CTCF boundary remodels chromatin domain and drives acute myeloid leukemia

Blood 132, 837-848

DOI: 10.1182/blood-2017-11-814319

Citation Report

#	Article	IF	CITATIONS
1	HOTTIP IncRNA Promotes Hematopoietic Stem Cell Self-Renewal Leading to AML-Like Disease in Mice. SSRN Electronic Journal, 2018, , .	0.4	5
2	HoxA9 transforms murine myeloid cells by a feedback loop driving expression of key oncogenes and cell cycle control genes. Blood Advances, 2018, 2, 3137-3148.	2.5	31
3	KDM3B suppresses APL progression by restricting chromatin accessibility and facilitating the ATRA-mediated degradation of PML/RARα. Cancer Cell International, 2019, 19, 256.	1.8	13
4	Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nature Communications, 2019, 10, 4063.	5.8	104
5	HOX Loci Focused CRISPR/sgRNA Library Screening Identifying Critical CTCF Boundaries. Journal of Visualized Experiments, 2019, , .	0.2	3
6	Wildâ€type p53 regulates <scp>OTOP</scp> 2 transcription through <scp>DNA</scp> loop alteration of the promoter in colorectal cancer. FEBS Open Bio, 2019, 9, 26-34.	1.0	11
7	HOTTIP IncRNA Promotes Hematopoietic Stem Cell Self-Renewal Leading to AML-like Disease in Mice. Cancer Cell, 2019, 36, 645-659.e8.	7.7	116
8	HOXB2 is a Putative Tumour Promotor in Human Bladder Cancer. Anticancer Research, 2019, 39, 6915-6921.	0.5	9
9	New insights into the biology of acute myeloid leukemia with mutated NPM1. International Journal of Hematology, 2019, 110, 150-160.	0.7	30
10	The Dual Role of ROS in Hematological Malignancies: Stem Cell Protection and Cancer Cell Metastasis. Stem Cell Reviews and Reports, 2020, 16, 262-275.	1.7	36
11	NPM1c impedes CTCF functions through cytoplasmic mislocalization in acute myeloid leukemia. Leukemia, 2020, 34, 1278-1290.	3.3	27
12	Disruption of CTCF Boundary at HOXA Locus Promote BET Inhibitors' Therapeutic Sensitivity in Acute Myeloid Leukemia. Stem Cell Reviews and Reports, 2020, 16, 1280-1291.	1.7	3
13	Determinants and role of chromatin organization in acute leukemia. Leukemia, 2020, 34, 2561-2575.	3.3	16
14	Many facades of CTCF unified by its coding for three-dimensional genome architecture. Journal of Genetics and Genomics, 2020, 47, 407-424.	1.7	18
15	The Role of cis- and trans-Acting RNA Regulatory Elements in Leukemia. Cancers, 2020, 12, 3854.	1.7	15
16	Chromosome structural variation in tumorigenesis: mechanisms of formation and carcinogenesis. Epigenetics and Chromatin, 2020, 13, 49.	1.8	23
17	CTCF-mediated genome organization and leukemogenesis. Leukemia, 2020, 34, 2295-2304.	3.3	17
18	Alteration of CTCF-associated chromatin neighborhood inhibits TAL1-driven oncogenic transcription program and leukemogenesis. Nucleic Acids Research, 2020, 48, 3119-3133.	6.5	19

CITATION REPORT

#	Article	IF	CITATIONS
19	The insulator functions of the <i>Drosophila</i> polydactyl C2H2 zinc finger protein CTCF: Necessity versus sufficiency. Science Advances, 2020, 6, eaaz3152.	4.7	31
20	Contribution of CTCF binding to transcriptional activity at the HOXA locus in NPM1-mutant AML cells. Leukemia, 2021, 35, 404-416.	3.3	20
21	NPM1 mutant maintains ULK1 protein stability via TRAF6â€dependent ubiquitination to promote autophagic cell survival in leukemia. FASEB Journal, 2021, 35, e21192.	0.2	15
22	CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Naturae, 2021, 13, 31-46.	1.7	18
23	HOXBLINC long non-coding RNA activation promotes leukemogenesis in NPM1-mutant acute myeloid leukemia. Nature Communications, 2021, 12, 1956.	5.8	28
24	Engineering three-dimensional genome folding. Nature Genetics, 2021, 53, 602-611.	9.4	9
25	Multiple CTCF sites cooperate with each other to maintain a TAD for enhancer–promoter interaction in the βâ€globin locus. FASEB Journal, 2021, 35, e21768.	0.2	5
26	Loss of KMT2C reprograms the epigenomic landscape in hPSCs resulting in NODAL overexpression and a failure of hemogenic endothelium specification. Epigenetics, 2022, 17, 220-238.	1.3	7
30	SETâ€NUP214 and MLL cooperatively regulate the promoter activity of the <i>HoxA10</i> gene. Genes To Cells, 2021, 26, 830-837.	0.5	6
31	HOXC11 positively regulates the long non-coding RNA HOTAIR and is associated with poor prognosis in colon adenocarcinoma. Experimental and Therapeutic Medicine, 2021, 22, 1310.	0.8	3
32	Long noncoding RNAs: emerging regulators of normal and malignant hematopoiesis. Blood, 2021, 138, 2327-2336.	0.6	18
33	CTCF-binding element regulates ESC differentiation via orchestrating long-range chromatin interaction between enhancers and HoxA. Journal of Biological Chemistry, 2021, 296, 100413.	1.6	9
34	Tales from topographic oceans: topologically associated domains and cancer. Endocrine-Related Cancer, 2019, 26, R611-R626.	1.6	6
35	Functional interrogation of HOXA9 regulome in MLLr leukemia via reporter-based CRISPR/Cas9 screen. ELife, 2020, 9, .	2.8	25
36	CTCF: A novel fusion partner of ETO2 in a multiple relapsed acute myeloid leukemia patient. Journal of Leukocyte Biology, 2021, , .	1.5	3
37	Challenges and Opportunities of Genomic Approaches in Therapeutics Development. Methods in Molecular Biology, 2021, 2194, 107-126.	0.4	2
40	Molecular regulators of HOXA9 in acute myeloid leukemia. FEBS Journal, 2023, 290, 321-339.	2.2	11
42	A coordinated function of IncRNA HOTTIP and miRNA-196b underpinning leukemogenesis by targeting FAS signaling. Oncogene, 2022, 41, 718-731.	2.6	7

CITATION REPORT

#	Article	IF	CITATIONS
43	Transcriptional Regulation and Implications for Controlling Hox Gene Expression. Journal of Developmental Biology, 2022, 10, 4.	0.9	17
44	HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Molecular Cell, 2022, 82, 833-851.e11.	4.5	48
45	HOXC6 impacts epithelial-mesenchymal transition and the immune microenvironment through gene transcription in gliomas. Cancer Cell International, 2022, 22, 170.	1.8	6
47	Exome sequencing in a Swedish family with PMS2 mutation with varying penetrance of colorectal cancer: investigating the presence of genetic risk modifiers in colorectal cancer risk. European Journal of Cancer Prevention, 2023, 32, 113-118.	0.6	2
48	CTCF-mediated H3K27me3 enrichment on the LncRNA MALAT1 promoter regulates the cardiomyocytes from I/R-induced apoptosis through targeting miR-26b-5p. Molecular and Cellular Toxicology, 2023, 19, 119-133.	0.8	2
49	Subtype-specific 3D genome alteration in acute myeloid leukaemia. Nature, 2022, 611, 387-398.	13.7	59
51	Applying CRISPR-Cas9 screens to dissect hematological malignancies. Blood Advances, 2023, 7, 2252-2270.	2.5	2
52	Isocitrate dehydrogenase 1 mutation drives leukemogenesis by PDGFRA activation due to insulator disruption in acute myeloid leukemia (AML). Leukemia, 2023, 37, 134-142.	3.3	3
53	HOXA9 forms a repressive complex with nuclear matrix–associated protein SAFB to maintain acute myeloid leukemia. Blood, 2023, 141, 1737-1754.	0.6	5