Gate-Defined Quantum Confinement in InSe-Based van

Nano Letters 18, 3950-3955 DOI: 10.1021/acs.nanolett.8b01376

Citation Report

#	Article	IF	CITATIONS
1	High Mobilities in Layered InSe Transistors with Indiumâ€Encapsulationâ€Induced Surface Charge Doping. Advanced Materials, 2018, 30, e1803690.	11.1	101
2	Magnetotransport and lateral confinement in an InSe van der Waals Heterostructure. 2D Materials, 2018, 5, 035040.	2.0	7
3	2D materials for quantum information science. Nature Reviews Materials, 2019, 4, 669-684.	23.3	305
4	Semimetallic features in quantum transport through a gate-defined point contact in bilayer graphene. Physical Review B, 2019, 100, .	1.1	5
5	Gate defined quantum dot realized in a single crystalline InSb nanosheet. Applied Physics Letters, 2019, 114, .	1.5	12
6	Indirect to Direct Cap Crossover in Two-Dimensional InSe Revealed by Angle-Resolved Photoemission Spectroscopy. ACS Nano, 2019, 13, 2136-2142.	7.3	63
7	Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene. Physical Chemistry Chemical Physics, 2019, 21, 15647-15655.	1.3	28
8	Determination of Carrier Diffusion Length Using Transient Electron Photoemission Microscopy in the GaAs/InSe Heterojunction. Physica Status Solidi (B): Basic Research, 2019, 256, 1900126.	0.7	1
9	Recent Advances in Quantum Effects of 2D Materials. Advanced Quantum Technologies, 2019, 2, 1800111.	1.8	32
10	Formation and Healing of Defects in Atomically Thin GaSe and InSe. ACS Nano, 2019, 13, 5112-5123.	7.3	35
11	Lowâ€Voltage Operational, Lowâ€Power Consuming, and High Sensitive Tactile Switch Based on 2D Layered InSe Tribotronics. Advanced Functional Materials, 2019, 29, 1809119.	7.8	28
12	Thickness-dependent charge transport in exfoliated indium selenide vertical field-effect transistors. Applied Physics Letters, 2019, 115, 243104.	1.5	5
13	Photoquantum Hall Effect and Lightâ€Induced Charge Transfer at the Interface of Graphene/InSe Heterostructures. Advanced Functional Materials, 2019, 29, 1805491.	7.8	20
14	Hot Carrier and Surface Recombination Dynamics in Layered InSe Crystals. Journal of Physical Chemistry Letters, 2019, 10, 493-499.	2.1	22
15	Schottky-barrier quantum well in two-dimensional semiconductor nanotransistors. Materials Today Physics, 2020, 15, 100275.	2.9	4
16	The optical properties of few-layer InSe. Journal of Applied Physics, 2020, 128, .	1.1	23
17	Large-area optoelectronic-grade InSe thin films via controlled phase evolution. Applied Physics Reviews, 2020, 7, .	5.5	17
18	Realizing Optoelectronic Devices from Crumpled Two-Dimensional Material Heterostructures. ACS Applied Materials & amp; Interfaces, 2020, 12, 48910-4 <u>8916.</u>	4.0	13

	CHATION RE	PORT	
#	Article	IF	CITATIONS
19	Toward Valley oupled Spin Qubits. Advanced Quantum Technologies, 2020, 3, 1900123.	1.8	18
20	Oxidation-boosted charge trapping in ultra-sensitive van der Waals materials for artificial synaptic features. Nature Communications, 2020, 11, 2972.	5.8	83
21	Enhanced Optical Emission from 2D InSe Bent onto Siâ€Pillars. Advanced Optical Materials, 2020, 8, 2000828.	3.6	17
22	Interlayer Bandâ€ŧoâ€Band Tunneling and Negative Differential Resistance in van der Waals BP/InSe Fieldâ€Effect Transistors. Advanced Functional Materials, 2020, 30, 1910713.	7.8	65
23	Ultra-thin van der Waals crystals as semiconductor quantum wells. Nature Communications, 2020, 11, 125.	5.8	33
24	InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. Nano Research, 2020, 13, 1127-1132.	5.8	48
25	Raman spectroscopy of GaSe and InSe post-transition metal chalcogenides layers. Faraday Discussions, 2021, 227, 163-170.	1.6	43
26	A double quantum dot defined by top gates in a single crystalline InSb nanosheet*. Chinese Physics B, 2021, 30, 128501.	0.7	7
27	Gateâ€Đefined Quantum Confinement in CVD 2D WS ₂ . Advanced Materials, 2022, 34, e2103907.	11.1	18
28	Signature of Spin-Resolved Quantum Point Contact in p-Type Trilayer WSe ₂ van der Waals Heterostructure. Nano Letters, 2021, 21, 7534-7541.	4.5	3
29	Electrostatic gating of solid-ion-conductor on InSe flakes and InSe/h-BN heterostructures*. Chinese Physics B, 2020, 29, 118501.	0.7	3
30	Evidence of direct electronic band gap in two-dimensional van der Waals indium selenide crystals. Physical Review Materials, 2019, 3, .	0.9	18
31	Classification of Spatially Confined Reactions and the Electrochemical Applications of Molybdenum-Based Nanocomposites. Australian Journal of Chemistry, 2020, 73, 587.	0.5	1
33	Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Reports on Progress in Physics, 2022, 85, 046401.	8.1	74
34	One-pot synthesis of phosphine-free indium selenide (InSe) QDs and their structural characterization for LPG and humidity sensing. Journal of Materials Science: Materials in Electronics, 2022, 33, 11802-11812.	1.1	6
35	Gate ontrolled Quantum Dots Based on 2D Materials. Advanced Quantum Technologies, 2022, 5, .	1.8	13
36	Band Structures and Transport Properties of Broken-Gap Heteostructures: 2d C3n/Mx Case. SSRN Electronic Journal, 0, , .	0.4	0
37	Band structures and transport properties of broken-gap heterostructures: 2D C3N/MX case. Carbon, 2023, 202, 119-127.	5.4	7

#	Article	IF	CITATIONS
38	Freestanding Membranes for Unique Functionality in Electronics. ACS Applied Electronic Materials, 2023, 5, 690-704.	2.0	9
40	The Roadmap of 2D Materials and Devices Toward Chips. Nano-Micro Letters, 2024, 16, .	14.4	0