545.	2.2	7
535	Assessing Changes in Terrestrial Water Storage Components over the Great Artesian Basin Using Satellite Observations. Remote Sensing, 2021, 13, 4458.	1.8	4
536	Virtual nitrogen and phosphorus flow associated with interprovincial crop trade and its effect on grey water stress in China. Environmental Research Letters, 2021, 16, 124018.	2.2	2
537	Comparison of decadal water storage trends from common GRACE releases (RL05, RL06) using spatial diagnostics and a modified triple collocation approach. Journal of Hydrology X, 2021, 13, 100108.	0.8	6
538	Assessing groundwater irrigation sustainability in the Euro-Mediterranean region with an integrated agro-hydrologic model. Advances in Science and Research, 0, 17, 227-253.	1.0	8
539	Water Resources Planning and Management in a Changing Climate and Society. UNIPA Springer Series, 2021, , 197-215.	0.1	0
540	Study on the inter-annual hydrology-induced deformations in Europe using GRACE and hydrological models. Journal of Applied Geodesy, 2020, 14, 393-403.	0.6	7
541	Climate Adaptation Policies and Infant Health: Evidence from a Water Policy in Brazil. SSRN Electronic Journal, 0, , .	0.4	1
542	Cobalt nanoparticle–carbon nanoplate as the solar absorber of a wood aerogel evaporator for continuously efficient desalination. Environmental Science: Water Research and Technology, 2021, 8, 151-161.	1.2	14
543	World scientists' warnings into action, local to global. Science Progress, 2021, 104, 003685042110562.	1.0	13
544	Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environmental Research Letters, 2022, 17, 014046.	2.2	28

#	Article	IF	Citations
548	Fungal hypha-derived freestanding porous carbon pad as a high-capacity electrode for water desalination in membrane capacitive deionization. Chemical Engineering Journal, 2022, 433, 133781.	6.6	30
549	Evaluation of Six Satellite-Based Terrestrial Latent Heat Flux Products in the Vegetation Dominated Haihe River Basin of North China. Forests, 2021, 12, 1632.	0.9	0
551	Bayesian convolutional neural networks for predicting the terrestrial water storage anomalies during GRACE and GRACE-FO gap. Journal of Hydrology, 2022, 604, 127244.	2.3	39
552	High‣patialâ€Resolution Mass Rates From GRACE and GRACEâ€FO: Global and Ice Sheet Analyses. Journal of Geophysical Research: Solid Earth, 2021, 126, .	1.4	15
553	Sea Breeze Geoengineering to Increase Rainfall over the Arabian Red Sea Coastal Plains. Journal of Hydrometeorology, 2022, 23, 3-24.	0.7	6
554	Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model. Agricultural Water Management, 2022, 261, 107355.	2.4	12
555	Divergent Causes of Terrestrial Water Storage Decline Between Drylands and Humid Regions Globally. Geophysical Research Letters, 2021, 48, .	1.5	23
556	Dynamical variations of the terrestrial water cycle components and the influences of the climate factors over the Aral Sea Basin through multiple datasets. Journal of Hydrology, 2022, 604, 127270.	2.3	25
557	Great Lakes Revitalization and Renewal. , 2021, , .		0
559	Critical assessment of structure-based approaches to improve protein resistance in aqueous ionic liquids by enzyme-wide saturation mutagenesis. Computational and Structural Biotechnology Journal, 2022, 20, 399-409.	1.9	7
560	Isotopic signatures, hydrochemical and multivariate statistical analysis of seawater intrusion in the coastal aquifers of Chennai and Tiruvallur District, Tamil Nadu, India. Marine Pollution Bulletin, 2022, 174, 113232.	2.3	26
561	Projected changes in terrestrial water storage and associated flood potential across the Yangtze River basin. Science of the Total Environment, 2022, 817, 152998.	3.9	7
562	Urban hydrological responses to climate change and urbanization in cold climates. Science of the Total Environment, 2022, 817, 153066.	3.9	9
563	Estimation of spatio-temporal groundwater storage variations in the Lower Transboundary Indus Basin using GRACE satellite. Journal of Hydrology, 2022, 605, 127315.	2.3	36
564	Desiccation of a saline lake as a lock-in phenomenon: A socio-hydrological perspective. Science of the Total Environment, 2022, 811, 152347.	3.9	11
565	A new ultrasonic cleaning model for predicting the flux recovery of the UF membrane fouled with humic acid. Journal of Environmental Chemical Engineering, 2022, 10, 107156.	3.3	18
566	Twenty Nile Rivers escape the Mediterranean Sea – a giant water vapor spill boosting the July 2021 floods in Western Europe. International Journal of Hydrology, 2021, 5, 206-212.	0.2	0
567	Cryosphere Services to Support SDGs in High Mountains. Sustainability, 2022, 14, 791.	1.6	4

#	Article	IF	CITATIONS
568	Hotspots for social and ecological impacts from freshwater stress and storage loss. Nature Communications, 2022, 13, 439.	5.8	45
569	The dependence of hydropower planning in relation to the influence of climate in Northeast Brazil. PLoS ONE, 2022, 17, e0259951.	1.1	1
570	Spatial-temporal changes to GRACE-derived terrestrial water storage in response to climate change in arid Northwest China. Hydrological Sciences Journal, 2022, 67, 535-549.	1.2	10
571	Causes of changes in actual evapotranspiration and terrestrial water storage over the Eurasian inland basins. Hydrological Processes, 2022, 36, .	1.1	7
572	Presence And Temporal Activities Of Serrated Hinged Terrapin (<i>Pelusios sinuatus</i>) And Marsh Terrapin (<i>Pelomedusa galeata</i>) In KwaZulu-Natal, South Africa, Assessed Using Telemetry. Tropical Conservation Science, 2022, 15, 194008292210742.	0.6	0
573	Preparation of Janus melamine sponge suitable for solar evaporation. Journal of Materials Science, 2022, 57, 3601-3612.	1.7	15
574	Evaluation of Groundwater Storage Depletion Using GRACE/GRACE Follow-On Data with Land Surface Models and Its Driving Factors in Haihe River Basin, China. Sustainability, 2022, 14, 1108.	1.6	17
575	Impacts of Human Activities and Climate Change on Water Storage Changes in Shandong Province, China. Environmental Science and Pollution Research, 2022, 29, 35365-35381.	2.7	6
576	ANU GRACE Data Analysis: Orbit Modeling, Regularization and Interâ€satellite Range Acceleration Observations. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	8
577	Hyperstable and compressible plant fibers/chitosan aerogel as portable solar evaporator. Solar Energy, 2022, 231, 828-836.	2.9	17
578	Uncertainties of GRACEâ€Based Terrestrial Water Storage Anomalies for Arbitrary Averaging Regions. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	7
579	A hydrological simulation dataset of the Upper Colorado River Basin from 1983 to 2019. Scientific Data, 2022, 9, 16.	2.4	12
580	Recent Changes in Groundwater and Surface Water in Large Pan-Arctic River Basins. Remote Sensing, 2022, 14, 607.	1.8	7
581	ANU GRACE Data Analysis: Characteristics and Benefits of Using Irregularly Shaped Mascons. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	7
582	Understanding the Cultural Foundations of Water Institutions: Groundwater Management in Kansas, High Plains-Ogallala Aquifer. , 2022, , 185-202.		2
583	Scaling relations reveal global and regional differences in morphometry of reservoirs and natural lakes. Science of the Total Environment, 2022, 822, 153510.	3.9	7
584	Maximizing Multiâ€Decadal Water Surface Elevation Estimates With Landsat Imagery and Elevation/Bathymetry Datasets. Water Resources Research, 2022, 58, .	1.7	2
585	Assessment of GRACE/GRACE Follow-On Terrestrial Water Storage Estimates Using an Improved Forward Modeling Method: A Case Study in Africa. Frontiers in Earth Science, 2022, 9, .	0.8	4

#	Article	IF	CITATIONS
586	Bridging the gap between GRACE and GRACE-FO using a hydrological model. Science of the Total Environment, 2022, 822, 153659.	3.9	16
587	The Influence of Precipitation Phase Changes on the Recharge Process of Terrestrial Water Storage in the Cold Season Over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
588	Sorption-tree with scalable hygroscopic adsorbent-leaves for water harvesting. Journal of Materials Chemistry A, 2022, 10, 6576-6586.	5.2	21
590	Reconstructing the data gap between GRACE and GRACE follow-on at the basin scale using artificial neural network. Science of the Total Environment, 2022, 823, 153770.	3.9	11
591	Influence of Urban Areas on Surface Water Loss in the Contiguous United States. AGU Advances, 2022, 3, .	2.3	3
592	Global Groundwater Modeling and Monitoring: Opportunities and Challenges. Water Resources Research, 2021, 57, .	1.7	62
593	Screening and scoping-level assessment of beneficial management practices in a Canadian prairie watershed. Canadian Water Resources Journal, 2022, 47, 83-109.	0.5	0
595	Warming, increase in precipitation, and irrigation enhance greening in High Mountain Asia. Communications Earth & Environment, 2022, 3, .	2.6	15
596	Nature-Inspired Superhydrophobic Sand Mulches Increase Agricultural Productivity and Water-Use Efficiency in Arid Regions. ACS Agricultural Science and Technology, 2022, 2, 276-288.	1.0	12
597	Efficient variance component estimation for large-scale least-squares problems in satellite geodesy. Journal of Geodesy, 2022, 96, 1.	1.6	6
598	åﷺ°°å°¦åﷺ¦ç´æ°´æ–‡å•化ä,Žæžç§»çš,,å³ç³». SCIENTIA SINICA Terrae, 2022, , .	0.1	1
599	Relationship between polar motion and key hydrological elements at multiple scales. Science China Earth Sciences, 2022, 65, 882-898.	2.3	2
600	Modeling and analyzing supply-demand relationships of water resources in Xinjiang from a perspective of ecosystem services. Journal of Arid Land, 2022, 14, 115-138.	0.9	11
601	Decadal Lake Volume Changes (2003–2020) and Driving Forces at a Global Scale. Remote Sensing, 2022, 14, 1032.	1.8	13
602	The importance of vegetation in understanding terrestrial water storage variations. Hydrology and Earth System Sciences, 2022, 26, 1089-1109.	1.9	8
603	Massive crop expansion threatens agriculture and water sustainability in northwestern China. Environmental Research Letters, 2022, 17, 034003.	2.2	11
604	Cryosphere Services to Advance the National SDG Priorities in Himalaya-Karakoram Region. Sustainability, 2022, 14, 2532.	1.6	1
605	Synergistic effects of climate and landscape change on the conservation of Amazonian lizards. PeerJ, 2022, 10, e13028.	0.9	2

#	Article	IF	CITATIONS
606	Towards hybrid modeling of the global hydrological cycle. Hydrology and Earth System Sciences, 2022, 26, 1579-1614.	1.9	39
607	Joint Inversion of GNSS and GRACE for Terrestrial Water Storage Change in California. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	17
608	Viewpoint: Irrigation water management in a space age. Irrigation and Drainage, 2022, 71, 39-50.	0.8	2
609	Multidecadal Land Water and Groundwater Drought Evaluation in Peninsular India. Remote Sensing, 2022, 14, 1486.	1.8	17
610	Blending Irrigation Water Sources with Different Salinities and the Economic Damage of Salinity: The Case of Israel. Water (Switzerland), 2022, 14, 917.	1.2	4
611	Spatial equilibrium model-based optimization for inter-regional virtual water pattern within grain trade to relieve water stress. Water Science and Technology: Water Supply, 0, , .	1.0	2
612	Untangling Flow-Ecology Relationships: Effects of Seasonal Stage Variation on Common Snook Aggregation and Movement Rates in the Everglades. Estuaries and Coasts, 0, , 1.	1.0	3
613	Buffering the impacts of extreme climate variability in the highly engineered Tigris Euphrates river system. Scientific Reports, 2022, 12, 4178.	1.6	13
614	Filling Temporal Gaps within and between GRACE and GRACE-FO Terrestrial Water Storage Records: An Innovative Approach. Remote Sensing, 2022, 14, 1565.	1.8	12
615	Evolution of lake water volume in global closed basins since the Last Glacial Maximum and its implication for future projection. Progress in Physical Geography, 2022, 46, 613-629.	1.4	1
616	Assessing changes in total water storage in two large freshwater lake basins of China. Hydrological Processes, 2022, 36, .	1.1	3
617	Longâ€Term Water Imbalances of Watersheds Resulting From Biases in Hydroclimatic Data Sets for Water Budget Analyses. Water Resources Research, 2022, 58, .	1.7	11
618	Reconciling historical changes in the hydrological cycle over land. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	7
620	Groundwater Variability Across India, Under Contrasting Human and Natural Conditions. Earth's Future, 2022, 10, .	2.4	4
621	Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia. Nature Communications, 2022, 13, 1849.	5.8	26
622	Short-Term and Long-Term Replenishment of Water Storage Influenced by Lockdown and Policy Measures in Drought-Prone Regions of Central India. Remote Sensing, 2022, 14, 1768.	1.8	0
623	Polydopamine-Coated Natural Rubber Sponge for Highly Efficient Vapor Generation. Polymers, 2022, 14, 1486.	2.0	6
624	Understanding the accuracy of modelled changes in freshwater provision over time. Science of the Total Environment, 2022, , 155042.	3.9	2

#	Article	IF	CITATIONS
625	Role of embedding choline chloride-urea deep eutectic solvent on biomass-derived porous activated carbon in its capacitive deionization performance. Desalination, 2022, 530, 115674.	4.0	11
626	MOF-on-MOF nanoarchitectures for selectively functionalized nitrogen-doped carbon-graphitic carbon/carbon nanotubes heterostructure with high capacitive deionization performance. Nano Energy, 2022, 97, 107146.	8.2	106
627	A framework for assessing freshwater vulnerability along China's Belt and Road Initiative: An exposure, sensitivity and adaptive capacity approach. Environmental Science and Policy, 2022, 132, 247-261.	2.4	1
628	Closing of the yield gap can be achieved without groundwater extraction in Chinese wheat production. Global Food Security, 2022, 33, 100630.	4.0	5
629	Australian farm dams are becoming less reliable water sources under climate change. Science of the Total Environment, 2022, 829, 154360.	3.9	13
630	A Review of Groundwater Management Models with a Focus on IoT-Based Systems. Sustainability, 2022, 14, 148.	1.6	9
631	Attitude Determination for GRACE-FO: Reprocessing the Level-1A SC and IMU Data. Remote Sensing, 2022, 14, 126.	1.8	1
632	Legacy and Emerging Pollutants in an Urban River Stretch and Effects on the Bacterioplankton Community. Water (Switzerland), 2021, 13, 3402.	1.2	7
633	Effect of Residual Pesticides in Recycled Nursery Runoff on Growth and Physiology of Six Ornamental Shrubs. Water, Air, and Soil Pollution, 2022, 233, 1.	1.1	0
634	Spatiotemporal Characterization of Geophysical Signal Detection Capabilities of GRACEâ€FO. Geophysical Research Letters, 2022, 49, .	1.5	7
635	Water Budget Closure in the Upper Chao Phraya River Basin, Thailand Using Multisource Data. Remote Sensing, 2022, 14, 173.	1.8	12
636	Brazil is in water crisis — it needs a drought plan. Nature, 2021, 600, 218-220.	13.7	49
637	Temporal movement of free-swimming fishes and their response to environmental variables in some of the rivers of Kruger National Park, South Africa. Environmental Biology of Fishes, 2022, 105, 19-35.	0.4	0
638	Widespread and increased drilling of wells into fossil aquifers in the USA. Nature Communications, 2022, 13, 2129.	5.8	14
639	Water Resources in Africa under Global Change: Monitoring Surface Waters from Space. Surveys in Geophysics, 2023, 44, 43-93.	2.1	38
650	How Severe is Water Stress in the MENA Region? Insights from GRACE and GRACE-FO Satellites and Global Hydrological Modeling. , 2022, , 51-65.		3
651	Shower water usage in Kruger National Park tourist accommodation: effectiveness of technology and information intervention to reduce use. Environmental Science: Water Research and Technology, 2022, 8, 1497-1506.	1.2	1
652	Vegetation response to soil moisture and groundwater in west-central Africa revealed by satellite observations. Hydrological Sciences Journal, 0, , .	1.2	0

#	Article	IF	CITATIONS
653	Some Warnings About Quantum Space Gravimetry Enhance Earth Observations Project. Journal of Physics: Conference Series, 2022, 2255, 012007.	0.3	0
654	Global Agricultural Water Scarcity Assessment Incorporating Blue and Green Water Availability Under Future Climate Change. Earth's Future, 2022, 10, .	2.4	55
655	Impacts of Climate Change, Glacier Mass Loss and Human Activities on Spatiotemporal Variations in Terrestrial Water Storage of the Qaidam Basin, China. Remote Sensing, 2022, 14, 2186.	1.8	5
656	Assessing the feasibility of sprinkler irrigation schemes at the regional scale using a distributed agro-hydrological model. Journal of Hydrology, 2022, 610, 127917.	2.3	6
657	Spatio-temporal analysis of water storage variation and temporal correlations in the East Africa lake basins. Journal of Hydrology: Regional Studies, 2022, 41, 101094.	1.0	1
658	Large-scale hydrological modeling in a multi-objective uncertainty framework – Assessing the potential for managed aquifer recharge in the North China Plain. Journal of Hydrology: Regional Studies, 2022, 41, 101097.	1.0	1
659	High-resolution satellite images combined with hydrological modeling derive river discharge for headwaters: A step toward discharge estimation in ungauged basins. Remote Sensing of Environment, 2022, 277, 113030.	4.6	9
660	Luminescence dating of shoreline sediments indicates a late deglacial lake-level rise of Selin Co on the central Tibetan Plateau. Quaternary Geochronology, 2022, 71, 101313.	0.6	1
661	Leveraging machine learning methods to quantify 50 years of dwindling groundwater in India. Science of the Total Environment, 2022, 835, 155474.	3.9	19
662	Jointly using the GLDAS 2.2 model and GRACE to study the severe Yangtze flooding of 2020. Journal of Hydrology, 2022, 610, 127927.	2.3	8
663	Effect of Assimilating SMAP Soil Moisture on CO2 and CH4 Fluxes through Direct Insertion in a Land Surface Model. Remote Sensing, 2022, 14, 2405.	1.8	6
664	All-day freshwater production enabled by an active continuous sorption-based atmospheric water harvesting system. Energy Conversion and Management, 2022, 264, 115745.	4.4	12
665	Understanding process controls on groundwater recharge variability across Africa through recharge landscapes. Journal of Hydrology, 2022, 612, 127967.	2.3	6
666	Electrocapacitive desalination with nitrogen-doped hierarchically structured carbon prepared using a sustainable salt-template method. Chemical Engineering Journal, 2022, 446, 137211.	6.6	28
667	Combining downscaled-GRACE data with SWAT to improve the estimation of groundwater storage and depletion variations in the Irrigated Indus Basin (IIB). Science of the Total Environment, 2022, 838, 156044.	3.9	34
668	Water-Energy-Food Nexus: Linking Global to Local. Trends in the Sciences, 2022, 27, 1_28-1_34.	0.0	Ο
670	Closing the Gap Between Water Needs and Renewable Water Supplies: Global Perspective, Local Lessons. Natural Resource Management and Policy, 2022, , 163-182.	0.1	1
671	Quantification and Assessment of Global Terrestrial Water Storage Deficit Caused by Drought Using GRACE Satellite Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 5001-5012.	2.3	6

#	Article	IF	CITATIONS
673	Comparison of non-tidal loading data for application in a secular terrestrial reference frame. Earth, Planets and Space, 2022, 74, .	0.9	3
674	Long-Term and Bimonthly Estimation of Lake Water Extent Using Google Earth Engine and Landsat Data. Remote Sensing, 2022, 14, 2893.	1.8	1
675	Selective absorber and emitter boost water evaporation and condensation toward water collection. Materials Today Energy, 2022, 28, 101072.	2.5	10
676	Response to Water Scarcity: Gender Analysis of the Motivation Factors Toward Water Conservation Behavior in the Workplace. Frontiers in Water, 0, 4, .	1.0	1
677	Quantifying the potential impacts of climate change on irrigation demand, crop yields, and green water scarcity in the New Jersey Coastal Plain. Science of the Total Environment, 2022, 838, 156538.	3.9	7
678	Groundwater from Space. , 2022, , 211-230.		5
679	Satellite Geodetic Missions. , 2022, , 53-70.		4
681	Satellite Observations of Terrestrial Water Storage. , 2022, , 331-386.		2
682	Impacts of Water Resources Development on Hydrology. , 2022, , 389-437.		2
684	Remote Sensing Hydrology. , 2022, , 3-17.		3
684 685	Remote Sensing Hydrology. , 2022, , 3-17. Submarine groundwater discharge as a significant source of nutrients in the coastal zone. , 2022, , 119-134.		3 0
684 685 687	Remote Sensing Hydrology., 2022, , 3-17. Submarine groundwater discharge as a significant source of nutrients in the coastal zone., 2022, , 119-134. Genotypic and Environmental Effects on Morpho-Physiological and Agronomic Performances of a Tomato Diversity Panel in Relation to Nitrogen and Water Stress Under Organic Farming. Frontiers in Plant Science, 0, 13, .	1.7	3 0 4
684 685 687 688	Remote Sensing Hydrology., 2022, , 3-17. Submarine groundwater discharge as a significant source of nutrients in the coastal zone., 2022, , 119-134. Genotypic and Environmental Effects on Morpho-Physiological and Agronomic Performances of a Tomato Diversity Panel in Relation to Nitrogen and Water Stress Under Organic Farming. Frontiers in Plant Science, 0, 13,. Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China. Journal of Hydrology, 2022, 612, 128156.	1.7	3 0 4 7
684 685 687 688	Remote Sensing Hydrology., 2022, , 3-17. Submarine groundwater discharge as a significant source of nutrients in the coastal zone., 2022, , 119-134. Genotypic and Environmental Effects on Morpho-Physiological and Agronomic Performances of a Tomato Diversity Panel in Relation to Nitrogen and Water Stress Under Organic Farming. Frontiers in Plant Science, 0, 13, . Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China. Journal of Hydrology, 2022, 612, 128156. Combining river replenishment and restrictions on groundwater pumping to achieve groundwater balance in the Juma River Plain, North China Plain. Frontiers in Earth Science, 0, 10, .	1.7 2.3 0.8	3 0 4 7
 684 685 687 688 689 690 	Remote Sensing Hydrology., 2022, , 3-17. Submarine groundwater discharge as a significant source of nutrients in the coastal zone., 2022, , 119-134. Genotypic and Environmental Effects on Morpho-Physiological and Agronomic Performances of a Tomato Diversity Panel in Relation to Nitrogen and Water Stress Under Organic Farming. Frontiers in Plant Science, 0, 13, . Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China. Journal of Hydrology, 2022, 612, 128156. Combining river replenishment and restrictions on groundwater pumping to achieve groundwater balance in the Juma River Plain, North China Plain. Frontiers in Earth Science, 0, 10, . Reconstruction of GRACE Mass Change Time Series Using a Bayesian Framework. Earth and Space Science, 2022, 9, .	1.7 2.3 0.8 1.1	3 0 4 7 4 7
 684 685 687 688 689 690 691 	Remote Sensing Hydrology., 2022, , 3-17. Submarine groundwater discharge as a significant source of nutrients in the coastal zone., 2022, , 119-134. Genotypic and Environmental Effects on Morpho-Physiological and Agronomic Performances of a Tomato Diversity Panel in Relation to Nitrogen and Water Stress Under Organic Farming. Frontiers in Plant Science, 0, 13,. Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China. Journal of Hydrology, 2022, 612, 128156. Combining river replenishment and restrictions on groundwater pumping to achieve groundwater balance in the Juma River Plain, North China Plain. Frontiers in Earth Science, 0, 10, . Reconstruction of GRACE Mass Change Time Series Using a Bayesian Framework. Earth and Space Science, 2022, 9, . Boosted Regression Tree Algorithm for the Reconstruction of GRACE-Based Terrestrial Water Storage Anomalies in the Yangtze River Basin. Frontiers in Environmental Science, 0, 10, .	1.7 2.3 0.8 1.1 1.5	 3 0 4 7 4 7 5
 684 685 687 688 689 690 691 692 	Remote Sensing Hydrology., 2022, , 3-17. Submarine groundwater discharge as a significant source of nutrients in the coastal zone., 2022, , 119-134. Genotypic and Environmental Effects on Morpho-Physiological and Agronomic Performances of a Tomato Diversity Panel in Relation to Nitrogen and Water Stress Under Organic Farming. Frontiers in Plant Science, 0, 13. Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China. Journal of Hydrology, 2022, 612, 128156. Combining river replenishment and restrictions on groundwater pumping to achieve groundwater balance in the Juma River Plain, North China Plain. Frontiers in Earth Science, 0, 10, . Reconstruction of GRACE Mass Change Time Series Using a Bayesian Framework. Earth and Space Science, 2022, 9, . Boosted Regression Tree Algorithm for the Reconstruction of GRACE-Based Terrestrial Water Storage Anomalies in the Yangtze River Basin. Frontiers in Environmental Science, 0, 10, . Autoregressive Reconstruction of Total Water Storage within GRACE and GRACE Follow-On Gap Period. Energies, 2022, 15, 4827.	1.7 2.3 0.8 1.1 1.5 1.6	 3 0 4 7 4 7 5 5

#	Article	IF	CITATIONS
694	Lakes in Hot Water: The Impacts of a Changing Climate on Aquatic Ecosystems. BioScience, 2022, 72, 1050-1061.	2.2	59
695	Multi-faceted analyses of seasonal trends and drivers of land surface variables in Indo-Gangetic river basins. Science of the Total Environment, 2022, 847, 157515.	3.9	4
696	Recyclable physical hydrogels as durable and efficient solar-driven evaporators. Chemical Engineering Journal, 2022, 450, 138257.	6.6	22
697	Analysis of mass flux variations in the southern Tibetan Plateau based on an improved spatial domain filtering approach for GRACE/GRACE-FO solutions. International Journal of Remote Sensing, 2022, 43, 3563-3591.	1.3	2
698	Effects of ridge planting on crop seedlings under saline water drip irrigation. Irrigation and Drainage, 0, , .	0.8	0
699	Remote sensing-based vegetation and soil moisture constraints reduce irrigation estimation uncertainty. Environmental Research Letters, 2022, 17, 084010.	2.2	9
700	3D hydrogeophysical characterization of managed aquifer recharge basins. Frontiers in Earth Science, 0, 10, .	0.8	3
701	Influence of nanomaterial coated condensing surface on the productivity of evacuated tube assisted solar still. Materials Today: Proceedings, 2022, 69, 853-857.	0.9	1
702	Crosstalk between Growth and Osmoregulation of GHRH-SST-GH-IGF Axis in Triploid Rainbow Trout (Oncorhynchus mykiss). International Journal of Molecular Sciences, 2022, 23, 8691.	1.8	3
703	Climate change shifts agropastoral-pastoral margins in Africa putting food security and livelihoods at risk. Environmental Research Letters, 2022, 17, 095003.	2.2	7
704	Evaluating downscaling methods of GRACE (Gravity Recovery and Climate Experiment) data: a case study over a fractured crystalline aquifer in southern India. Hydrology and Earth System Sciences, 2022, 26, 4169-4186.	1.9	6
705	Nonâ€īidal Background Modeling for Satellite Gravimetry Based on Operational ECWMF and ERA5 Reanalysis Data: AOD1B RL07. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	6
706	Soil hydrology in the Earth system. Nature Reviews Earth & Environment, 2022, 3, 573-587.	12.2	57
707	Prospects for Simultaneously Capturing Carbon Dioxide and Harvesting Water from Air. Advanced Materials, 2022, 34, .	11.1	16
708	Climate change threatens terrestrial water storage over the Tibetan Plateau. Nature Climate Change, 2022, 12, 801-807.	8.1	100
709	Hydro-Geophysical Evaluation of the Regional Variability of Senegal's Terrestrial Water Storage Using Time-Variable Gravity Data. Remote Sensing, 2022, 14, 4059.	1.8	18
710	Evaluation of the Consistency of Three GRACE Gap-Filling Data. Remote Sensing, 2022, 14, 3916.	1.8	0
711	Past and future terrestrial water storage changes in the lower Mekong River basin: The influences of climatic and non-climatic factors. Journal of Hydrology, 2022, 612, 128275.	2.3	3

#	Article	IF	CITATIONS
712	Groundwater metabolome responds to recharge in fractured sedimentary strata. Water Research, 2022, 223, 118998.	5.3	3
713	Review on 2D MXene and graphene electrodes in capacitive deionization. Environmental Technology and Innovation, 2022, 28, 102858.	3.0	10
714	A field study on using soybean waste-derived superabsorbent hydrogel to enhance growth of vegetables. Science of the Total Environment, 2022, 851, 158141.	3.9	8
715	Closed loop simulations on recoverability of climate trends in next generation gravity missions. Geophysical Journal International, 2022, 232, 1083-1098.	1.0	1
716	Examining ground and surface water changes in response to environmental variables, land use dynamics, and socioeconomic changes in Canada. Journal of Environmental Management, 2022, 322, 115875.	3.8	0
717	Enhanced selective electrosorption of Pb2+ from complex water on covalent organic framework-reduced graphene oxide nanocomposite. Separation and Purification Technology, 2022, 302, 122147.	3.9	11
718	Clobal hydroclimatic drivers of terrestrial water storage changes in different climates. Catena, 2022, 219, 106598.	2.2	4
719	A three-dimensional arched solar evaporator based on hydrophilic photothermal fibers inspired by hair for eliminating salt accumulation with desalination application. Journal of Materials Chemistry A, 2022, 10, 21004-21012.	5.2	12
720	Trends of terrestrial water storage and actual evapotranspiration in Chinese inland basins and their main affecting factors. Frontiers in Environmental Science, 0, 10, .	1.5	1
721	Does academic research have practical relevance? A question of translating hydrology research into practice. Hydrological Processes, 2022, 36, .	1.1	2
722	Activated carbon-cement composite coated polyurethane foam as a cost-efficient solar steam generator. Journal of Cleaner Production, 2022, 379, 134302.	4.6	6
723	Remote Sensing of Groundwater: Current Capabilities and Future Directions. Water Resources Research, 2022, 58, .	1.7	8
724	The Bengal Water Machine: Quantified freshwater capture in Bangladesh. Science, 2022, 377, 1315-1319.	6.0	11
727	Variation of water bodies along highways in the Qinghai–Tibet Plateau over the past 20 years: a case study of G109 and G219. Journal of Water and Climate Change, 0, , .	1.2	0
728	Drivers of Groundwater Change in China and Future Projections. Remote Sensing, 2022, 14, 4825.	1.8	2
729	The Sources of Seaâ€Level Changes in the Mediterranean Sea Since 1960. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	7
730	Solid Water Melt Dominates the Increase of Total Groundwater Storage in the Tibetan Plateau. Geophysical Research Letters, 2022, 49, .	1.5	15
731	Climate change and water security in the northern slope of the Tianshan Mountains. Geography and Sustainability, 2022, 3, 246-257.	1.9	3

#	ARTICLE	IF	CITATIONS
732	Hydrological drought impacts on water storage variations: a focus on the role of vegetation changes in the East Africa region. A systematic review. Environmental Science and Pollution Research, 2022, 29, 80237-80256.	2.7	3
733	Mapping global lake dynamics reveals the emerging roles of small lakes. Nature Communications, 2022, 13, .	5.8	53
734	Prediction of sap flow with historical environmental factors based on deep learning technology. Computers and Electronics in Agriculture, 2022, 202, 107400.	3.7	9
735	A Novel Standardized Drought and Flood Potential Index Based on Reconstructed Daily GRACE Data. Journal of Hydrometeorology, 2022, 23, 1419-1438.	0.7	5
736	A new composite index for global soil plant atmosphere continuum drought monitoring combing remote-sensing based terrestrial water storage and vapor pressure deficit anomalies. Journal of Hydrology, 2022, 615, 128622.	2.3	6
738	The Use of PGPB to Promote Plant Hydroponic Growth. Plants, 2022, 11, 2783.	1.6	21
739	Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Nature Geoscience, 2022, 15, 982-988.	5.4	41
740	Hygroscopic Porous Polymer for Sorptionâ€Based Atmospheric Water Harvesting. Advanced Science, 2022, 9, .	5.6	23
741	Effects of experimental and seasonal drying on soil microbial biomass and nutrient cycling in four lowland tropical forests. Biogeochemistry, 2022, 161, 227-250.	1.7	5
742	Landslide risk assessment of frozen soil slope in Qinghai Tibet Plateau during spring thawing period under the coupling effect of moisture and heat. Natural Hazards, 2023, 115, 2399-2416.	1.6	4
743	SpatialAquaCrop, an R Package for Raster-Based Implementation of the AquaCrop Model. Plants, 2022, 11, 2907.	1.6	1
744	A versatile optimization framework for sustainable post-disaster building reconstruction. Optimization and Engineering, 0, , .	1.3	0
745	Spatiotemporal Variation and Driving Analysis of Groundwater in the Tibetan Plateau Based on GRACE Downscaling Data. Water (Switzerland), 2022, 14, 3302.	1.2	4
746	Avert Bangladesh's looming water crisis through open science and better data. Nature, 2022, 610, 626-629.	13.7	3
747	An Agenda for Land Data Assimilation Priorities: Realizing the Promise of Terrestrial Water, Energy, and Vegetation Observations From Space. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	6
748	The economics of managing water crises. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	1
749	Evapotranspiration frequently increases during droughts. Nature Climate Change, 2022, 12, 1024-1030.	8.1	46
750	Water Balance in Alpine Catchments by Sentinel Data. Water Resources Research, 2022, 58, .	1.7	3

#	Article	IF	CITATIONS
751	Assessment of ecological quality in Northwest China (2000–2020) using the Google Earth Engine platform: Climate factors and land use/land cover contribute to ecological quality. Journal of Arid Land, 2022, 14, 1196-1211.	0.9	8
752	Groundwater budgeting of Nari and Gaj formations and groundwater mapping of Karachi, Pakistan. Applied Water Science, 2022, 12, .	2.8	12
753	Cascading Delays in the Monsoon Rice Growing Season and Postmonsoon Agricultural Fires Likely Exacerbate Air Pollution in North India. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	1
754	Assimilation of Remotely Sensed Leaf Area Index Enhances the Estimation of Anthropogenic Irrigation Water Use. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	2
755	Embedment of graphene in binder-free fungal hypha-based electrodes for enhanced membrane capacitive deionization. Separation and Purification Technology, 2023, 304, 122381.	3.9	8
756	Irrigation water use driving desiccation of Earth's endorheic lakes and seas. Australian Journal of Water Resources, 0, , 1-12.	1.6	3
757	Breeding crops for drought-affected environments and improved climate resilience. Plant Cell, 2023, 35, 162-186.	3.1	34
758	The influence of climate change on freshwater availability in the Sokoto Rima River Basin, Northwestern Nigeria. Environmental Monitoring and Assessment, 2023, 195, .	1.3	1
759	Remote Sensing Retrieval of Total Nitrogen in the Pearl River Delta Based on Landsat8. Water (Switzerland), 2022, 14, 3710.	1.2	3
760	Hierarchical MXene/Polypyrrole-Decorated Carbon Nanofibers for Asymmetrical Capacitive Deionization. ACS Applied Materials & amp; Interfaces, 2022, 14, 53150-53164.	4.0	9
761	Deficit irrigation-based growth control of maize plants using hybrid model predictive / trellis decoding algorithm. IFAC-PapersOnLine, 2022, 55, 183-187.	0.5	0
762	Modified flood potential index (MFPI) for flood monitoring in terrestrial water storage depletion basin using GRACE estimates. Journal of Hydrology, 2023, 616, 128765.	2.3	8
763	Drought monitoring by downscaling GRACE-derived terrestrial water storage anomalies: A deep learning approach. Journal of Hydrology, 2023, 616, 128838.	2.3	21
764	Integrated approach for the investigation of groundwater quality through hydrochemistry and water quality index (WQI). Urban Climate, 2023, 47, 101383.	2.4	17
765	Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas. Harmful Algae, 2023, 121, 102367.	2.2	21
766	Rooftop rainwater harvesting by a shallow well – Impacts and potential from a field experiment in the Danube-Tisza Interfluve, Hungary. Groundwater for Sustainable Development, 2023, 20, 100884.	2.3	6
767	Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth. Hydrology and Earth System Sciences, 2022, 26, 5859-5877.	1.9	4
768	Characterizing Spatiotemporal Patterns of Snowfall in the Kaidu River Basin from 2000–2020 Using MODIS Observations. Remote Sensing, 2022, 14, 5885.	1.8	1

#	Article	IF	CITATIONS
770	Bridging the Data Gap between the GRACE Missions and Assessment of Groundwater Storage Variations for Telangana State, India. Water (Switzerland), 2022, 14, 3852.	1.2	3
771	Quantifying the impact of climate change and irrigation management on groundwater in an arid region with intensive groundwater abstraction (Case study: Neishaboor watershed, Iran). Environmental Earth Sciences, 2022, 81, .	1.3	1
772	Monitoring the extreme flood events in the Yangtze River basin based on GRACE and GRACE-FO satellite data. Hydrology and Earth System Sciences, 2022, 26, 5933-5954.	1.9	5
773	Global Recharge Data Set Indicates Strengthened Groundwater Connection to Surface Fluxes. Geophysical Research Letters, 2022, 49, .	1.5	23
774	Climate Change and Water Crises in Pakistan: Implications on Water Quality and Health Risks. Journal of Environmental and Public Health, 2022, 2022, 1-12.	0.4	7
775	Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series. Scientific Reports, 2022, 12, .	1.6	3
776	Meteorological Data Fusion Approach for Modeling Crop Water Productivity Based on Ensemble Machine Learning. Water (Switzerland), 2023, 15, 30.	1.2	8
777	Conceptual hydrological model-guided SVR approach for monthly lake level reconstruction in the Tibetan Plateau. Journal of Hydrology: Regional Studies, 2022, 44, 101271.	1.0	0
778	Global evaluation of the "dry gets drier, and wet gets wetter―paradigm from a terrestrial water storage change perspective. Hydrology and Earth System Sciences, 2022, 26, 6457-6476.	1.9	8
779	Climatic Asynchrony and Hydrologic Inefficiency Explain the Global Pattern of Water Availability. Geophysical Research Letters, 2022, 49, .	1.5	3
780	Groundwater depletion in California's Central Valley accelerates during megadrought. Nature Communications, 2022, 13, .	5.8	22
781	Channel Water Storage Anomaly: A New Remotely Sensed Quantity for Global River Analysis. Geophysical Research Letters, 2023, 50, .	1.5	1
782	An In-Depth Assessment of the Drivers Changing China's Crop Production Using an LMDI Decomposition Approach. Remote Sensing, 2022, 14, 6399.	1.8	2
783	Retrospective study in US commercial sorghum breeding: I. Genetic gain in relation to relative maturity. Crop Science, 2023, 63, 501-510.	0.8	6
784	Evaluation of Terrestrial Water Storage Changes and Major Driving Factors Analysis in Inner Mongolia, China. Sensors, 2022, 22, 9665.	2.1	3
785	Dynamic Response Characteristics of Shallow Groundwater Level to Hydro-Meteorological Factors and Well Irrigation Water Withdrawals under Different Conditions of Groundwater Buried Depth. Water (Switzerland), 2022, 14, 3937.	1.2	3
786	Evaluation of remotely sensed global evapotranspiration data from inland river basins. Hydrological Processes, 2022, 36, .	1.1	4
787	Assessing the Impact of Climate Change on Turkish Basins. International Journal of Environment and Geoinformatics, 2022, 9, 102-112.	0.5	1

#	Article	IF	CITATIONS
788	Climate-smart harvesting and storing of water: The legacy of dhaka pits at Great Zimbabwe. Anthropocene, 2022, 40, 100357.	1.6	3
789	Multisource remote sensing data facilitate ecohydrological simulations without runoff calibration. Hydrological Processes, 2022, 36, .	1.1	0
790	On study of the Earth topography correction for the GRACE surface mass estimation. Journal of Geodesy, 2022, 96, .	1.6	2
792	Topical Collection: International Year of Groundwater—managing future societal and environmental challenges. Hydrogeology Journal, 2023, 31, 1-6.	0.9	4
793	Synergetic pseudocapacitive sodium capture for efficient saline water desalination by iron oxide Hydroxide-Decorated palladium nanoparticle anchored 3D flowerlike molybdenum sulfide. Chemical Engineering Journal, 2023, 458, 141508.	6.6	3
794	Sustainable Water Treatment with Induced Bank Filtration. Water (Switzerland), 2023, 15, 361.	1.2	1
795	Inversion of terrestrial water storage changes from GNSS vertical displacements using a priori constraint: A case study of the Yunnan Province, China. Journal of Hydrology, 2023, 617, 129126.	2.3	5
796	Using Satellite-Based Terrestrial Water Storage Data: A Review. Surveys in Geophysics, 2023, 44, 1489-1517.	2.1	14
797	Recent waning snowpack in the Alps is unprecedented in the last six centuries. Nature Climate Change, 2023, 13, 155-160.	8.1	8
798	Geophysical and Remote Sensing Assessment of Chad's Groundwater Resources. Remote Sensing, 2023, 15, 560.	1.8	18
799	Contemporary channel adjustment and geomorphic sensitivity of the lower Mara River and its floodplain wetlands, Tanzania. Geomorphology, 2023, , 108583.	1.1	1
800	A mass conserving filter based on diffusion for gravity recovery and climate experiment (GRACE) spherical harmonics solutions. Geophysical Journal International, 2023, 234, 56-72.	1.0	2
801	Evaluation of Water Quality by Benthic Macroinvertebrate at the Jukjeon Stream in Korea. European Journal of Environment and Earth Sciences, 2023, 4, 6-10.	0.1	0
802	Joint inversion of GNSS and GRACE/GFO data for terrestrial water storage changes in the Yangtze River Basin. Geophysical Journal International, 2023, 233, 1596-1616.	1.0	9
803	Water Quality Evaluation and Pollution Source Apportionment of Surface Water in a Major City in Southeast China Using Multi-Statistical Analyses and Machine Learning Models. International Journal of Environmental Research and Public Health, 2023, 20, 881.	1.2	2
804	Groundwater over-exploitation driven ground subsidence in the himalayan piedmont zone: Implication for aquifer health due to urbanization. Journal of Hydrology, 2023, 617, 129085.	2.3	9
805	Watershed-level spatial pattern of degraded alpine meadow and its key influencing factors in the Yellow River Source Zone of West China. Ecological Indicators, 2023, 146, 109865.	2.6	6
806	Groundwater recharge estimation using in-situ and GRACE observations in the eastern region of the United Arab Emirates. Science of the Total Environment, 2023, 867, 161489.	3.9	9

#	Article	IF	CITATIONS
807	Baseflow Trends for Midsize Carpathian Catchments in Poland and Slovakia in 1970–2019. Water (Switzerland), 2023, 15, 109.	1.2	3
808	GLOBAL COMPARISON OF WATER SURFACE AREA VARIABILITY BETWEEN NATURAL LAKES AND RESERVOIRS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2022, 78, I_505-I_510.	0.0	0
809	The Role of Space-Based Observations for Groundwater Resource Monitoring over Africa. Surveys in Geophysics, 2023, 44, 123-172.	2.1	7
810	Urban Wetlands in the Tropics – Taiwan as an Example. Wetlands: Ecology, Conservation and Management, 2023, , 71-92.	0.0	0
811	Water cycle science enabled by the GRACE and GRACE-FO satellite missions. , 2023, 1, 47-59.		13
812	Aggregation-induced emission materials: a platform for diverse energy transformation and applications. Journal of Materials Chemistry A, 2023, 11, 4850-4875.	5.2	6
813	Abscisic acid agonists suitable for optimizing plant water use. Frontiers in Plant Science, 0, 13, .	1.7	1
814	Spatial monitoring of meteorological drought characteristics based on the NASA POWER precipitation product over various regions of Iran. Environmental Science and Pollution Research, 2023, 30, 43619-43640.	2.7	3
815	Natural iron minerals in an electrocatalytic oxidation system and in situ pollutant removal in groundwater: Applications, mechanisms, and challenges. Science of the Total Environment, 2023, 871, 161826.	3.9	9
816	Space Gravity Missions: CHAMP, GRACE, GRACE-FO, and GOCE, Satellite Projects. Encyclopedia of Earth Sciences Series, 2023, , 1-9.	0.1	0
817	Remote sensing and geostatistics in urban water-resource monitoring: a review. Marine and Freshwater Research, 2023, 74, 747-765.	0.7	117
818	The impacts of reducing atmospheric and oceanic de-aliasing model error on temporal gravity field model determination. Geophysical Journal International, 2023, 234, 210-227.	1.0	2
819	Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. , 2023, 1, 241-248.		37
820	Urban water crises driven by elites' unsustainable consumption. Nature Sustainability, 2023, 6, 929-940.	11.5	21
821	Diagnosing modeling errors in global terrestrial water storage interannual variability. Hydrology and Earth System Sciences, 2023, 27, 1531-1563.	1.9	0
822	Spatio-temporal analysis of climate and irrigated vegetation cover changes and their role in lake water level depletion using a pixel-based approach and canonical correlation analysis. Science of the Total Environment, 2023, 873, 162326.	3.9	1
823	Hydrogeochemical characterization of groundwater in the shallow aquifer system of Middle Ganga Basin, India. Groundwater for Sustainable Development, 2023, 21, 100934.	2.3	4
824	Global assessment of the sensitivity of water storage to hydroclimatic variations. Science of the Total Environment, 2023, 879, 162958.	3.9	1

		CITATION REPORT		
#	Article		IF	Citations
825	Cyanobacterial bloom monitoring and assessment in Latin America. Harmful Algae, 202	23, 125, 102429.	2.2	11
826	Divergent spatiotemporal variability of terrestrial water storage and eight hydroclimati components over three different scales of the Yangtze River basin. Science of the Tota 2023, 879, 162886.	c I Environment,	3.9	2
827	Best versus beneficial MP discourses: The significance of a change in discourse managi water quality in Canada. Journal of Environmental Management, 2023, 332, 117289.	ng agricultural	3.8	0
828	Sustainable aquifer management for food security. Agricultural Water Management, 2	023, 281, 108073.	2.4	3
829	Adaptability analysis of water pollution and advanced industrial structure in Jiangsu Pro Ecological Modelling, 2023, 481, 110365.	ovince, China.	1.2	21
831	Protecting Water Security SDG 6 in Malaysia and China: Role of Model Simulations. , 2	022, , 1-27.		0
832	Global evaluation of model agreement and uncertainty in terrestrial water storage sime ISIMIP 2b framework. Journal of Hydrology, 2023, 617, 129137.	ulations from	2.3	3
833	Water footprint and virtual water flows from the Global South: Foundations for sustair agriculture in periods of drought. Science of the Total Environment, 2023, 869, 16152	nable 6.	3.9	6
834	California's groundwater overdraft: An environmental Ponzi scheme?. Journal of Hy 129081.	/drology, 2023, 617,	2.3	3
835	Inversion of GNSS Vertical Displacements for Terrestrial Water Storage Changes Using Functions. Earth and Space Science, 2023, 10, .	Slepian Basis	1.1	6
836	A Global Synthesis of Multiâ€Factors Affecting Water Storage Capacity in Forest Cano Layers. Geophysical Research Letters, 2023, 50, .	py, Litter and Soil	1.5	3
837	Ecological restoration exacerbates the agriculture-induced water crisis in North China I Agricultural and Forest Meteorology, 2023, 331, 109341.	Region.	1.9	15
838	Analysis of Groundwater Storage Changes and Influencing Factors in China Based on C Atmosphere, 2023, 14, 250.)RACE Data.	1.0	7
839	Global water resources and the role of groundwater in a resilient water future. Nature Earth & Environment, 2023, 4, 87-101.	Reviews	12.2	119
840	Deficit irrigation effects on adjunct and allâ€malt barley yield and quality. Agronomy Jc 1161-1173.	ournal, 2023, 115,	0.9	1
841	Spatial Downscaling of GRACE Data Based on XGBoost Model for Improved Understan Hydrological Droughts in the Indus Basin Irrigation System (IBIS). Remote Sensing, 202	ding of 23, 15, 873.	1.8	33
842	Soil and vegetation water content identify the main terrestrial ecosystem changes. Na Review, 2023, 10, .	tional Science	4.6	4
843	Water trading as a tool to combat economic losses in agriculture under climate chang Sustainability Science, 2023, 18, 1415-1428.	e. 	2.5	3

#	Article	IF	CITATIONS
844	Groundwater deeper than 500 m contributes less than 0.1% of global river discharge. Communications Earth & Environment, 2023, 4, .	2.6	6
845	Groundwater shapes North American river floods. Environmental Research Letters, 2023, 18, 034043.	2.2	5
846	Contribution of vanishing mountain glaciers to global and regional terrestrial water storage changes. Frontiers in Earth Science, 0, 11, .	0.8	0
847	Electrocapacitive Deionization: Mechanisms, Electrodes, and Cell Designs. Advanced Functional Materials, 2023, 33, .	7.8	31
849	Multicompartment Depletion Factors for Water Consumption on a Global Scale. Environmental Science & Constant &	4.6	5
850	Oceanic climate changes threaten the sustainability of Asia's water tower. Nature, 2023, 615, 87-93.	13.7	31
851	Salt-Tolerant Crops: Time to Deliver. Annual Review of Plant Biology, 2023, 74, 671-696.	8.6	18
852	Climate adaptation policies and infant health: Evidence from a water policy in Brazil. Journal of Public Economics, 2023, 220, 104835.	2.2	2
853	Assessment of a near-polar pair mission for detecting the Earth's temporal gravity field. Geophysical Journal International, 2023, 234, 852-869.	1.0	2
854	Assessing the stability of AOD1B atmosphere–ocean non-tidal background modelling for climate applications of satellite gravity data: long-term trends and 3-hourly tendencies. Geophysical Journal International, 2023, 234, 1063-1072.	1.0	1
855	Separating the Precipitation―and Nonâ€Precipitation―Driven Water Storage Trends in China. Water Resources Research, 2023, 59, .	1.7	6
856	Satellites reveal hotspots of global river extent change. Nature Communications, 2023, 14, .	5.8	19
857	Technical and Economic Irrigation Potentials within land and water boundaries. Water Resources Research, 0, , .	1.7	0
858	Integrated Geophysical Approach of Groundwater Potential in Wadi Ranyah, Saudi Arabia, Using Gravity, Electrical Resistivity, and Remote-Sensing Techniques. Remote Sensing, 2023, 15, 1808.	1.8	14
859	Excessive pumping limits the benefits of a strengthening summer monsoon for groundwater recovery in India. One Earth, 2023, 6, 419-427.	3.6	2
860	Using Multi-Source Data to Assess the Hydrologic Alteration and Extremes under a Changing Environment in the Yalong River Basin. Water (Switzerland), 2023, 15, 1357.	1.2	1
862	Assessing groundwater storage anomalies in Beijing based on the new multifactor-quantitative joint prediction model. Human and Ecological Risk Assessment (HERA), 2023, 29, 881-901.	1.7	0
863	Investigating the Local-scale Fluctuations of Groundwater Storage by Using Downscaled GRACE/GRACE-FO JPL Mascon Product Based on Machine Learning (ML) Algorithm. Water Resources Management, 2023, 37, 3439-3456.	1.9	11

	Сіт	ation Report	
# 864	ARTICLE Natural groundwater recharge estimation using multiple methods combined with an experimental study. Water Science and Technology: Water Supply, 2023, 23, 1972-1986.	lF 1.0	Citations 0
865	Rational fabrication strategies of freestanding/binder-free electrodes for efficient capacitive deionization. Materials Advances, 2023, 4, 2247-2268.	2.6	3
866	Drought vulnerability range assessment: A dynamic and impact-driven method for multiple vulnerable systems. International Journal of Disaster Risk Reduction, 2023, , 103701.	1.8	1
867	Remotely sensed surface water variations during drought and deluge conditions in a Northern Great Plains terminal lake basin. Journal of Hydrology: Regional Studies, 2023, 47, 101392.	1.0	2
872	Food and Environmental Emergency. , 2022, , 37-55.		0
876	Gulf Coast Rivers of the Southwestern United States. , 2023, , 176-224.		0
912	Editorial: Application of satellite gravimetry in terrestrial water storage change. Frontiers in Earth Science, 0, 11, .	0.8	0
917	CARIOQA: definition of a Quantum Pathfinder Mission. , 2023, , .		0
926	Evaluation of spatial variability of the in-situ soil strata. AIP Conference Proceedings, 2023, , .	0.3	0
927	Externalities: Status and Trends of Water Depletion and Pollution. , 2023, , 61-78.		0
963	Flow-electrode Capacitive Deionization. , 2023, , 224-248.		0
977	Salinity and Ionic Composition of Inland Waters. , 2024, , 275-299.		0
984	Assimilated Deep Learning to Assess Terrestrial Hydrology. Springer Climate, 2023, , 223-277.	0.3	0
985	How Much Freshwater Is Available?. Springer Climate, 2023, , 59-79.	0.3	0
986	Remote Sensing of the Environment. Springer Climate, 2023, , 181-219.	0.3	0
988	Can the Wells Run Dry?. Springer Climate, 2023, , 135-178.	0.3	0
989	Integrated Machine Learning in Satellite Hydrology. Springer Climate, 2023, , 325-359.	0.3	0
997	Carbon-based functional materials for atmospheric water utilization. Nano Research, 0, , .	5.8	0

#	Article	IF	CITATIONS
1044	Global Change and Acceleration of Anthropic Pressures on Patagonian Ecosystems. Integrated Science, 2023, , 33-65.	0.1	0
1060	Groundwater decline is global but not universal. Nature, 2024, 625, 668-670.	13.7	0
1068	Learning to downscale satellite gravimetry data through artificial intelligence. , 2024, 2, 110-112.		0